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Abstract

Traditional supervised learning approaches for doc-
ument classification ask human labelers to provide
labels for documents. Humans know more than just
the labels and can provide extra information such as
domain knowledge, feature annotations, rules, and
rationales for classification. Researchers indeed
tried to utilize this extra information for labeling
of features and documents in tandem, and more re-
cently for incorporating rationales for the provided
labels. We extend this approach further by allow-
ing the human to provide explanations, in the form
of domain-specific features that support and oppose
the classification of documents, and present an ap-
proach to incorporate explanations into the training
of any off-the-shelf classifier to speed-up the learn-
ing process.

1 Introduction

Supervised learning approaches learn the class concepts us-
ing instances that are annotated with labels. When the la-
bels for instances are not available, traditional active learn-
ing approaches [Ramirez-Loaiza et al., 2016; Settles, 2012]
ask humans to curate datasets by providing labels for selected
instances to learn an effective classifier. While examining
instances, human labelers can provide information beyond
just label annotations. Humans can provide domain knowl-
edge, point out important features, provide feature annota-
tions, rationales, and rules for classification. Many studies
have shown that, unsurprisingly, supervised learning can ben-
efit if the domain knowledge or reasonings for classification
are imparted to the models. However, the main challenge has
been to effectively incorporate this domain knowledge, which
is often noisy and uncertain, into the training of the machine
learning system.

Transmitting domain knowledge to learning systems has
been studied for many years. For example, expert systems
relied heavily on eliciting domain knowledge from the ex-
perts (e.g., Mycin system [Buchanan et al., 1984] was built
through eliciting rules from the experts). Several explanation-
based learning approaches (e.g.,[Mitchell er al., 1986] and
[DeJong and Mooney, 1986]) were developed to utilize do-
main knowledge to generalize target concepts using a single

training example, and relied on domain experts to provide
explanations for generalization. Examples of explanation-
based learning systems include GENESIS [Mooney, 1986]
and SOAR [Laird et al., 1986]. Ellman [1989] provides a sur-
vey on explanation-based learning. However, incorporating
domain knowledge into the learning process and teaching the
classification reasonings to supervised models is not trivial.
Many supervised learning systems operate on feature-based
representations of instances. For example, in document clas-
sification, instances are typically represented as feature vec-
tors in a bag-of-words model. The domain knowledge elicited
from the experts, however, often cannot be readily parsed into
the representation that the underlying model can understand
or operate on. The domain knowledge often refers to features
rather than specific instances. Moreover, the domain knowl-
edge is often at a higher level than instances, and sometimes,
the domain knowledge is provided as unstructured informa-
tion, such as free-form text entries.

Several approaches have been developed for knowledge-
based classifiers such as knowledge-based neural networks
[Towell and Shavlik, 1994; Girosi and Chan, 1995; Tow-
ell et al.,, 1990] and knowledge-based support vector ma-
chines [Fung et al., 2002]. Recent approaches for document
classification have explored incorporating feature annotations
[Melville and Sindhwani, 2009; Druck et al., 2009; Small et
al., 2011; Stumpf et al., 2008; Raghavan and Allan, 2007;
Attenberg et al., 2010] and eliciting rationales for text clas-
sification [Zaidan et al., 2007; Donahue and Grauman, 2011;
Parkash and Parikh, 2012]. These approaches were specific
to classifiers, and hence, in a more recent work [Sharma et
al., 2015], we proposed an approach to incorporate rationales
for classification into the training of any off-the-shelf classi-
fier, and used evidence-based framework [Sharma and Bilgic,
2013; 2016] for actively choosing documents for annotation.

In this paper, we ask the labeler to provide explanations for
their classification. Specifically, we ask the labeler to high-
light the phrases in a document that support its label (i.e.,
the phrases whose presence reinforces the belief in the pro-
vided label) and phrases that oppose its label (i.e., the phrases
whose presence weakens the belief in the provided label).
For example, in a movie review “The actors were great but
the plot was terrible. Avoid it”, that is labeled as a ‘neg-
ative’ review, the phrases ‘terrible’ and ‘avoid’ support the
‘negative’ classification, whereas the word ‘great’ opposes



the ‘negative’ classification. We present a simple and effec-
tive approach to incorporate these two types of explanations
along with the labeled documents into the training of any off-
the-shelf classifier. We evaluate our approach on three doc-
ument classification datasets using multinomial naive Bayes
and support vector machines.

The rest of the paper is organized as follows. In Section 2,
we provide a brief background on eliciting labels and expla-
nations during the curation of datasets. In Section 3, we de-
scribe our approach for incorporating explanations into the
training of classifiers. In Section 4, we discuss experimental
methodology and results. Finally, we discuss limitations and
future work in Section 5, and then conclude in Section 6.

2 Background

Let D be a set of document-label pairs (z, y), where the la-
bel (value of y) is known only for a small subset L C D
of the documents: £ = {(z,y)} and therestif = D\ L
consists of the unlabeled documents: U = {(z,7)}. We as-
sume that each document 2% is represented as a vector of fea-
tures: = £ {f{, f3,---, fi}. Each feature f7 represents the
binary presence (or absence), frequency, or tf-idf representa-
tion of the phrase j in document x*. Each label y € ) is
discrete-valued variable ) = {y1,y2,--- ,y}. Typical su-
pervised learning approaches for data curation select a docu-
ment (x,?) € U, query a labeler for its label y, and incorpo-
rate the new document (x, y) into the training set L.

Several approaches looked at eliciting more than just
labels from annotators. For example, feature annotation
work looked at annotating features in tandem with label-
ing of documents (e.g., [Melville and Sindhwani, 2009;
Druck et al., 2009; Small et al., 2011; Stumpf et al., 2008;
Raghavan and Allan, 2007; Attenberg et al., 2010]). More re-
cently, [Zaidan et al., 2007] and [Sharma et al., 2015] looked
at eliciting rationales for the chosen label. In this paper, we go
one step further, and instead of asking simply the rationales,
we ask for an explanation for the chosen label.

Explanations can be pretty broad, such as free-form text
entries, rules, feature annotations, and rationales for classifi-
cation. In this paper, we focus on explanations for document
classification where the human annotator highlights phrases
in the document as explanations. Specifically, we ask the la-
beler to provide two kinds of highlighting. In the first kind,
the human highlights the phrases that support the underlying
label. For example, in sentiment classification, the human
would highlight the positive sentiments in a positive review.
In the second kind of highlighting, the human highlights the
kind of phrases which, if were not present, would make the
provided label even more correct. For example, these would
be the negative sentiments in a generally-positive review.

Formally, in the learning with explanations framework,
when a document is chosen for annotation, the labeler pro-
vides label yi for a document z‘, and explanations, which
correspond to supporting features SF(z¢) and opposing fea-
tures OF (z') for the label of 2': SF(2%) = {fi : k € 2'}
and OF (z') = {f} : j € «"}. Itis possible that the labeler
cannot pinpoint any supporting or opposing phrases, in which
case SF(z') and OF (x") are allowed to be empty sets. Next,

we describe our approach for incorporating explanations into
the learning process.

3 Learning with Explanations

In this section, we describe our approach to incorporate
feature-based explanations into the training of any off-the-
shelf feature-based classifier. We assume that the expla-
nations, i.e. the supporting and opposing features, re-
turned by the labeler already exist within the dictionary
of the underlying model.! For each labeled document,
(xt,yt, SF(x), OF (x%)), we create four types of pseudo-
documents as follows:

e For each supporting feature in SF(z*), we create one
pseudo-document containing only one phrase corre-
sponding to a supporting feature, weight the supporting
feature by wy, and assign this pseudo-document the la-
bel 3°.

e For each opposing feature in OF (z°), we create one
pseudo-document containing only one phrase corre-
sponding to an opposing feature, weight the opposing
feature by w, and assign this pseudo-document the label
—y¢, where -y’ is the opposite class label.

e We create one pseudo-document, d’ which is same as
the original document, except the supporting and op-
posing features are removed, the remaining features are
weighted by w!),, and label y’ is assigned to this pseudo-
document.

e We create another pseudo-document, d’ which is same
as the original document, except the supporting and
opposing features are removed, the remaining features
are weighted by w”, and label =y’ is assigned to this
pseudo-document.

We incorporate these pseudo-documents into £, on which the
classifier is trained. We call this approach to incorporate ex-
planations as learning with explanations (LwWE).

We present a sample dataset with two documents, a pos-
itive movie review and a negative movie review, below. In
these documents, the words that are returned as supporting
features are underlined and the words that are provided as op-
posing features are in strikethrough.

Document 1: This is a weird low-budget movie. It is awful
but it pulls off somehow, that is why I love it.

Document 2: This movie had great acting, geed photogra-

phy, but the plot was terrible. Ultimately it was a failure.
As this example illustrates, there are supporting positive (neg-
ative) words and opposing negative (positive) words in a posi-
tive (negative) document. Table 1 shows the traditional binary
representation and LwE representation for Document 2.

One would expect that the weights for documents that con-
tain only the explanations (w, and w) would be higher than
the ones that exclude explanations (w, and w_"), to empha-
size the supporting features for the chosen label and opposing

'Tf the features corresponding to the explanations do not exist in
the dictionary, the dictionary can be expanded to include the new
phrases, e.g. by creating and adding the corresponding n-grams to
the dictionary.



Table 1: The binary representation (top) and its LWE trans-
formation (bottom) for Document 2 (D2). Stop words are

Table 2: Description of the datasets: the domain, number of
instances in training and test datasets, and size of vocabulary.

removed. LwE creates multiple pseudo-documents with var- Dataset| Task Train | Test | Vocab.
ious feature weights and class labels. IMDB | Sentiment analysis of | 25,000 25,000 27,272
= movie reviews [Maas
& = etal., 2011]
o e & % g L NOVA | Email classification | 12,977| 6,498 | 16,969
5 g s 2 = =2 o = 3 ) o L
5 o g 8 E 3 = = 2 (politics vs. religion)
E & s & & 8 & 3 & 8 [Guyon, 2011]
Binary representation WvsH | 20Newsgroups (Win- | 1,176 | 783 4,026
dows vs. Hardware)

D2 1 1 1 1 1 1 1 1 1
LwE transformation of the binary representation

D2 1 Wg —
D2y Wy
D23 Wo

D24 Wo

D25 wf, wy, w?,
D2 w,’ w,! w,!

wy,  wl
wy! wy’

+

features for the opposite label, and de-emphasize the remain-
ing phrases in both classes. Moreover, the documents that ex-
clude explanations would be weighted higher for the chosen
label, w?),, than for the opposite label, w”, since even with-
out the supporting features, the document would more likely
belong to class y than to class —y. This is because the docu-
ment is overall labeled as y and the labeler is not necessarily
asked to provide all the explanations for classification.

This approach to incorporate explanations is not tied to any
classifier. Any off-the-shelf classifier that can work with nu-
merical features, such as multinomial naive Bayes (for which
all the feature weights, ws, w,, wY,, and w,”, must be non-
negative), logistic regression, and support vector machines,
can be used as the underlying model.

4 Experimental Methodology and Results

In this section we first describe the settings, datasets, and
classifiers used for our experiments and how we simulated
a human labeler to provide explanations for document classi-
fication. Then, we present the results comparing traditional
learning (TL), learning with rationales (LWR), and learning
with explanations (LWE). We use LwR strategy presented in
[Sharma et al., 2015] as a baseline for our LWE approach.

4.1 Methodology

We experimented with three document classification datasets,
which are described in Table 2. We evaluated our strategy
using multinomial naive Bayes and support vector machines,
as these are strong classifiers for text classification. We used
the scikit-learn [Pedregosa er al., 2011] implementation of
these classifiers.

To compare various strategies, we used learning curves.
The initially labeled dataset was bootstrapped using 10 doc-
uments by picking 5 random documents from each class. It-
eratively, 10 documents were chosen at random and were an-
notated by TL, LwR, and LwE approaches. This process was

repeated 10 times, and average learning curves over 10 differ-
ent runs are presented. We evaluated all the strategies using
AUC (Area Under an ROC Curve) measure. For this study
we selected documents randomly, as opposed to using active
learning approaches such as uncertainty sampling [Lewis and
Gale, 1994], to run a controlled experiment where TL, LWR,
and LwE, all operated on the same set of documents.

The LwR approach [Sharma et al., 2015] elicits rationales
for classification, and modifies the document to weight ra-
tionale features higher than other features within that docu-
ment. On the other hand, LWE approach elicits explanations,
where supporting features are rationales for classification, but
it goes one step further than LwR, and elicits opposing fea-
tures. For each document, the rationales provided for LwR
by the simulated labeler are the same as supporting features
provided for LWE, so compared to LWR, LwE has the addi-
tional advantage of receiving opposing features from the la-
beler. However, we cannot argue that the difference between
LwR and LwE strategies is only due to eliciting opposing fea-
tures, since LWE creates several pseudo-documents for expla-
nations, whereas LwWR re-weights features within a document.

For LwR baseline, we used the same weights that were
used in [Sharma et al., 2015]. That is, we set the weights
for rationales and the remaining features of a document to 1
and 0.01 respectively (i.e. = 1 and 0 = 0.01). For LWE us-
ing multinomial naive Bayes, we set the weights ws = 100,
w, = 100, w¥ = 1, and wy’ = 0.01. For LWE using sup-
port vector machines, we set the weights ws = 1, w, = 1,
wY, = 0.1, and w_” = 0.001. These weights worked reason-
ably well for all three datasets. We experimented with fixed
weight settings in this section to show that LWE can do well
across datasets even without parameter tuning. In Section 4.3,
we also present results using the best possible parameter set-
tings for all approaches.

We simulated the human labeler in the same way as
[Sharma et al., 2015]. The simulated labeler recognized
phrases as positive (negative) features that had the highest 2
(chi-squared) statistic in at least 5% of the positive (negative)
documents. To make the labeler’s effort as small as possible,
we ask the labeler to highlight any one feature as supporting
feature and any one feature as opposing feature, as opposed
to asking the labeler to highlight all supporting and oppos-
ing features. We also allowed the labeler to skip highlighting
any phrase as supporting or opposing, if the answer is not
obvious, i.e. if the labeler cannot pinpoint any phrase as a



supporting/opposing feature.

4.2 Results

Figure 1 presents the learning curves on three document clas-
sification datasets using multinomial naive Bayes and support
vector machines. The results show that LWE provides huge
improvements over TL for all datasets and classifiers. We
performed pairwise one-tailed t-tests under significance level
of 0.05, where pairs are area under the learning curves for 10
runs of each method. If a method has higher average perfor-
mance than a baseline with a significance level of 0.05 or bet-
ter, it is a win, if it has significantly lower performance, it is
a loss, and if the difference is not statistically significant, the
result is a tie. For all three datasets and two classifiers, LWE
statistically significantly outperforms TL. For NOVA dataset,
LwE outperforms TL on the first half of the learning curve,
but later loses to TL under fixed-parameter settings. As we
show later in Section 4.3, under best parameter settings, LWE
outperforms TL for NOVA at all budget levels. LwR also
performs much better than TL, and is therefore a strong base-
line for LWE, however, LWE provides further improvements
over LwWR. The t-test results show that for IMDB and NOVA
datasets, LWE statistically significantly wins over LWR using
both classifiers. For WvsH dataset, LWE wins over LwR us-
ing multinomial naive Bayes and LwE ties with LwWR using
support vector machines.

It is not a surprise that LWE is able to outperform TL and
LwR. LwE is asking the human to provide further informa-
tion than just the labels. What we are arguing, however,
is that LwE is able to integrate this extra information into
the learning process effectively. In Table 3, we compare the
number of annotated documents required by TL, LwR, and
LwE to achieve a target AUC performance using multinomial
naive Bayes. The results using support vector machines are
similar and are omitted to avoid redundancy. The ratios of
number of documents required by TL and LWE (TL/LwE)
in this table show that LWE drastically accelerates learning.
For example, for IMDB dataset, in order to achieve AUC of
0.85 using multinomial naive Bayes, TL requires labeling 233
documents, whereas LwE achieves the same AUC with just
51 labeled documents. We note that providing explanations
might take more time than providing just the labels, however,
for this case, if the labeler does not take more than 4.5 times
the amount time in providing explanations, it is better to ask
labeler to provide explanations along with labels for docu-
ments. Moreover, LWE often requires fewer labeled docu-
ments compared to LWR to achieve the same target AUC. As
Table 3 shows, the ratio of number of documents required by
the LwWR and LWE (LwWR/LWE) is often greater than 1 and
sometimes as large as 3.2. That is, if the labeler is already
providing a rationale, then if the labeler does not spend more
than 3 times the amount of time in providing an opposing
feature, labeling documents with explanations is worth the
expert’s time.

4.3 LwE vs. TL and LwR under Best Parameter
Settings

So far we have seen that LWE provides improvements over
TL and LwR. All three strategies used a fixed weight setting

Table 3: Comparison of number of documents required to
achieve a target AUC by TL, LwE, and LwR using multino-
mial naive Bayes. ‘n/a’ represents that a target AUC cannot
be achieved by a method.

Target AUC | 0.70 ] 0.75 0.80 | 0.85 | 0.90 | 0.95
TL 37 | 65 | 106 | 233 | 841 | n/a
m| LwR 10 16 37 164 | n/a n/a
% LwE 5 9 18 [ 51 | 379 |n/a
S TL/LWE 74 | 722589 457 222 | n/a
LWR/ILWE | 2 1.78 [ 2.06 | 322 | n/a | n/a
TL 3 3 5 2 [28 |126
<[ TwR 2 |3 7 T [ 31 | 110
B LwE 2 (3 [4 [9 [16 [51
Z TL/LWE 15 [ 1 125 1.33 | 1.75 | 2.47
LWwR/ILWE | 1 1 1 122 1.94| 2.16
TL 17 [ 33 |57 | 127 | 380 | n/a
[ TwR 7 |6 2 (33 | 188 |nha
S LwE 4 6 12 [ 30 | 146 | n/a
ZTLLwE | 42555 [ 475 423 2.6 | wa
LWwR/ILWE | 1 1 1 1.1 | 1.29 | n/a

for hyper-parameters. In this section, we examine how TL,
LwE, and LwR methods would behave when they are tuned
using the best parameter settings. To find out, we searched
over several parameters, optimizing on the test data. Note
that, normally, one would never optimize over the test data
in practical settings. This is a hypothetical setting, and the
purpose is to conduct a controlled experiment to tease out
whether the LWE framework is different, better, or worse than
the LwWR framework, when both are tuned using best possible
parameter settings.

For LwR, we searched for weights r and o and for LWE,
we searched for weights ws, w,, wY,, and w_’. In addition to
these parameters, for multinomial naive Bayes, we searched
for the smoothing parameter, «, and for support vector ma-
chines, we searched for the regularization parameter, C'. For
all hyper-parameters, we performed grid search for values be-
tween 1073 and 103. TL searches for only a and C.

Figure 2 presents learning curves comparing LWE to TL
and LwR under best parameter settings. The t-tests results
show that LWE statistically significantly wins over TL for all
three datasets. For IMDB and NOVA datasets, LWE wins over
LwR using both classifiers. For WvsH dataset, LWE ties with
LwR using both classifiers.

5 Limitations and Future Work

A limitation of our work is that we simulated the labeler in
our experiments. We asked the labeler to provide any one
supporting and any one opposing feature to explain the clas-
sification. However, a user study is needed to experiment
with potentially noisy labelers, and measure how much per-
formance and efficiency improvements learning with expla-
nations provides over traditional learning and over learning
with rationales.

We used fixed weight settings and best weight settings for
the hyper-parameters. Ideally, one should search for optimal
hyper-parameters using cross validation on training set. A
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Figure 1: Comparison of LWE to TL and LwR. LWE provides significant improvements over TL. LWE statistically significantly
wins over LWR for (a), (b), (c), (d), and (e). LWE ties with LwR on WvsH dataset using support vector machines (f).

challenge is that both LWE and LwR provide further benefits
over TL when the labeled data is small (which makes sense
because domain knowledge is invaluable especially when la-
beled data is small), but hyper-parameter tuning using cross-
validation on the training data itself, when the training data is
small, is not trivial. On the bright side, however, both LWE
and LwR perform better than TL even under fixed parameter
settings.

We provided a framework to incorporate explanations in
the form of supporting and opposing features for classifica-
tion. Another line of future work is to allow labelers to pro-
vide other types of explanations, where explanations can be
complex conjunction or disjunction of domain-specific fea-
tures, or free-form text entries.
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Figure 2: Comparison of LWE with TL and LwR under best parameter settings.

6 Conclusion

We introduced a framework to incorporate explanations into
learning for text classification. Our simple strategy to incor-
porate feature-based explanations can utilize any off-the-shelf
classifier. The empirical evaluations on three text datasets
and two classifiers showed that our proposed method can in-
corporate simple explanations, in the form of supporting and
opposing features, effectively for document classification.
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