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Abstract
As the Curiosity rover continues to collect data
from the surface of Mars, interactive semi-
automated methods for analyzing the breadth of
information are needed. Onboard Curiosity, the
ChemCam instrument collects data on the chem-
ical composition of the near-surface of rocks us-
ing laser-induced breakdown spectroscopy (LIBS).
Thus ChemCam observes geochemical surface fea-
tures that give clues to the past environmental con-
ditions of the planet. Given the high number of
ChemCam observations to date (∼300, 000 spec-
tra) and the high dimensionality of LIBS data (∼
6000 channels), it is not straightforward to evalu-
ate trends in chemical composition to discover sig-
natures of geological surface features. We learn
a Gaussian graphical model (GGM) to identify
chemical depth trends in the near-surface of a rock.
The GGM gives a good summary of trends, but
a domain expert needs additional information and
control over the learning of the GGM to make in-
teresting discoveries about the elements in the rock
responsible for the GGM. We develop an interac-
tive approach to learning a GGM which provides
information about which data samples contribute
the most to the learned structure and allows the user
to adjust the relative importance of each sample to
learn a new structure from a weighted sample co-
variance matrix. In the case of ChemCam data, this
is equivalent to adjusting the importance of various
elements when analyzing the relationships among
LIBS spectra. We show that this approach is related
to the problem of learning using privileged infor-
mation and give other potential applications for our
specific algorithm of learning a GGM using privi-
leged information about sample importance.

1 Introduction
The Curiosity rover landed in Gale Crater on Mars in 2012
and has been collecting a variety of data ever since. In partic-
ular, the ChemCam instrument samples the chemical compo-
sition of rocks and soils using laser-induced breakdown spec-
troscopy (LIBS) (see Figure 1 for a description of LIBS and

ChemCam) [Wiens et al., 2012]. The chemical analysis of
surface layers on rocks can give clues to the past conditions
of the planet by revealing geological features such as surface
coatings (from interaction with the environment), weathering
rinds (from interaction with the atmosphere), and thin strati-
graphic layers (rock deposit layers from sedimentation or vol-
canic activity). The ChemCam instrument provides the nec-
essary data of chemical depth profiles with successive laser
shots [Lanza et al., 2015]. Machine learning approaches for
analyzing this data are needed as the volume and complexity
of the data are too large to analyze manually, but the learn-
ing objective is ill-defined because the goal of the analysis is
open-ended scientific discovery [Wagstaff et al., 2013]. To
analyze depth trends in martian rocks, we apply graphical
model structure learning to identify patterns representative of
geological signatures. The approach that we take is to de-
velop interactive machine learning algorithms where interac-
tion requires two key components: transparency (providing
explanations to the user) and user input.

In unsupervised learning, the goal is to discover interest-
ing patterns in large and/or complex data. In scientific dis-
covery, the domain experts know a lot about their data, even
before applying any learning algorithms to it. We have found
that for machine learning to be used in scientific discovery,
transparency in the learning algorithm is critical. We provide
transparency through (1) explanations about how the model
was obtained from the data and (2) providing control to the
end user over the learning process. Because the domain ex-
pert knows their data better than the learning algorithm, it is
especially important for the end user to be able to explore
how various inputs, including the training data itself, affect
learned models. Therefore, we treat the problem of scientific
discovery as a form of learning using privileged information
[Vapnik and Vashist, 2009], in which there are data samples in
the form of pairs (Xi, X

∗
i ) and we learn a generative model

for X ∼ P (θ) based on the samples Xi while utilizing the
privileged information X∗i about the samples. In this paper,
we investigate the use of importance weighting of samples as
the privileged information.

In many interactive machine learning scenarios, the user
provides labels or in the case of graphical models, prior be-
liefs about the presence or absence of certain structures (usu-
ally edges) that should appear in the learned model [Mohan et
al., 2012; Werhli and Husmeier, 2007]. While that informa-
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Figure 1: (a) The ChemCam LIBS instrument shoots a laser at a target, creating a plasma. (b) Depending on the elements in its
chemical composition, the plasma gives off different wavelengths of light which are measured by the spectrometer, producing
an observed spectrum. (c) Each shot ablates the target surface, leaving a small pit. Typically, sequences of 30 or more shots are
fired in each of several locations on a single rock (or soil) target.

tion can help, at times the type of information about the data
that the expert can provide is quite different. In this work,
we take the novel approach of providing a mechanism for in-
teraction over the weighting of training samples in Gaussian
graphical model structure learning. We learn Gaussian graph-
ical models (GGM) interactively with input from the domain
expert about which wavelengths are of highest interest. We
start initially with a GGM learned from the full spectrum
of wavelength bands returned by the ChemCam instrument.
The initial GGM gives a summary of the geochemical gradi-
ents that produce the structure of the graphical model. How-
ever, some wavelengths tend to dominate the spectrum de-
pending on the response of various elements (some elements
burn “brightly” or are simply abundant in martian rocks). Of-
ten the domain expert would like to examine the geochemi-
cal patterns of other wavelength bands representing trace ele-
ments or elements that just do not show up as strongly in the
spectral response.

While this work is motivated by a specific problem, it rep-
resents important research into interactive machine learning
using privileged information and for transparency of machine
learning algorithms. When learning complex solutions, such
as probabilistic graphical model structure, from data; too of-
ten, a major limitation in the usefulness of such solutions is
in helping the domain expert to understand what the solution
means. By providing an interactive interface in which priv-
ileged information about the data being used to generate the
model can be modified, we provide both a method to refine
results toward shedding light on patterns in the most impor-
tant data, as well as providing a means for the domain expert
to investigate how data selection affects the learned model.
Our interactive system is composed of these parts:

1. Learn a GGM and display it.

2. Display data used to produce the GGM and highlight
which samples contribute most to the learned structure.

3. Collect feedback from user about which samples should
be weighted more (or less) heavily.

4. Re-iterate from Step 1.

Other applications for this method would be in learning
graphical model structure in biomedical domains. Often a
large set of patients or samples have been collected, from
which a graphical model will be learned. However, partic-
ularly in studies where it is impossible to control for all non-
relevant variables (such as age, gender, medications of pa-
tients, etc), the domain scientist wants to see how the learned
model differs when different subsets of data are used to learn
the model [Liu et al., 2010b; Oyen and Lane, 2012]. For
example, a graphical model representing the functional brain
network of patients with schizophrenia is often confounded
by the variability of medications (and non-medical drugs)
that schizophrenia patients typically take. Removing a sub-
set of patients on a certain medication from the dataset would
change the learned graphical model structure — or if the
model structure does not change, that would also be useful
information for the domain expert. Another application is
learning relationships among malware samples in cyberse-
curity. The learned graphical model gives insights into how
malware is developed including clues about the behavior and
purpose of newly discovered malware code by relating it to
existing malware that has already been evaluated manually.
However, knowing which parts of the malware produce the
discovered relationships is critical for speeding the evaluation
of new malware, in addition to providing clues about the key
components of malware that would likely continue to appear
in future versions of malware.



2 Related Work
Our interactive approach is in the spirit of the observation
from [Amershi et al., 2011] that “treating a person simply as
an oracle neglects human ability to revise and experiment. We
therefore propose that a person instead consider ‘how will dif-
ferent labels for these objects impact the system in relation to
my goals?’” However, instead of looking at labels of objects,
we allow a person to investigate how selection and weighting
of training samples impact the system.

The problem of providing transparency in machine learn-
ing algorithms has gained increasing attention in the past
few years, particularly in unsupervised learning scenarios
such as anomaly detection, often under the name of provid-
ing explanations [Senator et al., 2013; Wagstaff et al., 2013;
Michelson and Macskassy, 2009]. Other methods for provid-
ing transparency focus on refinement of the learning objective
through interactive control of learning parameters [Kapoor et
al., 2010; Oyen and Lane, 2014].

Interactive machine learning has also been studied, but
most often the end goal is increased accuracy of supervised
learning [Stumpf et al., 2009; Abu-Mostafa, 1995] or to add
supervision to unsupervised learning problems [Dubey et al.,
2010; Fogarty et al., 2008; Kunapuli et al., 2013]. Our work
is most similar in spirit to [Dy and Brodley, 2000] which in-
troduces interactive feature selection for clustering; although
our work is in interactive sample selection for learning graph-
ical model structure.

3 Geochemical Trends as Graphical Models
First we present our initial approach to modeling geochem-
ical trends with standard graphical model structure learning.
The ChemCam instrument onboard the Curiosity rover col-
lects observations of the chemical composition of rock targets
using laser-induced breakdown spectroscopy (LIBS) [Wiens
et al., 2012]. With each laser shot, the rock surface is ab-
lated and therefore ChemCam produces a sequence of sam-
ples at increasing depth; revealing compositional trends such
as coatings and weathering rinds (from interaction with water
or atmosphere); and thin stratigraphic layers (from sedimen-
tation or volcanic activity) that give clues about the past at-
mospheric and aqueous (water) conditions of Mars [Lanza et
al., 2015].

As shown in Figure 1, each LIBS shot produces a spectral
observation consisting of 5810 wavelength bands between
224nm and 850nm. The spectral response is given as a table
of intensity values for each wavelength band for each shot. A
typical sequence of shots includes 30 - 150 shots on a fixed
location. We model the correlations of rock chemistry among
these shots, as measured by the sample covariance matrix cal-
culated from the observed spectra. As pre-processing, we re-
move data for wavelengths above 850 nm, set all negative
values to zero and normalize the values for each of Chem-
Cam’s three component spectrometers separately. To inves-
tigate shot-to-shot correlations, shots are the vertices in the
graph while the 5810 wavelength bands are treated as data
samples.

Gaussian graphical models (GGM) [Zhao et al., 2012;
Meinshausen and Bühlmann, 2006; Friedman et al., 2008]

estimate a sparse set of conditional dependency relationships
(partial correlations) among a set of variables. A partial cor-
relation between shot X and shot Y is the residual correlation
after accounting for all other shots. If the partial correlation
between X and Y is 0 then X and Y are conditionally inde-
pendent and no edge is drawn between vertices X and Y in
the graphical model.

A GGM is estimated from a data matrix X, where each
column X·j is a shot j with spectral values Xij for i in
{1, . . . , n}wavelength bands. The sample covariance matrix,
Σ, is calculated from X as

Σjk =
1

n

n∑
i=1

(Xij − X̄j)(Xik − X̄k), (1)

where X̄j = 1
n

∑n
i=1Xij is the column mean. Then the

sparse approximation, Θ, to the preicison matrix for a given
sparsity constraint, λ, is estimated according to the objective
function

Θ̂ = arg max
Θ≺0

[
log det Θ− tr(Σ−1Θ)− λ‖Θ‖1

]
, (2)

where, ‖Θ‖1 =
∑

ij |θij |, is the `1 norm. The sparsity of Θ̂ is
controlled by the value of λ, which can be any non-negative
real number. If λ = 0, then all values in Θ̂ are non-zero. As λ
increases, the more zeros that Θ̂ contains. Choosing an opti-
mal value for λ is not straightforward, as many procedures for
automatically choosing λ produce overly dense graphs [Liu
et al., 2010a]. We take the approach of using many values of
λ and drawing a learned graph with edges weighted propor-
tionally to how sparse a graph the edge appears in, providing
more information to the end-user about the most robust edges,
rather than selecting a single model under any one setting of
the λ parameter.

Using ChemCam terminology as shown in Figure 1c,
ChemCam typically fires 30 shots on a single location (pro-
ducing a small pit with shots at increasing depth), and often
several locations in a raster pattern per target. A ChemCam
target is a rock, soil or calibration target; typically identified
with a target name and the sol (martian day) on which it is
sampled. Each shot ablates∼0.3−0.5µm of material [Lanza
et al., 2015; Wiens et al., 2012].

As just one example of these targets, Figure 3 shows the
graph estimated for sampling location 1 on the rock target
Bell Island on sol 113 (pictured in Figure 2). It shows that
the first several shots are directly dependent on the prior shot
and the following shot in the sequence, creating a “chain”
from Shot 1 through Shot 10. Without any prior information
about the shot sequence, the GGM is able to reconstruct the
shot sequence on the first 10 or so shots, which is consistent
with observations that these first shots may differ from the
underlying rock. In this case, the surface of Bell Island is ex-
tremely dusty, making dust a likely contributor to the spectra
of the initial shots [Lasue et al., 2014]. Additionally, the first
sampling location of Bell Island appears to be a thin, sulfate-
rich vein [Nachon et al., 2014]. Our results suggest that in its
30-shot analysis at this location, ChemCam sampled through
surface dust into the sulfate vein below. Examination of the
spectral data confirm that the elements enriched in dust (e.g.



Figure 2: ChemCam target Bell Island, sampled on sol 113 (ccam02113). (a) Mastcam image of rock overview; the white box
represents the ChemCam sampling region (mcam00694). (b) ChemCam remote microimager (RMI) mosaic of Bell Island. The
red arrow indicates sampling location 1.
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Figure 3: Graph of the shot-to-shot relationships in location 1
on Bell Island (30 shots, sol 113, ccam02113, pictured in Fig-
ure 2). Vertices of graph represent shots, numbered 1 through
30. Vertices are colored by shot number, starting with dark
red at shot 1 and getting lighter to light yellow at shot 30 to
aid visualization.

magnesium [Lasue et al., 2014]) decrease with depth (shot
number) while sulfur and calcium increase.

4 Interactive Learning of Graphical Models
Our interactive approach includes two key components, one
for giving an explanation of the learned model and the other
component for allowing the user to change the relative weight
of training samples.

4.1 Providing explanations
The learned graphical model gives a good summary of over-
all shot-to-shot trends in the chemistry of LIBS targets. How-

ever, to make this information useful for a domain scientist
to make scientific discoveries, information about the specific
elements contributing to these trends is necessary. Therefore,
we provide information about which samples (in the LIBS
case this translates to wavelengths) that contribute most heav-
ily to the co-variance among connected vertices in the learned
model. The contribution, ci, of sample i is calculated as:

ci(E) =
∑

ejk∈E
φjk(Xij − X̄j)(Xik − X̄k), (3)

where φjk ≥ 0 is the learned weight of edge ejk. For more
detailed information, the user can select one or more edges
in the learned model, defining E∗, a subset of all the learned
edgesE, and then calculate the contribution of samples to the
local covariance in the neighborhood of the selected edges:

ci(E
∗) =

∑
ejk∈E∗

φjk(Xij − X̄j)(Xik − X̄k), (4)

The largest contributors are highlighted, as shown in Fig-
ure 4, with gray rectangles behind the values associated with
that sample (the greater the contribution, the darker the rect-
angle). For ChemCam LIBS data, the samples (x-axis) are
wavelength bands observed by the spectrometer and there-
fore it makes sense to display the data this way. Samples
from other data sources may need to be visualized differently,
according to the form in which domain experts typically vi-
sualize their data.

4.2 User-defined sample weights
Often when learning a graphical model from data, the do-
main expert would like to explore what the graphical model
would look like given a specific subset of data samples,
or a non-uniform weighting on those samples. For exam-
ple, in the neuroimaging domain, when learning a functional
brain network, it might be apparent from the learned graph
on the full sample that subjects taking a certain medica-
tion are affecting the results. By removing those subjects



Figure 4: Interactive visualization of the samples that are the biggest contributors to the covariance calculation among adjacent
vertices in the learned GGM. The bottom panel of the visualization allows the user to change the weighting of each sample. In
this example, the wavelengths associated with six trace elements are evenly weighted while all others are zero-weighted.

from the sample, we learn a new graph [Liu et al., 2010b;
Oyen and Lane, 2012]. Similarly, in learning flavor (ingre-
dient) networks from a collection of recipes, it might be de-
sirable to remove or re-weight dessert recipes or recipes from
specific geographic regions because they would produce dif-
ferent results [Ahn et al., 2011; Oyen and Lane, 2014]. The
end goal is to explore the relationships among the variables
and how the set of samples affect these relationships. In
our specific goal of this paper, we investigate chemical depth
trends in rocks. Some elements are quite abundant in rocks
on Mars or burn brightly in LIBS (the presence of the element
produces a high magnitude in the spectrum disproportionate
to the relative amount of the element in the rock sample).
The domain expert would like to re-weight the relative impor-
tance of various elements (mapping to wavelength samples)
to tailor the depth trend analysis, such as for finding trends
in trace elements that would otherwise be overshadowed by
more abundant and brighter elements.

Defining weights wi as the privileged information X∗i
available for each data sample, we replace Equation (1) with
a weighted sample covariance matrix, Σ′, with elements cal-
culated as:

Σ′jk =

n∑
i=1

wi(Xij − X̄ ′j)(Xik − X̄ ′k), (5)

where normalized weights wi for i ∈ {1, . . . , n} are pro-
vided interactively from an end user such that ∀i, wi ≥ 0

and
∑n

i=1 wi = 1. The weighted mean is used, X̄ ′j =∑n
i=1 wiXij . The weighted mean and covariance are max-

imum likelihood estimators of normal distributions with dif-
ferent reliabilities of estimates for each sample. Thus, the
weights are equivalent to judgments of reliability of the mea-
surement. This is appropriate for estimating a graph with
some high-variance signals down-weighted and for discount-
ing the contribution of samples that are less important while
increasing the weight of the contribution for the most impor-
tant samples. The weighted covariance matrix is now used in
the typical objective function, Equation (2), for estimating a
GGM.

4.3 Interactive learning system
After incorporating user-defined weights, wi, the new contri-
bution of each sample is calculated as:

c′i(E) =
∑

ejk∈E
wiφjk(Xij − X̄ ′j)(Xik − X̄ ′k), (6)

and displayed in the visualization tool (Figure 4) along with
the GGM learned from the weighted covariance matrix. The
user can continue to explore how various wavelengths affect
the depth trends as represented by the learned GGM.

We demonstrate the use of interactive GGM learning on the
Mars rock target Stephen sampled by ChemCam (sol 619).
Stephen is a particularly interesting target because close ex-
amination of its geochemistry indicates that there is a surface
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Figure 5: GGM of Stephen (150 shots, sol 619, ccam03619).
Vertices are colored and labeled like Figure 3.

coating high in manganese, a geological phenomenon indica-
tive of past atmospheric conditions that may have been hab-
itable [Lanza et al., 2015]. The goal of our interactive GGM
learning is to discover such signatures more quickly than is
possible by looking through the LIBS data manually.

Figure 5 shows the original GGM learned from the full
set of data (unweighted), while Figure 6 shows the GGM
learned when the samples are weighted so that a set of
wavelengths associated with six trace elements (lithium,
chromium, manganese, rubidium, strontium, and barium)
are equally weighted and all other wavelengths are zero-
weighted. Interesting patterns present themselves in the orig-
inal unweighted data (Figure 5). The geochemistry shows
a general depth trend along the 150 shots into the rock;
while there seems to be a stratigraphic layer at about shot
89 where the geochemistry changes more rapidly. When the
domain expert investigates how trace elements affect these
depth trends, we see that the changes in trace elements are
systematically consistent along most of the 150 shots into the
rock. This finding is consistent with the observation that the
trace element manganese, is present as a varnish on the outer
rock and diminishes in abundance as samples are collected
further into the rock [Lanza et al., 2016].

5 Future Work
In problems in which the data set is comprised of subsets
of interesting data, we could partition the data into a set of
data views and use multi-view learning [Lian et al., 2015;
Anderson et al., 2014]. The standard GGM learning model
would need to be updated to handle multi-view data. The
standard multi-view approach automatically learns to weight
the contribution of each view in order to maximize some
objective. In interactive graph discovery, we would allow
the domain expert to adjust these weights interactively, sim-
ilar to our current approach, but the partitioning of data into
views significantly reduces the space of variables that the user
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Figure 6: GGM of Stephen (150 shots, sol 619, ccam03619)
when only the spectral bands of trace elements are consid-
ered. Colors and labels like Figure 3.

would need to explore. Data partitions would represent sub-
sets of data that are meaningful to the domain expert.

The automatic partition of datasets for learning context-
specific graphical models has been studied under constrained
conditions [Liu et al., 2010b]. Our current work provides a
step toward an interactive approach that is more tractable than
the fully-automated objective. We believe that a combination
of automatic partitioning of data and user-interaction will ul-
timately give the best solution to this problem. This paper
provides an interactive method for learning just one GGM at
a time, in the future we will combine this with our multitask
methods to learn multiple graphical models with the data par-
titioning determined interactively.

6 Conclusions
Interactive learning of graphical model structure allows a do-
main expert to explore relationships among variables in their
data while capitalizing on the user’s knowledge about the
samples within the dataset. This learning paradigm is the
unsupervised learning equivalent of learning using privileged
information. The use of machine learning in scientific discov-
ery for uncovering signatures of scientific value will greatly
benefit from interactive tools that provide explanations about
how the learned model derives from the data and also gives
some control to the end user to explore alternative models.
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