Probabilistic Logic Learning via Active Advice Seeking

Phillip Odom and Sriraam Natarajan
Indiana University, Bloomington Indiana

Abstract

Machine learning approaches that utilize human
experts combine domain experience with data to
generate novel knowledge. Unfortunately, most
methods either provide only a limited form of com-
munication with the human expert and/or are overly
reliant on the human expert to specify their knowl-
edge upfront. Thus, the expert is unable to un-
derstand what the system could learn without their
involvement. Allowing the learning algorithm to
query the human expert in the most useful areas
takes full advantage of the data as well as the ex-
pert. We introduce active advice-seeking for rela-
tion domains. Relational logic allows for compact,
but expressive interaction between the human ex-
pert and the learning algorithm. We demonstrate
our algorithm empirically on several standard rela-
tional datasets.

1 Introduction

Probabilistic logic models (PLMs) [Getoor and Taskar, 2007;
De Raedt et al., 2008] combine the expressive power of
first-order logic and the ability of probability theory to
model noise and uncertainty. They have been inspired by
databases [Friedman et al., 1999; Heckerman et al., 2004]
and by logic [De Raedt et al., 2007, Domingos and Lowd,
2009]. Given their expressivity, several powerful learning al-
gorithms have been developed that allow for learning from
interpretations [Domingos and Lowd, 2009; Natarajan et al.,
2008] and learning from entailment [Sato and Kameya, 1997,
De Raedt et al., 2007]. While efficient algorithms have
been developed to learn the parameters of these models (ei-
ther weights or probabilities), full model-learning (also called
structure learning to denote learning of the logical structure)
remains a challenging task. Recently, methods based on en-
semble learning have been proposed that allow for efficient
structure learning for PLMs [Natarajan er al., 2015].

These methods essentially rely only on data. Given that
the primary assumption is that data can be noisy, restricting
humans to be mere labelers of the data, as is done in many
popular approaches, seems wasteful. Recently, a formulation
for incorporating prior knowledge as preferences over labels
for the ensemble learning method was proposed [Odom et

al., 2015]. The key idea was to explicitly trade-off between
the label preferences suggested by the human expert and the
posterior label distributions obtained from the data. It was
demonstrated that advice was particularly useful where there
was targeted noise - e.g., missing certain regions while seg-
menting, missing stop signs in some demonstrations etc.

While the framework of Odom et al. [2015] does not
merely treat the given advice as “prior” knowledge, it as-
sumes that all the advice is provided up-front before the learn-
ing takes place. Not only is this a potentially time con-
suming task for the experts, but it is also highly likely that
they, not being experts in machine learning or probabilistic
logic, would find it difficult to identify the domain knowl-
edge that might be optimal for the learning algorithm. Hence,
inspired by active learning [Settles, 2012], we propose active
advice-seeking that aims to determine the regions of (rela-
tional/logical) feature space that is ideal for obtaining advice.
For instance, will the accuracy of a model learned to predict
heart attacks be higher if advice is given about the popula-
tion who is overweight and has high blood pressure or about
the population which smokes but exercises regularly? The
answer is not clear but this is where active advice-seeking
should be helpful. The goal of active advice-seeking is to
lessen the responsibility of the expert both in terms of the ef-
fort that must be spent in specifying the advice, as well as
the necessity that the expert understand the intricacies of the
algorithm. It will automatically identify the regions of the
feature space where the advice will be useful.

More precisely, the proposed algorithm presents a set of
conjunctions of predicates as queries to the expert. The size
of the set is pre-determined by a budget given by the expert
(i.e., the algorithm and the expert agree in advance for the
number of allowable queries). In order to compute the clause
that should be queried, the algorithm learns a model from
only the data to compute a score for each example, then it
uses a regression clause learner to fit the scores. The best
clause is presented to the expert who provides a preference
over the labels. For instance, in a university domain, the body
of the clause could be of the form profiX) A student(Y) N\ pa-
per(PX) A paper (PY). The expert could then prefer the label
to be advised By(X,Y"). Essentially, the system is asking the
expert: what is your choice of label when a student and pro-
fessor co-author the same paper? The expert replies saying,
I prefer the student to be advised by the professor. Note that

this is a “soft” preference in that this preference may not al-
ways hold. This preference is then explicitly weighed against
the data while learning the model.

We make the following key contributions: first, we intro-
duce the notion of advice-seeking to the probabilistic logic
model (PLM) community (and the general Al community).
Second, we adapt a recent successful knowledge-based prob-
abilistic logic learning algorithm to seek advice from the hu-
man expert. Third, we present the first relational algorithm
that can go beyond data and interactively solicit input from
the expert. Finally, we demonstrate using experiments, that
such an approach is robust in learning from noisy data.

2 Background

Techniques for incorporating expert knowledge into learn-
ing is a key precondition for any active advice-seeking ap-
proach to be successful. We aim to introduce a broad learn-
ing paradigm that can use any method that incorporates prior
knowledge. To that effect, we cover one advice-based frame-
work which we will use to empirically validate our approach.

2.1 Adyvice-based PLMs

While there have been many knowledge-based systems de-
veloped for propositional models [Towell and Shavlik, 1994;
Fung et al., 2002; Torrey et al, 2005; Le et al., 2006;
Kunapuli et al., 20101, work on probabilistic logic models
(PLMs) has not progressed as far. In PLMs, the expert is typ-
ically used to define some prior structure that can either be
used as the complete structure or locally refined.

Recently, Odom et al. [2015] introduced a knowledge-
based PLM method that learns seamlessly from data and any
expert knowledge. While making use of Relational Function
Gradient-Boosting (RFGB) to learn the structure and param-
eters of the model simultaneously [Natarajan et al., 2012],
they incorporate expert preferences which guide the structure
and parameters to more robust models.

Extending previous work that considered knowledge as
propositional Horn clauses [Towell and Shavlik, 1994; Fung
et al., 2002; Kunapuli ef al., 2013], they considered their ad-
vice as first-order logic Horn clauses. Thereby, allowing ex-
perts to give advice over different granularities of examples.
The body of the clause specifies the examples over which the
expert would like to give advice, while the head of the clause
gives the preferred and avoided labels. For example, a cardi-
ologist might suggest that patients whose close relatives had
heart problems are more likely to have a heart problem.

Odom et al. [2015] incorporate this expert knowledge into
RFGB [Natarajan et al., 2012] which learns a series of rela-
tional regression trees [Blockeel, 1999]. Functional gradient-
boosting aims to capture the error in the current model in a
regression tree and then adds this regression tree to the model.

The gradients used by Odom et al. [2015] incorporate an
additional term in the optimization function that pushes the
model in the direction of the expert advice (represented by
n; and ny-the number of advice which say that example x;

should be preferred/avoided)!
Alz;) = o (I(yi) = P(yi; ¥)) + (1 —) - [ne(:) — mp ()]
While this approach has shown positive results in several
difficult tasks, it still requires the expert to specify all of the
advice in advance. Given a particular dataset, deciding the
most useful advice is not a trivial problem. This problem is
exacerbated by the fact that the expert has no expertise in ma-
chine learning. Active advice-seeking aims to alleviate this
issue by querying the expert directly, using the training data
as a guide to select the most useful queries. Previous work
on active advice-seeking is limited to propositional queries
in sequential decision making problems [Odom and Natara-
jan, 2016]. Grouping ground states into queries allowed the
proposition algorithm to maximize the impact of the human
expert. However, lifting advice to be relational is a more pow-
erful and principled approach.

2.2 Active Learning

Active learning is a related research problem where the goal is
to make use of an expert that can provide the labels of exam-
ples [Settles, 2012]. Pool-based active learning approaches
assume a pool of unlabeled examples from which the learn-
ing algorithm should choose. In active advice-seeking, this
pool of examples is the training set. While there are labels in
the training set, it is assumed that either there are not suffi-
cient training data (and thus there is missing knowledge) or
the training data is noisy and so the labels should not be fully
trusted. So while active learning aims for finding the labels
of the examples, we are soliciting advice.
Most active learning methods repeat these steps:

1. Learn a model from training data

2. Compute uncertainty over unlabeled data

3. Select examples based on uncertainty and solicit label
4. Add labeled examples to training set

The process begins by learning a model with the current set
of labeled data. This model is then used to compute some
measure of uncertainty (this could be entropy, KL-divergence
or other measures) that suggests how likely the model would
correctly predict the unlabeled examples. Consider a simple,
linear classifier with two possible unlabeled examples, one
located close to the decision boundary with the other located
far from the boundary. The example close to the decision
boundary is more likely to effect the decision boundary and
would be selected for labeling.

This cycle accumulates the best examples to label at each
step and has been shown to be effective especially in domains
where there is a dearth of data available. However, labeling
individual examples is not an effective use of human experts
availability. Allowing expert’s to give advice results in the ex-
pert being able to select the ideal granularity of advice (over
a single example or many examples). Active advice-seeking
aims to effectively use human experts by providing clauses
instead of ground examples. Not only does this provide a
specific granularity of advice, but it also provides a compact
description of the most uncertain examples.

"Note the difference to standard (only data) RFEGB which opti-
mizes (I(yi) — P(yi; ¥).

3 Relational Active Advice-Seeking

The aim of relational active advice-seeking is to offload the
task of selecting areas of the feature space to give targeted
advice from the human expert to the learning algorithm. In
relational models, experts are often asked to define the logi-
cal structure of the model with the parameters learned from
data. However, it is important to be able to learn the full
model (structure and parameters) especially in complex, real
world domains. Experts can still provide valuable input about
targeted areas of the feature space. The wide variety of poten-
tial expert advice complicates the advice-giving process and
can lead the expert to give correct, but not relevant advice.

Previous work on advice-giving requires significant ef-
fort on the part of the expert to determine the relevant ad-
vice [Odom et al., 2015; Kunapuli et al., 2013]. If the expert
provides exhaustive advice, the learning algorithm will be
able to learn a robust classifier. However, the experts time is
often limited and only a few queries can be answered. These
queries should not be redundant, focusing on areas that are
well covered by the data. Instead, they should focus on areas
where the learning algorithm cannot distinguish the correct
label or behavior. Thus, we extend relational advice-taking
methods to active advice-seeking.

4 Problem Formulation

The overall goal of our algorithm is to identify regions of the
feature space that the agent is most uncertain about and query
the expert for advice on these regions. In the propositional
case, this was handled by clustering examples based on the
distribution over the labels and querying the expert over this
cluster [Odom and Natarajan, 2016]. However, this heuris-
tic may not suffice for relational tasks since there are signif-
icantly more negative examples than positives. Fortunately,
the use of a rich representation such as first-order logic nat-
urally allows us to query over the most uncertain regions of
the feature space.

We represent the regions of feature space as conjunctions
of predicates. Intuitively, this corresponds to grouping exam-
ples such that a particular condition is satisfied. More pre-
cisely, the goal of our algorithm is to select a set of conjunc-
tions of first-order logic atoms about which to query the ex-
pert. These queries concisely describe the set of training ex-
amples to which the advice will apply. In order to select rel-
evant areas of the feature space, the algorithm learns a clause
(model) based on scores of the given examples. The goal of
this learned model is to group similar examples based on their
assigned score which measures the importance of that query.
Queries have low scores if the algorithm is confident in its
prediction, Otherwise, the query will receive a high score,
making it more likely to be selected by the active advice-
seeking algorithm. We explain the clause generation later in
this section. We will now formally define advice:

Definition 1 A set of advice (A) is defined as a series of re-
lational queries (Q);) and the experts corresponding response

(Ri)r ie. (A =< (Q17 R1)7 <Q27 R2)a ceey (Qna Rn) >)

The algorithm solicits a sequence of queries that depend
on the scoring function that will be discussed in detail later.

Training Distribution
Underlying Distribution

P(HeartAtt|BP)
o o o
S [+] o]

e
[N}

0 i i
Extremely Low Low Med High Extremely High

Blood Pressure

Figure 1: Example showing the distribution of heart attacks
given blood pressure for an observed and underlying distribu-
tion.

The number of queries is dependent on the difficulty of the
problem and the availability (query budget) of the expert.

Definition 2 A Relational Query (Q) is defined as a conjunc-
tion of literals (A\f;), which defines the set of examples to
which the advice will be applied. Q will be shown to the hu-
man expert.

Definition 3 An Expert Response (R) is defined as a set of
preferred labels (I+), and a set of avoided label (I—) given
with respect to a relational query. Note that both | + [1—
could be empty if the expert does not understand Q or if the
query does not separate different classes.

If the expert is not satisfied with the query - possibly be-
cause the query does not properly delineate between labels
- then the expert can provide no preferred or avoided la-
bels. Such a query is not useful to the learning algorithm and
squanders the time of the expert. The relational query and its
accompanied response represent a single piece of advice that
can be utilized by the knowledge-based learning algorithm.
We now present an illustrative example before discussing the
algorithm in detail.

4.1 Illustrative Example

Consider the example of heart attack prediction given clinical
information about the patients such as their blood pressure.
The training set (e.g. one particular county in Wisconsin)
might show patients with high (but not extreme) blood pres-
sure having a relatively low incidence of heart attacks. This
systematic difference could be attributed to local factors. The
counties distribution and the true underlying distribution are
shown in Figure 1.

Now consider soliciting advice about heart attacks and
blood pressure from a cardiologist in California. Being un-
familiar with Wisconsin, the cardiologist might give broad,
straight-forward advice. However, such knowledge might al-
ready follow from the training data. Examples of such advice
include “extremely high blood pressure leads to heart attacks”
and “heart attacks are not likely with low blood pressure”.
While these pieces of advice are valid, they are not the most
relevant advice for this particular learning problem.

If the algorithm had the ability to solicit advice, then it
could direct the expert to give the most relevant advice at any
point. Our proposed algorithm will identify areas in the data
that are unclear and will instead query the expert automati-
cally with “How likely are heart attacks when the blood pres-
sure is high, but not extreme”. This is likely the most useful
advice given the data. This approach not only benefits the
learning algorithm, but reduces the burden on the expert who
is only required to answer specific questions.

Algorithm 1 Actively Seeking Advice for PLMs (ASAPIm)

function ASAPLM(D,E,MaxQuery)
2: A=10
M=RFGB(D) > Model from Noisy Data
4: for z; € D do > Compute Uncertainty per Example
6: end for
AQ=LRC(D, R) > Learn Regression Clauses
8: for i = 1 to MaxQuery do > Query Expert
AQ, =MAXSCORE(AQ)

10: AQ = AQ — AQ,
Q =QUERY(E, AQ,)
12: A=AUQ
end for
14: Mp=ADVLEARNER(A, D) > Learn with Advice
return Mp

16: end function

4.2 The Algorithm

Our proposed approach involves generating a set of queries,
scoring those queries to rank them according to their use-
fulness, and finally soliciting the most useful queries to
the human expert. The number of queries that can be re-
quested depends on the problem (more difficult domains re-
quire more knowledge) and the availability of the human ex-
pert. The complete active advice seeking algorithm (AS-
APIlm) is shown in Algorithm 1. We will address each of
these vital components in turn.

Generating and Scoring Queries

Recall that in standard active learning, a model is learned
from labeled data and using this model, some uncertainty
measure is calculated to identify the most uncertain unlabeled
example to query the expert. We take a similar approach with
an important change. We learn a model using RFGB on the
noisy data (line 3 of the algorithm) and compute the entropy
over the examples given this model (lines 4-6). Following ac-
tive learning, we define the score of an example as the entropy
of the model’s prediction (line 5 of Algorithm 1), ie,

Y Blyilzlog(Pi(yile:)

leLabels

where P(y;|z;) is learned using RFGB. Such uncertainty
measures have performed extremely well in many active
learning methods and similar results can be shown over rela-
tional data. The key difference is that the uncertainty is based
on all of the training examples that satisfy the query. In our

empirical evaluation, we focus on entropy as our uncertainty
measure. However, the framework is broad and allows for the
selection of the most appropriate uncertainty function for the
problem at hand.

Then these scores are used as regression values for the cor-
responding example and a set of weighted first-order-logic
clauses are learned that can potentially group these exam-
ples (line 7, function LRC). These clauses are presented to
the expert according to the learned weights. We learn these
weighted clauses through an adaptation of RFGB where in-
stead of learning P(y;|z;), we want to learn a model for the
uncertainty values of x; (by fitting regression trees). The key
intuition is that the regression trees find clauses that apply
to examples with similar uncertainties. Note that unlike in
discriminative learning where there are positive and negative
examples, regression does not treat positive and negative ex-
amples differently. Every example has a uncertainty value
and regression is just trying to fit those values. The learned
clauses represent a set of possible queries from which the al-
gorithm can select.

Querying the Expert

After the queries have been generated and ranked, they can be
used to solicit advice from the human expert. For a given rela-
tional query, the expert should supply the suggested preferred
labels (should be considered more likely) and the avoided la-
bels (should be considered less likely). Alternatively, the ex-
pert could decline to answer if the query is too general or
incomprehensible. Declining is an indication that the active
advice seeking algorithm is not selecting appropriate queries.

Advice-based Learner
Given the advice, the final step is to utilize the advice-based
learner to learn from both the training data as well as the ex-
pert advice. An ideal algorithm should trade-off between the
sources of knowledge when they offer contradictory informa-
tion. For the purposes of empirical validation, we utilize KB-
PLL as our advice-based learner. It combines the target dis-
tribution of the training data and the distribution suggested by
the advice to find a robust model (refer to section 2).
Overall, the proposed approach to active advice-seeking
aims to effectively utilize the human expert by generating
queries. These queries are targeted based on the perceived
weaknesses in the training data. We now thoroughly investi-
gate ASAPIm.

S Experiments

Through our experiments, we aim to answer the following
questions:

Q1: Does active advice-seeking result in more effective
learning?

Q2: Is our algorithm robust to both random and systematic
noise?

Q3: Is advice an efficient form of communication between
algorithm and expert?

METHODS: We compare our method against two baselines.
To evaluate our query generation method, we compare against
learning with randomly generated queries (Random Queries).

SYNTHETIC DRIVING
1 1
= =No Advice
09 oo Random Queries 0.8
= —Active Advice-Seekin 2
g08 9 S 06
E g mmmmmmmmmmmmmmmmmmmm et " * 3
< 0.7 Q04
< < — =-No Advice
0.6 02t e Random Queries
—Active Advice-Seeking
0.5 0
1 2 3 4 5 0 1 2 3 4 5
Number of Queries Number of Queries
IMDB WEBKB uw
1 1 L
0.9 —— i 0.9 0.9
> Py > | 7
G038 08 08 £ ______ IPRPTTII L
O 0.7 0.7 0.7
< — =-No Advice < — =No Advice < — =No Advice
o6 | Random Queries 06f | Random Queries 06 |mee Random Queries
—Active Advice-Seeking —Active Advice-Seeking —Active Advice-Seeking
0.5 0.5
O'50 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
Number of Queries Number of Queries Number of Queries
. IMDB ; WEBKB
0.9 0.9
> > -
908 @08 g 08
O 0.7 < 0.7 Q0.7
< — -No Advice < — =No Advice < — -No Advice
ot [Random Queries 06F [T Random Queries 06F [T Random Queries
—Active Advice-Seeking —Active Advice-Seeking —Active Advice-Seeking
0.5 0.5
03 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12

Number of Queries

Number of Queries

Number of Queries

Figure 2: The learning curves from the various experimental domains. The top 5 results represent systematically noisy datasets,
while the bottom 3 results represent randomly noisy datasets. Each learning curve shows accuracy as the number of queries to
the expert increases. We compare Active Advice-Seeking to Random Queries and No Advice.

To evaluate the effectiveness of active advice-seeking, we
compare against learning with no advice (No Advice). We
also discuss the quality of the advice that is generated in each
domain. Given our experience with the domains, we take the
role of expert to answer the queries.

In all the experiments, we compare the accuracy of learned
model. To show that our algorithm is capable of correcting
noisy data, we added noise equal to 25% of the positive ex-
amples. Note that in the relational space the number of neg-
ative examples typically greatly outnumber the positive ex-
amples. This means that the impact of the noise is much less
than 25%. To show that our algorithm is capable of correcting
systematic noise, we label examples incorrectly in a targeted
region of the feature space. The synthetic heart attack dataset
and driving domain are tasks where systematic noise is natu-
ral. Heart problems effect different regions or ethnic groups
in different ways. Many drivers consistently drive over the
speed limit and roll through stop signs. For the remaining

datasets, imdb, webkb and uw, we have experimented with
both systematic and noisy data. Each randomly noisy exper-
imental domain has either 4 or 5 folds and we randomly add
noise 5 times for each fold. Each systematically noisy exper-
iment generated data for each fold or was repeated 5 times.
For our relational advice-based learning algorithm, we use
KBPLL [Odom et al., 2015] with o = 0.25.

DOMAINS: We have a variety of standard relational datasets
as well as an imitation learning dataset focused on driving.
IMDB: This dataset is a movie database that consists of
movies, actors, directors and their various genres. Our goal
is to predict the worked under relationship (ie which actors
worked on movies under a particular director). This dataset
consist of 5 folds.

WEBKSB: This dataset is a university dataset that consists of
webpages and their hyperlinks. Our goal in this domain is to
predict which webpage belongs to a faculty member based on
the webpages and their linking structure. This dataset has 5

Domain Query Generated

Driving What if there is a car in the left lane?
Synthetic What if a person has medium to high blood pressure?
IMDB Do female actors work under people in crime movies?
WEBKB What is the title of students working on projects?
uw What is the relationship between students and TA’s?

Table 1: The top queries generated in each domain for the systematically noisy datasets. Experts respond to these queries by

providing [+ /I— in each domain.

folds.

UW: This dataset is a university dataset that consists of pro-
fessors, students, courses, and publications each having vari-
ous relationships and features. Our goal is to predict the ad-
visedby relationship. This dataset has 4 folds.
SYNTHETIC: The goal of the synthetic dataset, from the il-
lustrative example, is to predict heart attacks given the blood
pressure. There is a systematic difference (see Figure 1) be-
tween the training set and the testing set. This dataset was
generated 5 independent times.

DRIVING: The driving domain focuses on navigating down
a 5-lane highway, avoiding the other cars on the road [Judah
et al., 2014]. The possible actions are to stay in the current
lane or change lanes to the left or right. The size of the train-
ing set and testing set are 100 trajectories consisting of 10000
total training examples.

5.1 Systematic Noise

The results with systematic noise (Figure 2, top 2 rows) are
shown for the synthetic and driving domains as well as each
of the standard relational datasets. Together they show the
power of our proposed approach when dealing with system-
atic noise. In most datasets, the algorithm is capable of select-
ing useful queries immediately, providing significant impact.
Random queries demonstrate gradual performance gains in
the synthetic and webkb domains, but fail to have a positive
effect on the other domains. While random queries do not
cause performance to degrade, they have an extremely dif-
ficult time isolating systematic noise especially when there
are more features. A key reason there is very little change in
these domains is that the queries generated were ambiguous
and useful only for a few examples. For instance, a common
query in the driving domain is “What action should I take if
there is a car both to my left, right, AND in front”. While this
is a possible scenario, it is not likely in this dataset and there is
no obvious advice to give for these states. Alternatively, the
queries generated from the active advice-seeking algorithm
select more relevant and overall useful queries. Thus, Q1 is
answered affirmatively that our proposed approach is able to
learn effectively in the presence of systematic noise.

5.2 Random Noise

The standard relational domains (Figure 2, bottom row) are
used to show that even when noise is random, our proposed
method can still generate high-quality queries to the expert.
Random noise should be more difficult for our algorithm, as
there may not be specific regions of the feature space that
need attention. However, across all three domains, our pro-

posed approach achieves consistent success, generating per-
formance gains with each query. In contrast, randomly gen-
erated queries can yield positive performance (as in imdb or
uw), or actually result in a model that is worse than relying
on the data (as in webkb). It may seem counter intuitive for
advice to be harmful. However, consider the query “Is a stu-
dent advised by a professor”. While it may seem that the
advice should be that student are advised by professors, there
are many student and many professors. Therefore, such an
advice could result in many false positives as a student is not
advised by most professors. Thus, our proposed approach is
robust to random noise as well as systematic noise (Q2).

5.3 Quality of Advice

The preceding empirical results show that our proposed ap-
proach is able to generate relevant queries that yield sig-
nificantly higher accuracy in nearly all of the domains for
both systematic and noisy experiments. However, the inter-
pretability of the queries is vital as the experts need to easily
comprehend the queries in order to give the proper advice.
Table 1 shows the top query generated for each domain (sys-
tematic noise). In the driving domain, the query asks what
action to take when there is a car in the left lane. The ex-
pert response would be to stay in the current lane. As another
example, in the uw domain, the query asks about the relation-
ship between students and TA’s. While TA’s might help teach
student, the advice would say that TA’s cannot advise stu-
dents. The best queries are heavily influenced by the noise in
the training set. Overall, the queries are concise (as shown in
Table 1) and effective (as shown in the empirical validation).
Thus, advice is an efficient form of communication (Q3)

6 Conclusion

We presented the first advice-seeking framework for PLMs.
Our method, inspired by active learning, queries the expert
with sub-spaces of the feature space where advice can be pro-
vided as preferences over labels. The key insight is that the
learning algorithm can better query the expert based on the
uncertainty in the data as compared to the expert providing
all advice pieces in advance. Our experimental results across
standard data sets proved that such a method is effective in so-
liciting useful advice. Evaluating on larger data sets such as
electronic health records is an important future direction, as
is exploring the different measures of uncertainty for group-
ing the different examples. Learning from multiple experts by
weighing them explicitly is another direction that we will ex-
plore. Finally, performing user studies on more sophisticated
test beds is an interesting research direction.

References

[Blockeel, 1999] Hendrik Blockeel. Top-down induction of
first order logical decision trees. Al Communications,
12(1-2), 1999.

[De Raedt et al., 2007] Luc De Raedt, Angelika Kimmig,
and Hannu Toivonen. Problog: A probabilistic prolog and
tis application in link discovery. In IJCAI, 2007.

[De Raedt et al., 2008] Luc De Raedt, Paolo Frasconi, Kris-
tian Kersting, and Stephen Muggleton. Probabilistic in-
ductive logic programming. Springer, 2008.

[Domingos and Lowd, 2009] Pedro Domingos and Daniel
Lowd. Markov Logic:An Interface Layer for Artificial In-
telligence. Morgan & Claypool, 2009.

[Friedman ef al., 1999] Nir Friedman, Lise Getoor, Daphne
Koller, and Avi Pfeffer. Learning probabilistic relational
models. In IJCAI, 1999.

[Fung er al., 2002] Glenn Fung, Olvi L. Mangasarian, and
Jude W. Shavlik. Knowledge-Based support vector ma-
chine classifiers. In NIPS, pages 01-09, 2002.

[Getoor and Taskar, 2007] Lise Getoor and Ben Taskar. In-
troduction to statistical relational learning. Cambridge:
MIT Press, 2007.

[Heckerman ef al., 2004] David Heckerman, Christopher
Meek, and Daphne Koller. Probabilistic entity-relationship
models, prms, and plate models. In ICML, 2004.

[Judah et al., 2014] Kshitij Judah, Alan Fern, Prasad Tade-
palli, and Robby Goetschalckx. Imitation learning with
demonstrations and shaping rewards. In AAAZ 2014.

[Kunapuli et al., 2010] Gautam Kunapuli, Kristin P. Bennett,
Amina Shabbeer, Richard Maclin, and Jude W. Shav-
lik. Online knowledge-based support vector machines. In
ECML, pages 145-161, 2010.

[Kunapuli et al., 2013] Gautam Kunapuli, Phillip Odom,
Jude Shavlik, and Sriraam Natarajan. Guiding autonomous
agents to better behaviors through human advice. In
ICDM, 2013.

[Le et al., 2006] Quoc V. Le, Alex J. Smola, and Thomas
Girtner. Simpler knowledge-based support vector ma-
chines. In ICML, pages 521-528, 2006.

[Natarajan et al., 2008] Sriraam Natarajan, Prasad Tadepalli,
Thomas Dietterich, and Alan Fern. Learning first-order
probabilistic models with combining rules. Annals of
Mathmatics and Al, 54(1), 2008.

[Natarajan et al., 2012] Sriraam Natarajan, Tushar Khot,
Kristian Kersting, Burnd Gutmann, and Jude Shavlik.
Gradient-based boosting for statistical relational learning:
The relational dependency network case. Machine Learn-
ing, 86(1), 2012.

[Natarajan et al., 2015] Sriraam Natarajan, Kristian Kerst-
ing, Tushar Khot, and Jude Shavlik. Boosted Statistical
Relational Learners: From Benchmarks to Data-Driven
Medicine. Springer, 2015.

[Odom and Natarajan, 2016] Phillip Odom and Sriraam
Natarajan. Active advice seeking for inverse reinforcement
learning. In AAMAS, 2016.

[Odom et al., 2015] Phillip Odom, Tushar Khot, Reid Porter,
and Sriraam Natarajan. Knowledge-based probabilistic
logic learning. In AAAI, 2015.

[Sato and Kameya, 1997] Taisuke Sato and Yoshitaka
Kameya. Prism: A symbolic statistical modeling
language. In IJCAI, 1997.

[Settles, 2012] Burr Settles. Active Learning. Morgan &
Claypool, 2012.

[Torrey et al., 2005] Lisa Torrey, Trevor Walker, Jude Shav-
lik, and Richard Maclin. Using advice to transfer knowl-
edge acquired in one reinforcement learning task to an-
other. In ECML, 2005.

[Towell and Shavlik, 1994] Geoffrey Towell and Jude Shav-
lik. Knowledge-based artificial neural networks. Artificial
Intelligence, 69:119-165, 1994.

