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Abstract
Unsupervised machine learning methods are use-
ful for identifying clusters of similar inputs with re-
spect to some criteria and giving the inputs within
each cluster the same label. However, the results
of many such methods rely on parameter choices
that can alter the derived classification labels for
each input. Verification methods for determining
the quality of clusters often relies on human intu-
ition, but this is not always an easy task depending
on the format of the inputs and finding the correct
relationship that the algorithm used.We present an
approach to assist human verification of the unsu-
pervised learning algorithms’ classification choices
through the use of metadata describing the inputs
that will be clustered. When the metadata measures
the relevance of each input to human-interpretable
features, we show how a similar measurement of
relevance to human-interpretable features can be
derived to describe the unsupervised learning al-
gorithm’s choices of clusters. An example demon-
strating how it can evaluate previous work with ac-
tivity recognition via topic models is provided in
addition to propositions of other uses for the meta-
data.

1 Introduction
As massive datasets of information become more readily
available, there is also a difficulty in properly annotating all
the data. Crowdsourcing and domain-specific applications
can yield definitive outputs and produce these datasets for
supervised machine learning methods with large degrees of
accuracy, but other forms of data such as collections of doc-
uments and sensor readings are not so easy to analyze. This
is one benefit of unsupervised machine learning algorithms
that can cluster data without annotation under some sets of
parameters. However, the resulting clusters are not always
intuitive to a human due to the formulaic procedure of re-
ducing distances or entropy amongst sets of configurations.
Even methods such as topic modeling, producing clusters of
human-understandable words through mixture and admixture
models, do not always generate topic clusters that yield the
same interpretation to every person. Research has been done

to identify phrases of words within each cluster that can best
summarize them compared to the more loosely defined bags
of words [Hannah and Wallach, 2014].

Topic models such as latent Dirichlet allocation (LDA)
[Blei et al., 2003] have been used for other tasks including
activity recognition [Huỳnh et al., 2008], image classification
and annotation [Wang et al., 2009], and key-profiling mu-
sic by its notes [Hu and Saul, 2009]; these new domains de-
rive clusters over other objects rather than word clusters. The
primary challenge with these new data formats is the inabil-
ity for humans to clearly interpret them, leading to difficulty
in verification and determining what to do with each cluster.
The original work by Huỳnh et al. [2008] provided interpre-
tive evidence for recognizing clusters of wearable sensor data
as daily activities by aligning the learned topic clusters with
an annotated timeline of activities, but few other applications
have had access to such annotations. Furthermore, it is ev-
ident that other forms of real-world data can be difficult to
display since numbers and configurations are not always easy
to relate to one another within a single cluster. Freedman et
al. [2014] represented activity clusters learned using LDA on
red, green, blue, depth (RGB-D) sensor data as collections
of stick figures in an attempt to resemble the topic modeling
literature where collections of words are presented for each
topic. As snapshots of an activity in progress, stick figures
and other forms of data visualization still cannot reveal the
underlying trend(s) between each other like actual words can
because words have official semantic definitions.

We thus propose the use of human-interpretable features as
metadata, data that describe other data, for unsupervised ma-
chine learning algorithm inputs in order to autonomously de-
rive descriptions of learned clusters. This will remove ambi-
guity in the learned models because the machine can explain
the trends in terms that humans comprehend. Metadata has
previously been used to describe datasets to assist machine
learning algorithms [Cunningham, 1996]. Examples include
describing features of datasets in order to determine which su-
pervised machine learning algorithms are most suitable for a
new dataset [Brazdil et al., 1994] and providing bibliographi-
cal information for individual text documents within a corpus
to stratify topics for specific subsets of documents [Mimno
and McCallum, 2008]. However, it does not seem that any-
one has previously used metadata to describe the individual
data entries, perhaps due to the large number of unique in-



puts that can exist within a massive dataset. For each domain,
we argue that it should be possible to automate the generation
of metadata for each possible input with reasonable compu-
tational overhead to avoid this issue.

After defining our metadata representations and providing
an example of deriving features for RGB-D sensor data and
words in text data in Section 2, we will use them to derive
descriptions of learned clusters in their respective domains.
Following these formulations, we introduce experiments in
Section 3 to explore these labels’ usefulness with respect to
various factors. Section 4 concludes with a discussion and
future work, including how this work may be used to develop
more robust unsupervised learning algorithms that can handle
on-line data, novel inputs that typically require reclustering or
assumptions to classify, and aligning clusters from different
runs due to anomolous changes from the value of the random
seed.

2 Labeling Metadata for Inputs and Clusters
To derive commonalities between objects in a cluster, we
must have a list of human-interpretable properties for each
possible object that could be in the input set V for our unsu-
pervised learning algorithm. We define a feature vector for
input v ∈ V as −→xv ∈ [0, 1]

|F | where F is the list of possi-
ble features and xv (i ∈ F ) → 1 as the ith feature is more
relevant to v. For describing a particular cluster k’s features,
we define a feature descriptor as vector −→xk ∈ [0, 1]

|F | where
xk (i ∈ F ) → 1 as the ith feature is more commonly associ-
ated with the cluster’s inputs and xk (i ∈ F )→ 0 as it is less
commonly associated.

2.1 Generating Feature Vectors
When processing data to generate the set of inputs for an
unsupervised learning algorithm, we propose simultaneously
generating each feature descriptor. While the approach for
each domain may vary, the measurement of relevance for
each feature descriptor’s definition should take the form of
a checklist that is ideally computationally linear to the num-
ber of features O (|F |). We propose examples below for
generating this metadata to describe stick figure postures de-
rived from RGB-D sensors when performing wordification
[Perovs̆ek et al., 2013] for use in topic models as described
by Freedman et al. [2015].

Example 1: RGB-D Sensor Data
RGB-D sensor data, collected by such devices as the Kinect,
produce a sequence of three-dimensional point clouds that
represent a colored surface of the region facing the sensor
over time. Each point cloud may be used in activity recog-
nition to represent the environment where regions of chang-
ing points over time indicate objects of interest [Zhang and
Parker, 2011], and human bodies may be identified from these
regions [Shotton et al., 2011] to extract postures independent
of the environment [Freedman et al., 2014]. When a person
looks at a single posture, she is usually able to explain it in
terms of the appendages and joints’ relative positions. For
example, Fig. 1 is standing with the arms slightly bent, one
of which is raised, and one lifted leg that is bent. The con-
ditions for discerning these features are not arbitrary because
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Figure 1: Some human-interpretable features for a posture.

specific angles of orientation for each joint dictate the direc-
tion and position of the limbs. As most software packages
provide RGB-D sensor data in the form of [−π, π]45 (roll,
pitch, and yaw for 15 joints), it is possible to compute Euler
angles and determine these features using a list of conditional
statements.

For example, an elbow joint may be considered bent if the
angle between the upper and lower arm is in [0, 3π/4] and
straight if it is in (3π/4, π]. Given lengths for each body link,
the Euler angles from the shoulder to the elbow, and the Eu-
ler angles from the elbow to the wrist, we can assume that
the shoulder is at coordinate location ~s = [0, 0, 0]

T and then
compute the positions of the elbow ~e and wrist ~w with the
homogeneous translation and rotation transformations. With
these coordinates, the law of cosines may be used to find the
angle between the upper and lower arm:

cos (elbow) =
− |~s− ~w|2 + |~e− ~s|2 + |~w − ~e|2

2 · |~e− ~s| · |~w − ~e|
When the Euler angles are discretized with granularity pa-

rameter g to create a collection of inputs with duplicates,
the feature can still be evaluated with a degree of relevance
rather than a binary evaluation. In particular, the discretiza-
tion yields an interval for each Euler angle, and the ratio of
these possible assignments A that correspond to each feature
can be computed. For example, the relevance of a bent elbow
is

xv (elbow bent) =
|{a ∈ A |elbowa ∈ [0, 3π/4]}|

|A|
where elbowa is the computed elbow angle with Euler an-
gle assignment a. Measuring relevance is a generalization of
the binary approach because a single Euler angle means that
|A| = 1. Furthermore, whenA is infinite (i.e. an interval over
real numbers), we can approximate the relevance by sampling
random assignments and counting those that satisfy the spe-
cific feature. The precise method of identifying boundaries
(partitioning A) for each feature may be possible when the
number of Euler angles to assign is small, but it may other-
wise become a collection of optimization problems that are
both concave and convex due to the trigonometric functions
involved in homogeneous rotation transformations.

Example 2: Text Document Word Data
Corpora of text data are available everywhere and have been
the subject of many research studies ranging from, but not
limited to, natural language processing to social science re-
search. Because the underlying concepts in text data are ap-
plicable to many of these studies, analyses using latent vari-
ables, including the aforementioned topic models, became the
standard approach. The term for these types of methods is La-
tent Semantic Analysis (LSA) [Deerwester et al., 1990] due



to the inference of the latent variables’ labels. In a discussion
similar to the one we present in the introduction, Gabrilovich
and Markovitch note that LSA uses statistical means to de-
rive its labels and does not regard the actual semantics that a
human understands. They use this argument to derive a new
approach titled Explicit Semantic Analysis (ESA) [2009] that
takes advantage of large amounts of text data that may be used
for creating annotations of other text data.

Specifically, Wikipedia is a collection of text documents
where each document provides information about a single
word/phrase regarding most, if not all, its concepts and pos-
sible interpretations. Similar to how a human can read a dic-
tionary or encyclopedia and use the description to better un-
derstand associations between the queried word/phrase and
more familiar concepts, Gabrilovich and Markovitch create a
sparse matrix of term frequency-inverse document frequency
(TFIDF) values for individual terms over each document’s
primary concept. That is, for term v ∈ V in document df∈F ,
the TFIDF value is:

M [v, f ] = C−1f · tf (v, df ) · log
|F |

|{i ∈ F |v ∈ di }|

where tf (v, df ) = 0 if v 6∈ df and tf (v, df ) =
1 + log count (v, df ) if v ∈ df , and Cf is the
cosine normalization constant over the terms Cf =√∑

v∈V tf (v, df ) · (log |F | − log |{i ∈ F |v ∈ di }|). Ad-
ditional modifications based on hyperlink information and
generalization filters are applied to remove noise and improve
each value’s relevance, but we refer the reader to their paper
[Gabrilovich and Markovitch, 2009] for more details due to
limited space.

The TFIDF values are sufficient to show that the matrix
satisfies our definitions as a set of feature vectors for word
data found in text documents. Each term’s row is a single
feature vector where the features M [v ∈ V, f ∈ F ] = −→xv (f)
are the individual concepts associated with each Wikipedia
document. The matrix has been used primarily for identifying
features of sentences by adding the feature vectors for each
term appearing in the sentence, and we propose extensions of
their approach in Section 2.2.

2.2 Generating Feature Descriptors
After learning, we will have K clusters that partition the in-
puts from the training data. In the case of topic models such
as LDA, our inputs are initially grouped into sequences called
documents d ∈ {1, . . . , D}, and each input −−−→wd∈D (n) is a
word/object. For these sequences, we learn a topic (cluster)
assignment −−−→zd∈D (n) for each input. Then each sequence has
a distribution of clusters θd based on the ratio of cluster labels
in −→zd :

θd∈D (k ∈ K) =

∑|−→zd|
n=1 1 (zd (n) = k)

|−→zd |

and each cluster k has a distribution over inputs φk based on
the ratio of each input v assigned label k:

φk∈K (v ∈ V ) =

∑D
d=1

∑|−→wd|
n=1 1 (wd (n) = v ∧ zd (n) = k)∑D
d=1

∑|−→wd|
n=1 1 (zd (n) = k)

where 1 is the indicator function that equals 1 when the con-
dition is true and 0 otherwise. Smoothing is usually applied
based on some hyperparameter settings as well. For other un-
supervised learning algorithms with a different formulation,
the entire dataset may be a single document (D = 1) and
duplicate inputs will yield non-uniform distributions for each
φk. The latter condition assumes that the training data is a
representative sample of the population so that duplicate in-
puts indicate a more common object in the population.

Because each θd is easily interpreted as a mixture of clus-
ters, we are most interested in finding interpretations for each
φk because the relationships between inputs are not often as
obvious. From the activity recognition perspective, we want
to identify which features best describe the majority of the
sensor readings represented by each cluster’s learned distri-
bution. From the text perspective, we want to identify which
features define the words in each cluster’s learned distribu-
tion. Using feature vectors for each input, we propose three
approaches for computing feature descriptors for each cluster
that can assist with this task:

Expected Value
Due to our definition of a feature vector, each input v as-
signed to cluster k is located at some point within the |F |-
dimensional simplex. Because v also has probability mass
φk (v), we can describe the most relevant features of the most
common inputs in k as the expected value of each feature
f ∈ F : −→xk =

∑
v∈V φk (v) ·

−→xv . This method is most similar
to ESA [Gabrilovich and Markovitch, 2009] because a sen-
tence is described as the sum of the feature vectors for each
of its words, which is similar to a distribution over the set of
word inputs that is proportional to the word frequencies in the
sentence. Although simple to compute, this approach is naı̈ve
because it simply finds the weighted union of features. Thus
a single v with a large φk (v) would contribute all its features
to the cluster’s feature descriptor even if no other objects with
considerable mass share some of them.

Agglomerative Clustering
As an alternative to the union of features found in the ex-
pected value approach, we also propose a method that in-
cludes the intersection of features. Agglomerative cluster-
ing hierarchically builds a partition of V such that each sub-
set’s inputs that share like features, beginning with single-
ton subsets that contain each input separately and then itera-
tively combining similar subsets until the larger paritions are
too different to combine. The likeness between two subsets
C1, C2 ⊆ V with respect to cluster k is measured using

d (C1, C2) =

∣∣∣∣∣∑
v∈C1

φk (v)−
∑
v∈C2

φk (v)

∣∣∣∣∣ · ||−−→xC1
−−−→xC2

||1

where −→xCi is the feature descriptor for subset Ci. d is not a
metric because a distance of 0 does not guarantee that the two
subsets are equal. However, it does emphasize which pairs of
subsets would have a smaller degree of change when their in-
dividual feature descriptors are intersected. The comparison
of probability mass within φk is also used to avoid placing
inputs with lesser representation of cluster k into the same
partitions as inputs with greater representation of cluster k.



Figure 2: Images of most likely postures for two topics

In contrast to the union of feature vectors, which resem-
bles an expected value, we define the intersection of fea-
ture vectors for elements of combined clusters C1 and C2 as−−−→xC1,2

=
⊙

v∈C1∪C2

−→xv where � is element-wise multiplica-
tion. This is consequently the feature descriptor for combined
cluster C1,2. Intersection may be too strong since it has the
opposite problem of the union: a single input with large prob-
ability density may lack one feature (−→xv (f) ≈ 0 for some
v ∈ V and f ∈ F ) that is greatly relevant to the remaining in-
puts of significant probability; this feature would be excluded
from the cluster’s feature descriptor. To address this, we in-
troduce the unweighted average as a soft intersection that ac-
counts for the number of objects sharing the presence/lack of
a feature. We compute −−−→xC1,2

= |C1 ∪ C2|−1 ·
∑

v∈C1∪C2

−→xv
as the soft intersection of the feature vectors of the elements
of combined subsetsC1 andC2. With respect to interpretabil-
ity, 0 means that a feature is not relevant to any inputs repre-
senting the cluster, 1 means that a feature is relevant to all
inputs representing the cluster, and a value of 0.5 means that
a feature is not useful for a description since it is equally
present and absent from the inputs representing the cluster.
This appears to have some relevance to the interpretation of
entropy, but we do not pursue this connection in this work.

When the distances between subsets becomes too great so
that there are no more subsets to combine, then we will have
partitions expressing unique features that each describe the
cluster; we hypothesize that this will consist of two cases:

• A cluster is equally represented by subsets of distinct
features (that is, for each input representing a cluster,
there exists at least one subset, but not necessarily all
subsets, that describes it) - then d (C1, C2) will be too
great due to the ||−−→xC1 −−−→xC2 ||1 component

• A cluster is composed of a primary subset of features,
but some noise during training added unrelated inputs to
the cluster - then d (C1, C2) will be too great due to the∣∣∑

v∈C1
φk (v)−

∑
v∈C2

φk (v)
∣∣ component

For either case, we hypothesize that the expected value of
the partitions’ feature descriptors will be more informative
for describing the cluster than the expected value of each
object’s feature descriptors without any structure. However,
there are also advantages to using a disjunction of the sub-
sets’ weighted feature descriptors to describe the cluster: an
exclusive-or relationship between features may be obscured
by combining them. For example, using the RGB-D case, if
one set contains postures with “the left arm raised and the
right arm not raised” and the other set contains postures with

“the left arm not raised and the right arm raised,” then this
may imply that the cluster contains postures with exactly one
arm raised — adding these together for an expected value
would instead yield a compromise that the right and left arms
may or may not be raised (an irrelevant feature near 0.5).

Supervised Learning
The last approach acknowledges the fact that supervised
learning methods such as decision trees learn interpretable
functions. For example, the traversal from a decision tree’s
root to any leaf node produces a conjunction of conditions
that explains the leaf’s classification assignment. If we con-
sider every input, including duplicates, as a separate data
point, then we have supervised inputs −−−−→xwd(n) with assigned
outputs zd (n) from our unsupervised learning model. We
may use off-the-shelf supervised learning algorithms to learn
a function mapping between each feature vector and its as-
sociated cluster rather than independently computing feature
descriptors for each cluster. Changuel and Labroche [2012]
used such off-the-shelf classifiers to learn missing metadata
values from present ones to improve categorization of library
resources. The only limitation is that each algorithm has a
specific type of function which it can learn. For example, de-
cision trees can only learn perpendicular partitions of the fea-
ture space. Thus different supervised learning methods may
yield different justifications for the unsupervised algorithm’s
label assignments.

3 Designed Experiments
Previous work by Freedman et al. [2014; 2015] used topic
models for unsupervised activity recognition by the following
analogy between RGB-D sensor data and text documents:

• A document is a single plan execution’s recording

• Each frame of the recording’s posture is a word

• The topics are activities composing the executed plan,
and they represent clusters of postures for the activity

Due to learning the activities without supervision, the only
means of verification were those used for validating topics
learned from natural language: good log-likehood values for
held-out testing sets and viewing the most likely words in
each topic. While the log-likehood’s interpretation is the
same regardless of the data format, it is a relative comparison
that indicates “better,” but not necessarily “good” or “bad”
for each model’s representation of the data. Viewing the most
likely words in each topic gives humans an opportunity to an-
alyze the cluster on their own, and the authors often provide



Figure 3: Visualization of 1000000 sampled postures from a single
posture discretized with low (3, left) and high (21, right) granularity.

their own expert summary of the displayed topics. However,
the most likely postures in each learned activity are not often
as obvious to interpret. Figure 2 shows two examples of most
likely postures for topics that appear to indicate the activities
“sitting” and “one arm outstretched,” but both include simi-
lar arm positions. Therefore, how do we truly evaluate which
qualities of the postures represent the activity? There are thus
several experiments that may be applied using feature vectors
and feature descriptors to better understand the data and the
learned activity recognition model.

3.1 Learned Feature Vectors by Granularity
The first experiment involves one of the earliest points of
Freedman et al.’s discussion on the knowledge representation
of RGB-D data as text: the granularity parameter g. Each
joint-angle α ∈ [−π, π] constructing the posture could be
mapped to an integer i such that i ≤ g · (α+ π) / (2π) <
(i+ 1) [Freedman et al., 2014]. Because lesser granular-
ity includes larger intervals of angles per integer, they were
avoided so that the visualized postures were restricted for eas-
ier visualization. Larger ranges of joint angles allow more
possible locations for placing each joint in space, leading to
ambiguity as seen in Figure 3 for a posture represented with
granularity g = 3 when all angles map to i = 1. We hy-
pothesize that the feature vector for postures with lower gran-
ularity will emphasize this ambiguity during its sampling by
computing values of relevance are more uniformly distributed
amongst complementary features; that is, mutually exclu-
sive features such as ‘bent limb’ and ‘straight limb’ where∑

f∈G⊆F
−→xv (f) = 1 for all v ∈ V . In contrast, feature vec-

tors for lesser granularities should be less uniform and more
unimodal between complementary features because, as also
shown in Figure 3, there is less ambiguity of the human pos-
ture when the joint angles have a smaller interval of possible
values.

3.2 Derived Feature Descriptors
Besides being able to interpret inputs individually, it is im-
portant to validate that the metadata is useful for making the
clusters of inputs more understandable to humans. Even if all
the most likely postures can be described autonomously, it is
more important that the features they share, and thus what the
learned activity represents, are evident. Using the three ap-
proaches described in Section 2.2, we intend to investigate the
descriptions derived for clusters from Freedman et al.’s prior
research as well as several natural language text corpora.

Comparisons of the quality of the feature descriptors using
the expected value and agglomerative clustering approaches

will be important to justify the additional computational re-
sources. Agglomerative clustering seems to be more expres-
sive as it can find disjunctions and conjunctions of shared fea-
tures, but it requires many distance computations, O (|V |),
at each iteration. Furthermore, more memory resources are
needed to store feature vectors for the agglomerative clus-
tering approach when subsets of features are complemen-
tary. The complementary nature of features such as those
in RGB-D posture descriptions allow the representation of
feature vectors to be done with some constraints per set of
complementary features, even as feature descriptors:
Theorem 1. Given a set of complementary features G ⊆ F ,
there are (|G| − 1) degrees of freedom forG when computing
feature descriptors as linear combinations of feature vectors
if the coefficients sum to 1.

Proof. Let G⊆F be a set of complementary features such
that

∑
f∈G
−→xv (f) = 1 for all v ∈ V . Then let feature f ′ ∈ G

be the constrained feature:
−→xv (f ′) = 1−

∑
f∈G\f ′

−→xv (f) .

Then the feature descriptor of cluster k formed
by a linear combination of feature vectors is−→xk (f ∈ G) =

∑
v∈W⊆V αv

−→xv (f) where
∑

v∈W⊆V αv =1.
We now consider:

−→xk (f ′) =
∑

v∈W⊆V

αv

1−
∑

f∈G\f ′

−→xv (f)


=

∑
v∈W⊆V

αv −
∑

v∈W⊆V

αv

∑
f∈G\f ′

−→xv (f)

= 1−
∑

f∈G\f ′

∑
v∈W⊆V

αv
−→xv (f)

= 1−
∑

f∈G\f ′

−→xk (f) .

Thus f ′ is constrained in both the feature vectors and the fea-
ture descriptor while the other |G| − 1 features are free.

However, these constrained values are needed when com-
puting distances for agglomerative clustering unless the com-
plementary features all come in pairs. The distances would
only be proportional if the complementary features came
in pairs — then the distance would be proportional by a
factor of 2 because

∣∣∣(1−∑j
i=1 ai

)
−
(
1−

∑j
i=1 bi

)∣∣∣ =∑j
i=1 |ai − bi| when j = 1, and other cases are not guar-

anteed due to triangle inequalities. Such memory consider-
ations are not applicable for feature vectors of text data be-
cause the relevant words used as feaures do not have comple-
ments. That is, being associated with one conceptual word
does not guarantee a disassociation with another conceptual
word.

In addition to comparing the trade-offs between computa-
tional complexity and quality of feature descriptors, we also
need to look into the advantages and disadvantages of fea-
ture descriptors in comparison to functions learned by in-
terpretable supervised learning algorithms such as decision



trees. The greatest difference between these two approaches
for explaining clusters is that feature descriptors are expla-
nations of individual clusters, independent of the other ones.
We hypothesize that this will be useful for interpretating what
features describe each cluster. However, unsupervised learn-
ing algorithms partition the inputs into clusters so that there
are relationships between them, and these are not captured
by considering the inputs exclusively in a single cluster. We
hypothesize that the supervised machine learning methods
can provide insight into the distinguishing features that make
each cluster unique. Learning functions with poor perfor-
mance (precision, recall, etc.) may even provide insight into
whether too many were chosen for the unsupervised learning
parameter because inputs that should be in the same cluster
may be split into the unnecessary additional clusters. Thus,
we want to determine whether the intercluster comparisons
and intracluster features are mutually exclusive or have some
overlap of information.

4 Discussion
Unsupervised learning algorithms have been useful for au-
tonomously assigning labels when there is data that is difficult
to manually label either due to the amount of necessary man-
power or due to the challenge of selecting the correct label.
However, this convenience comes at the price of interpretabil-
ity because the optimization algorithms used to cluster inputs
into each label do not consider standard patterns that a human
would observe. To aid humans in understanding these learned
clusters so that they may interpret the labels, we introduced a
data structure made of metadata whose features describe the
inputs in a human context. We then proposed how to use the
feature vectors for a range of tasks including evaluations of
discretization choices for continuous input spaces, deriving
similar metadata to describe the learned clusters over inputs,
and comparing the features between clusters learned in a sin-
gle training session. In addition to the RGB-D posture and
text document domains provided as examples, we believe that
domain experts can create expert systems to autonomously
generate feature vectors for their respective datasets to pro-
duce similar human-interpretable explanations of clusters that
allow us to go beyond the label from the classifier.

4.1 Other Potential Applications
The feature descriptors’ ability to extract the defining features
of a cluster may be used for more than just deriving human-
interpretable explanations. It may also be used as a compu-
tational tool for comparisons when using learned unsuper-
vised models for classification as well as when continuing the
learning process with additional training samples. For on-line
classification, optimization-based clustering methods such as
k-means typically compare distances of the new object v′’s
features to a specific point (usually the centroid) of each clus-
ter. However, this point may not be the exact center depend-
ing on the training data and the distance function compares
all the features in the vectors rather than the ones relevant
to the cluster. Inference-based methods such as topic models
present similar classification issues using distributions condi-
tioned on previous cases of observing v′. We hypothesize that

computing the distance between v′’s feature vector and each
cluster’s feature descriptor instead compares v′ with a gener-
alized set of features for the entire cluster with a focus on the
more relevant features.

Due to this, computing sufficiently large distances from
each cluster should indicate that v′ is novel and does not
belong in any of the current clusters. Handling novel in-
puts has been referred to as the domain adaptation problem
[Jiang, 2008] due to the need to address cases during testing
for which the training data did not prepare the learned clas-
sifier. Some researchers omit this concern when using the
classifier as a codebook for the purpose of reducing the cardi-
nality of a large space of objects [Zhang and Parker, 2011;
Wang and Mori, 2009], but others rely on nonparametric
Bayesian processes such as the Pitman-Yor Process [Pitman
and Yor, 1997] to dynamically determine the number of clus-
ters to learn. The latter is more common during training than
testing, but our distance method can create a new cluster con-
taining just v′ on-line. When the system is not running at a
later time, it may recluster in case the new inputs change the
composition of other clusters.

This training must often be done incrementally, though.
When the unsupervised algorithm relies on random sampling
methods, different seeds and permutations of the inputs in the
training data will yield different clusters, often permutations
of one-another. Referred to as the label-switching problem
[Redner and Walker, 1984; Stephens, 2000], aligning these
permuted clusters to speed up training through parallel exe-
cution is difficult. Many methods have already been proposed
to compare the clusters’ distributions [Jasra et al., 2005], and
we are interested in comparing the resulting matchings and
runtimes between these approaches and our proposed appli-
cation of feature descriptors.

4.2 Future Work

To verify the extent to which our proposed methods can help
explain unsupervised learning-derived clusters, we will im-
plement generators for feature vectors for both RGB-D pos-
tures and words in text data. These may be used to illustrate
how ambiguity of multiple interpretations for a single posture
or word can be clarified with weighted feature descriptors.
This will include a comparison of the three approaches to de-
termine whether it is worth additional computation overhead
(expected value versus agglomerative clustering) and whether
comparison between all clusters is better than consideration
independently (feature descriptors versus supervised machine
learning-derived functions). In addition to the aid of interpre-
tation, we will investigate the other applications proposed for
this form of metadata. In particular, it would be ideal that the
metadata representation not only improves the understanding
of how the unsupervised machine learning algorithm is as-
signing labels, but also assists in other association tasks that
require a better understanding of the labeling process.
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