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Abstract

The moment index x(X) = sup{k: E(X*) < oo} of a nonnegative random variable X has the
property that x(min(X,Y)) > x(X) + k(Y) for independent r.v.s X and Y. We characterize
when equality holds for a given r.v. X and every independent nonnegative r.v. Y, and discuss

extensions to related r.v.s and their distributions.
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1. Introduction

In Daley (2001) to which this note is a sequel, the moment index k(X) of a nonnegative random

variable (r.v.) X is defined by
#(X) = sup{k > 0: BE(X*) < o0}. (1)
It was shown that for independent nonnegative r.v.s X and Y each with a finite moment index,
k(min(X,Y)) > s(X) + k(Y), (2)

that equality holds when the tail of the d.f. of either X or Y is regularly varying, and an example
in which X and Y have discrete supports that are ‘increasingly sparse’ and ‘well interspersed’

demonstrated that the inequality at (2) can be strict.

The main purpose of this paper is to prove the theorem below; it characterizes independent
nonnegative r.v.s X and Y for which equality holds in (2). We precede its proof in Section 2 with
further discussion. In Section 3 we note companion results for the exponential index of a r.v., and

Section 4 looks at questions surrounding the finiteness or otherwise of E(X*(X)).
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Definition 1. (a) M denotes the class of all nonnegative r.v.s X with moment index x(X) = «

for which, for every nonnegative r.v. Y independent of X,
k(min(X,Y)) = k(X) + s(Y).

(b) For a < oo, M*" C M consists of those r.v.s X € M®* for which E(X®) < oo, and

MO™ = M>\ M.
Note that M°%T = MP. For intermediate values 0 < o < co the inclusion (b) is proper.

Theorem 2. X € M® if and only if the tail F of its d.f. F satisfies
lim [—log F'(z)]/logz = a = Kk(X). (3)
Tr— 00

We remark that the class M of d.f.s for a < oo, which by Daley (2001) includes d.f.s with
regularly varying tails of index «, is indeed larger than the latter family. This follows essentially
as in Proposition 2.2.8 of Bingham, Goldie and Teugels (1989) (hereafter, [BGT]), where there is
an example of a monotone function whose lower and upper orders coincide (see equations (5)—(6)
below) but for which the representation theorem [BGT 2.2.7] is not of the form of the corresponding

theorem [BGT Theorem 1.3.1] for regularly varying functions.

2. Discussion and proof of Theorem 2

The identification of o in (3) with x(X) is a matter of definition. Also, it is known (though perhaps

not well known; see Baltriinas, Daley and Kliippelberg, 2004) that

lim inf M = r(X), (4)

T—00 log

so we give it as Lemma BDK below and indicate its proof; note that for a positive function f, its
lower order p(f) is just
p(f) = lim inf [log f(x)]/log , (5)
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while the companion upper order v(f) say is

v(f) = limsup [log f(z)]/log x (6)
[BGT Section 2.2.2]. Consequently, what is new in Theorem 2 is the identification of M with tails
of d.f.s F' for which u(1/F) = v(1/F).

Now the tail of the d.f. of min(X,Y) is just the function F G, where G is the d.f. of Y,
and for any real-valued functions f and g with finite limits infima, liminf; . [f(¢) + g(t)] >
liminf; o f(t) 4+ liminf;_ o, g(t), where equality holds for any given f and all g if and only if
lim;_, o f(t) exists. In exploiting this property to demonstrate that inequality at (2) may hold for
given F for which v(1/F) > u(1/F) = a, we need to ensure that the function G we construct with
given lower moment order smaller than its upper order is indeed a distribution function.

Nevertheless, there are pairs of independent r.v.s X and Y for which the limits infima and
suprema are different but for which equality holds at (2). One such pair is as in Lemma 3 (the
proof is at the end of this section), which shows that for strict inequality to hold in (2), the
regions where the ratios at (4) are close to their limits infima must not overlap but rather be well
interspersed as in the example in Daley (2001). Indeed, Tu Anh Nguyen has given an example for
which the limits infima are finite (and hence so too is the right-hand side of (2)) but the left-hand

side of (2) is infinite because the limits suprema are infinite, the ratios being ‘large’ in different

regions.

Lemma 3. Let the nonnegative r.v. X have finite first moment, and let the nonnegative r.v. Y,
independent of X, have probability density function proportional to the tail F(-) of the d.f. of X.

Then k(Y) = k(X) — 1 and £(min(X,Y)) = 2x(X) — 1.

Lemma BDK. For a nonnegative r.v. X, the lower order of the reciprocal 1/F(z) of the tail of

its d.f. equals its moment index, i.e.

u(1/F) = liminf M = #(X) =sup{k > 0: E(X") < 00}. (7)
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PROOF. We first show that x(X) > u(1/F). If u(1/F) = 0 there is nothing to prove. When
0 < u(1/F) < oo let A = u(1/F) and observe that for arbitrary e > 0, —log F(z) > (A —¢)logx =

log 2*~¢ for all x > some zo = zo(g). Then for such z, F(x) < 1/2*~¢ and therefore

A—1-2¢
/xo x F(;E)dazg/ x1+€<oo. (8)

xo

Since

E(X") = / ka*"1F(z)dz when k > 0,
0

(8) implies that x(X) > A — 2¢, and as € > 0 is otherwise arbitrary, we conclude x(X) > u(1/F).
In the case u(1/F) = oo the same argument works for all A > 0, so we conclude x(X) = oo as

wanted.

For the converse assertion, that p(1/F) > k(X), the argument is similarly structured. If
k(X) = 0 there is nothing to prove. If 0 < k(X) < oo we write A = x(X) and note that for
0<e<A,

00 > / 22 dF(z) = B(X*9) > o> F(x),
0
so (A —¢)logz + log F(x) < log E(X*~¢) and

—log F(x) e log E(X*~¢)

logz — log = —ATE (z = 00), 9)

and hence p(1/F) > A = k(X). If 5(X) = oo this argument works for all A > 0, hence p(1/F) = oo
as wanted. I

Proof of Theorem 2. The proof of (1.2) in Daley (2001) is probabilistic. Here we apply Lemma

BDK to the r.v. min(X,Y’), whose d.f. has the tail F' G, in writing

—log F(x) — log G(x)

k(min(X,Y)) = lim inf Tog (10)
T— 00 xT
—log F —log G
> liminf 8@ | i Z108CW@) K(X) + w(Y), (11)
T— 00 10g x T—00 IngE



with equality holding when (3) holds.

For the converse, suppose X has moment index o < co but that 1/F has upper order exceeding
a, i.e.
log F(x) —log F(x)

o = liminf — < limsup ———— < 0.
£—00 log = Z—00 log =

Then there is a sequence x,, — 0o and constant € > 0 such that

—log F(z,) > (a +2¢)log x,, for all n, (12)
and moreover we may choose the initial member x( of the sequence so large that

—log F(z) > (a —€)logx for all > . (13)

Further, we can assume without loss of generality, just by taking a subsequence of x,, if need be,

that

log 1 > logzl = a log ., - (14)

The idea now is to choose 8 > 2(a + ¢) and construct Y, or rather the tail G of its d.f., with

k(Y) = @ and the additional properties that
—log G(x) > (B+2¢)logz whenever —logF(x) < (a+¢)logu, (15)
and that on some sequence =/, — 00,
—log G(x!)) = Blog ), for all n. (16)
We will ensure that — log G has lower order 3, and hence x(Y) = 3, by insisting that
—logG(z) > Blogx for all x > xq. (17)
If we can do all this then

—log F(z) —log G(z) > (a + B+ ¢)logz for all z > o, (18)
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as this is so by (15) and (13) when —log F(z) < (a + €)logz, and by (17) when —log F(z) >

(a +¢)logxz. By (18), (10) exceeds a+ 5 = k(X) + k(Y), so X ¢ M as is to be proved.

There remains the construction of G, i.e. of a non-decreasing function — log G satisfying (15),

(16) and (17). To the right of any x,,, because — log F(z) is non-decreasing, we have

—log F(z) > —log F(x,,) > (a+ 2¢)logx, > (a+¢)logz for all x € [z,,2)),

n

where

Within this interval, F' does not satisfy the condition that activates (15). Let us define G to have
the constant value
—log G(x) := (B + 2¢)logx, forz € [x,,2)], (19)

where

B+ 2¢

logz), = log zp,.

Our having fixed 5 > 2(« + ¢) ensures that

0+ 2¢e 2e a4+ 2e
=1+= < :
I} 8 a+e

and so x], < z!/ and thus (19) does not conflict with (15). Note that (19) implies (16).

For the rest of the definition of G, just put

—log G(z) := (B +2¢)logx for all x € (wg,00) \ ( OLj

U (@, ]). (20)

Then — log G is non-decreasing, and (20) and (19) together ensure (17). The construction is com-

plete. |

Proof of Lemma 3. That x(Y) = x(X) — 1 follows from the definition (1) as noted in Daley
(2001). For the rest, let o = k(X), and let {x,,} be an increasing sequence for which z,, — oo as
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n — oo and

—log F(x,) _ (21)
n—oo  logzy,
For any fixed ¢ > 1,
—log F(x,/c)] < —log F(z,) Ca (n — 00) (22)

log(z,/c) ~ logx, —logec

where we have used monotonicity of F and the limit from (21). From the limit infimum property
of a, it then follows that the left-hand side of (22) must have « as its limit for n — oc.

Next consider

—log ( f;:/c F(u)du/E(X))
log(x,, /c)

: (23)

whose limit infimum is bounded below by a — 1 because this equals the moment index of Y, while
the numerator with the factor E(X) omitted (without affecting the limit property) is bounded

above by

log [//F(u) du} < “log [zn(1— ) F(zn)].

It is readily checked that this quantity, when divided by log z,,, has limit as n — oo equal to —14a.
Then (23) has a limit as n — oo, and it equals « — 1, which result can be combined with the limit

of (22) to give
—log F(z,/c) — log f;:/c F(u)du
log(zn/c)

— a+(a—1) = 2a—1. [

3. The exponential index of a nonnegative r.v.

We hope that the following discussion will facilitate greater use of moment generating functions as

a handy technical device.

Definition 4. The exponential index ¢(X) of a real-valued r.v. X for which F(x) = Pr{X > z},
is defined by
e(X) = sup {t: E(e"") < o0} (24)
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We could now develop analogues of Lemma BDK and Theorem 2 for ¢(-). However there is
no point in reproducing the earlier construction and arguments because the moment index of a
positive r.v. X is related to the exponential index of the real r.v. Y =log X by e(Y) = k(X). This

follows immediately, given a r.v. Y, from writing Z = e¥ in
e(Y) =sup {t: E(e") < 0o} = sup {t: E(Z") < 00} = K(Z) = r(e"). (25)

The analogues to which we have alluded can be stated as follows without need of further proof.

Lemma 5.

—log F
e(X) = liminfM.

z—00 x

Theorem 6. For independent real-valued r.v.s X and Y,
(i) e(X4Y)=min(e(X), e(Y));

(i) e(max(X,Y)) = min(e(X), e(Y)); and

(i) e(min(X,Y)) > e(X) + &(Y'), where equality holds for all r.v.s Y if and only if

lim sup —log F(z) =e(X).
x

Tr— 00

In this theorem, parts (i) and (ii) are included for the sake of completeness (cf. Daley, 2001),

while (iii) follows from Theorem 2.

4. Discussion

For independent r.v.s X € M®" and Y € MPT it follows from E([min(X,Y)]**?) < E(X*YF)

=E(X*)E(Y”?) < oo that min(X,Y) € M©@*++ Indeed, we have the following.

Lemma 7. For independent r.v.s X; € M% and for nonnegative o; (j = 1,...,k), Z =
min(Xy,...,Xy) € M* where o = o1 + - - - + .
If, for each j, o is finite and X € M ™", then Z € M**.
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On the other hand, there exist independent r.v.s X and Y € M*~ but min(X,Y) € MT.

For example it is enough that they have d.f.s given by F(z) = G(z) = 1/[z(1 +log x)3/%] for z > 1.

Finiteness of the moment of the order of the moment index is also preserved for given X and Y
under addition (without requiring independence: just use the ¢,-inequality), and, for independent X
and Y, when a = x(X) < x(Y) so that x(max(X,Y)) = min(k(X),x(Y)) = a, we have X € M*T

if and only if max(X,Y) € MT.

In work underlying Scheller-Wolf (2003), interest centres on independent nonnegative r.v.s X

and Y with finite positive moment indexes o and 3 for which both
E(X?) = 0o = B(Y?) (27)

and

E([min(X,Y)]*™) = oo (28)

hold. Clearly, E([min(X , Y)]O‘JrB*E) < oo for arbitrary 0 < € < o + §, and elementary algebra

yields the rest of Lemma 8.

Lemma 8. Let independent nonnegative r.v.s X and Y satisfy k(X) = a € (0,00), s(Y) = €
(0,00), and Condition (27). If also Condition (28) holds for given X and all Y as described, then
r(min(X,Y)) = k(X) + k(Y), and the d.f. F of X satisfies (3).

A sufficient condition on X for (27) to imply (28) is that

liminf 2*F(x) > 0. (29)

Tr—00

It remains to consider conditions under which (27) does not imply (28). Let X € M*~, and

suppose that for some € > 0 and positive integer k > 2, its d.f. I’ satisfies

lim sup (Logk_l(:v))emo‘F(:c) < 00, (30)

xr— 00



where the positive monotonic nondecreasing function Log,, () is defined for = > 0 by

max(1,x) (k=0),

Logy,(z) = {max (1, logLog;,_1(z)) (k=1,2,...)

(this function Log, is similar to but not the same as the functional iterate of log denoted log,
and defined in [BGT 1.3.3]). We assert that there exists a r.v. Y satisfying (27) such that
E([min(X,Y)]*™?) < cc.

To check this assertion, observe that the function Log, (x) has derivative

0 if Log(z) =1,

(Logy(z))" = ¢ (Logy_(z))’ 1

= otherwise.
Logy_4(z) Logy_1(x) - - - Logg(x)

In the latter case, this function is monotone decreasing to 0 as x — oo. Its product with
(max(l,a:))_(ﬁ_l), where 3 > 1, can therefore be taken as the upper tail G say, of the d.f. of
a nonnegative r.v. Yz, say for which E(YLﬁ) = 00, and E(YLB_E) < oo for every positive e < 3. Thus,
Y, € MP~.

From (30) it follows that for some finite positive A,

—€

F(z) < ASC_a(Logk—1(93))

Then E([min(X,Y7)]*™?) < co because the function F(z)G(x), which equals the tail of the d.f. of

the r.v. min(X,Yz), has 2?1 F(2)G(x) bounded above for sufficiently large z, z > xq say, by

A
(Logy_y ()™ Logy_s(z) - - Logy(x)

and this function, being the derivative of —A(Logk_l(x))_e/e, is integrable on (xg, ).
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