
Microprocessor Applications

Prof M.P.Gough
m.p.gough@sussex.ac.uk

Syllabus :

Microprocessor architecture,
Organisation & operation of microcomputer systems.
Hardware and software interaction.
Programme and data storage.
Parallel interfacing and programmable ICs.
Serial interfacing, standards and protocols.
Analogue interfacing. Interrupts and DMA.
Microcontrollers and small embedded systems.
The CPU, memory and the operating system.

Teaching Methods:

2 lectures / week

Exercises/examples reviewed in workshops

weeks 3,5,7,9

Research for handed in assignment (Week 10)

Assessment:

Written Assignment 20% Week 10 (March)

Unseen Examination 80% June

Reading List

• Alan Clements. 2000. The Principles of Computer Hardware, Oxford, 3rd
edition. (A number are available for loan from the Engineering & Design
Department Office)

• For assessment exercise: Various manufacturer's microprocessor and
microcontroller datasheets and user documentation downloadable from the
internet.

• For lecture notes I have used the above Clements + others below
Note: these are not recommended for buying
The 68000 Microprocessor Family, M.A.Miller,1992 MacMillan
Digital Fundamentals, Floyd, 2006, Pearson International
Computer Engineering Hardware Design, M.Manno, Prentice Hall
Microcomputer Interfacing, H.Stone, ddison Wesley

+ various datasheets from web

e.g. 68HC000 =CMOS 68000 version

Course comprised of 8 topics:

1. Review Architecture & Programming of Microcomputer Systems

2. Programme and Data Storage

3. Parallel Input & Output Peripheral Devices

4. Interrupts

5. Serial Input and Output

6. Analogue I/O

7. Microcontrollers for Small Embedded Systems

8. CPU, Memory, and the Operating System

Typically Microprocessor within an Embedded System:
Where Hardware meets Software

• Principal function(s) controlled by microprocessor embedded within it

• Computer (microprocessor or microcontroller) hidden from view

• Purpose designed for particular application

(PC is really a general purpose computing machine rather than an embedded
system)

• Embedded computer takes input variables from controlled system

• Computes output variables to control system

• Sometimes autonomous, or sometimes interaction with user or sometimes
interaction with other systems

The Microprocessor System Overview

In this course the 68000 or 68HC000 processor is used to demonstrate aspects

of the device hardware interface and software device access

Part 1.

Review
Architecture & Programming of Microcomputer Systems:

- CPU architecture - 68000 example

- Programming model and instructions (reminder of 1st year)

- Microprocessor and the system bus

- Connection to memory & I/O devices

- Microcomputer organisation, signals and timing

- System architectures

68000 Example.

(or 68HC000)

Internal Software Program Model:

As a reminder of last year’s
microprocessor programming –

Quick review of instructions

follows….

Reminder: Move Instructions
A)MOVE General form:

MOVE.<data size> <source effective address>,<destination effective address>

Data size: B=Byte(8bits); W=Word(16bits); L=Long Word(32bits)

Some examples of types of addressing-

Register Direct : MOVE.W D2,D3 moves lower 16bits D2�D3

Address Register Direct: MOVEA.W D3,A0 moves lower 16bits with sign extension

Address Register Indirect: MOVE.L (A1),D0 32bits from memory pointed to by A1-> D0

Address Register Indirect with Displacement: MOVE.<size> displacement16(An),Dn
MOVE.W $4(A0),D2 D2 memory at location given by (contents of A0 + 4)

Absolute: MOVE.L $C02E,D5 loads D5 with 32bit data word from location $FFC02E

Immediate: MOVE.L #$30,D2 loads D2 with immediate data (fills with leading zeros)

Address Register Indirect with Predecrement/Postincrement:
e.g. MOVE.B –(A3),D3,

MOVE.L (A0)+,D4,
MOVE.W D4,(A2)+

Reminder: Arithmetic & Logic Instructions

B) Arithmetic Instructions
ADD.<data size> <ea>,Dn Dn=Dn+<ea>

and similarly for SUB (subtraction)

MULU <ea>,Dn Dn <ea>lower word x Dn lower word

similarly for DIVU (division)

C) Logical Instructions

ASL, Arithmetic shift left (lsb 0)

ASR, Arithmetic shift right (old msb�msb)

LSR, Logical shift right (0�msb)

AND, Logical AND

OR, Logical OR

NOT, all bits complemented 0�1

Reminder: Programme Control Instructions

D) Program Control / Branch

BRA <relative address or label> unconditional jump in programme

JMP <ea> unconditional jump to location specified by effective address

Bcc <relative address or label> conditional jump
where cc is flag condition.
e.g BCC=branch if carry clear, BCS=branch if carry set
Bcc often used after CMP – compare two data values

NOP no operation, time waster

E) Use of Stack / Subroutines

BSR, JSR unconditional branch/jump to subroutine (next programme
address�stack)

RTS Return from subroutine (changes programme counter to value
previously saved on stack)

…..plus many other instructions.

Back to 68000 Programmer’s

Model ����

Programme instructions
intensively use the 8 data
registers and 7 address registers
in the CPU as intermediate data
products or temporary variables
in the course of processing data
to / from the external world via
external devices.

So where are these located
relative to the typical system
hardware? ……….

COMPUTER
BLOCK DIAGRAM

Each device connects to:
a) Data bus
b) Address bus
c) Control lines

Control lines determine:
i) signals timing for correct

operation
ii) device selection/activation
iii) data flow direction.

Only two devices allowed to
communicate at any one
time to avoid bus contention.

Thus data move operations
mostly one of these 4 types:
i) Memory --> CPU or
ii) CPU --> Memory or
iii) I/O -->CPU or
iv) CPU -->I/O.

[Also a fifth type:
Direct Memory Access
I/O ���� Memory
but requires special
DMA bus controller see later]

Summary of the 68000’s 64 connection pins:

Vcc Voltage source (e.g. 5Volts above Vss)

Vss Ground

Clock: system clock input

Buses:

D0 to D15 data bus lines - bidirectional

A1 to A23 address bus lines, O/P

Main Control lines:

AS: Address strobe- valid address on A1-A23, O/P

R/W: direction of D0-D15 bus,1=read,0=write, O/P

UDS,LDS: upper/lower data strobe [A0], O/P

[effectively A0:maps 8bit wide memories to 16 bits]

DTACK: Data Transfer Acknowledge, I/P

slower external devices can cause CPU to wait

RESET: resets CPU programme counter I/P

HALT: halts operation(I/P) or indicates failure(O/P)

IPL0-2: Interrupt request lines I/P

Others:

BR,BG,BGACK: for external DMA control of bus

FC0-FC2:monitor: programme, data, interrupt ,O/P

E,VMA,VPA,BERR extra signals for interfacing

External

Hardware

Connections

Main aspects: FC0-FC2=010 indicates program opcode fetch (alternative 001 for data)

Valid address ����A1-A23, UDS,LDS=00 means16bit read (10=d0-7, 01=d8-15 only)

Address Strobe, AS allows address bus to be decoded for memory chip select

R/~W stays high throughout as this is a read operation

External device/address decode asserts ~DTACK as data placed on bus

If memory device is slow ~DTACK assertion can be delayed to provide wait states

D0-D15 Data bus receives valid data from addressed memory before AS returns.

68000 uses a 2-word prefetch, absorbing program fetch cycles within execution cycles

Programme Memory Read Cycle (Main signals in bold)

Main aspects: FC0-FC2=001 data memory.
Valid address ����A1-A23, UDS,LDS=00 means16bit write (10=d0-7, 01=d8-15 only).
Address Strobe, AS allows address bus to be decoded for memory chip select.
R/~W goes low to indicate this is a write operation,writing D0-D15 to memory.
External device/address decode asserts ~DTACK as device reads data from bus.
If memory device slow ~DTACK assertion can be delayed to provide wait states.

Memory Write Cycle (main signals in bold)

System Design

1) Before Designing system decide on requirements:

• Amount of programme memory (ROM)

• Amount of read/write data memory (RAM)

• Number & type of I/O ports

• Other system and peripheral components as needed

2) Software must be considered.

3) Then individual component types chosen, considering
their characteristics (timing, voltage levels,etc) &
requirements

4) Circuit wiring, board design & board layout completed

Part 2.
Programme & Data Storage

- Types of memory device

- Connecting memory to the processor

- Memory device address decoding

Types of Memory
Random Access Memory, RAM (data volatile- lost on power off)
RAM used for data, can be written to & read from

• Static RAM – each bit stored in simple circuit of a few transistors, e.g. flip-flop

• Dynamic RAM- each bit stored as charge on a single transistor gate but needs
refresh circuitry as gate is a leaky capacitor and data lost otherwise

SRAM faster, takes more power, less dense ���� expensive, but easy to use

DRAM simpler, lower power, cheaper, requires extra refresh control, more complex to
use.

Read Only Memory, ROM (data non-volatile, remains after power cycling)

ROM data remains after power off.

• Mask programmed – custom written at manufacture, e.g. PC boot up programme

• PROMS – semi-custom- written only once to chip by specialist equipment/co

data 0/1 stored as fuses blown/unblown or as OTP (see below)

• EPROM – user programmed by EPROM programmer. Data stored as charge on
high impedance gates- can be erased by ultra-violet light through window in chip &
reprogrammed.

One time programmable, OTP, = version of EPROM chip without window

• EEPROM- similar to EPROM but erased electrically without being removed from
circuit. Erased in blocks of memory – in system programmable

• Flash memory, similar but simpler���� very dense memory (silicon hard disc)

• FRAM access as fast as RAM but data non-volatile

Address Decoding
a) General address decoding

Chip selected by specific combination

of higher address line values.

b) Linear Address Decoding

Each chip select uses a dedicated

address line- simple for small systems

but wasteful and can lead to bus

contention (>1 device selected at once!!

e.g. A11 & A12 must not both =1)

c) Full Address Decoding

Logic used to provide a maximum number

of chip selects from address lines.

E.g. two address lines A11 & A12 have

four possibilities (00,01,10,11)���� each

combination decoded for a chip select.

Full Address Decoding: Decoder Chip 74138

When chip is not enabled: all 8 outputs high independent of A inputs

When chip enabled (~E1,~E2,E3=001) only one output goes low, rest high

Inputs A1,A2,A3 select which of 8 outputs goes low

Programme memory : ROM/EPROM Two examples:

M6836 16k x 8 Byte
wide

Data: DQ0-DQ7

Address: A0-A13

~G is Read

~E chip select

Intel 27210 64k x 16 16bit word size

Data: O0-O15

Address: A0-A15

~CE is chip select

~OE is enable ouput (read data from ROM)

~PGM for programming data into ROM

16 bit wide ROM:

• D0-D15 ROM�uP

• All uP A1-A16

� ROM A0-A15

• 64k x 16 ROM

• ~CE from 138
decoder when

A17,A18,A19=000

Other combinations for
other devices

• As ROM all accesses
are read so ~OE=~CE

• ~DTACK low

while ROM selected

A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1

0 0 0 x x x x x x x x x x x x x x x x ROM 00000H-0FFFFH

0 0 1 ………………………………………………………………….. Next Device 10000H����

0 1 0 ………………………………………………………………… Another Device20000H����

Using two 8 bit
wide ROMs for
16bits data bus

• A0= UDS/LDS

• A1-A14 micro����

both ROMs A0-A13

• ROM1 = D8-D15

• ROM2 = D0-D7

• Address decoder

selects ROMs for

A16-A18=0

ROM: 0000H-03FFFH

• other 138 outputs
used for other
devices, RAM etc

Connecting RAM
• Addition of two 32K x 8

RAM to previous slide

(two of ROM of last slide
not shown for clarity)

• Again pair for 16bits wide

• ROM A16-A18=000

• RAM A16-A18=001

• Now R/~W needed

• ~DTACK as long as either
ROM or RAM accessed.

Part 3.
Parallel I/O and peripheral devices:

- Buffers and latches

- Example input and output devices

- Programmable I/O devices

- Counter-timers

Buffers for digital input port:

Latches for digital output port:

Buffers enable to pass at specific times.
Single buffer: pin 1 when low passes
data from pin 2 to pin3, otherwise high
impedance on pin3.

Combining 8 buffers in parallel provides a means for digital
input. When common output control low, data from lines I0 to I7
is passed onto data bus for microprocessor to use (INPUT).
~Output control = logical OR of ~PortCS, ~Bus Read

D-type latches used to sample & hold data - latch data.
Data on the bus, e.g.from the microprocessor, sent to
the output port. Address decoding for port enables latch,
latching data at end of pulse. Port outputs new data until
next time port addressed (OUTPUT).
~LE = logical OR of ~Port CS, ~Bus Write)

Octal latch can be 8bit Port

Peripheral Interface Adaptor(PIA)

Example of MC6821

(simple 8 bit port)

Two Ports: A & B

Each port has 3 registers:

1)Peripheral Data Register

buffers actual port data

2)Data Direction Register

each bit 0 for I/P, 1 for O/P

3)Control Register

sets condition for data flow,

interrupt, & handshake with

external devices

Connecting the PIA

Connecting to previous system

of ROM & RAM, using decoder

set for A16-A18=110 and A0=0

for port.

Lower address bits A1, A2 select

PIA registers for I/O data flow

Control.

Interrupt requests connected to

68000 interrupts so that each

Port A & B can be processed by

Separate interrupt routines.

PIO Handshake with external world

Keyboard Key pressed ���� CA1����high

Keyboard tells PIA that data ready to be read.
CA1 used to strobe data into PIA data register.

PIA acknowledges keyboard by CA2����high and at
same time tells uP by setting IRQA ����low

Microprocessor services interrupt request and
reads PIA data register. Act of reading resets
IRQA ����high and resets CA2����low telling
keyboard that it is ready for more data.

Input- keyboard example:

Keyboard Encoder Example:

Rows scanned with travelling ‘0’ on output port until keypress causes input <11111111

Then key identified by combination of known position of ‘0’ on O/P port

and measured position of ‘0’ on I/P port.

Code for keyboard scanner/reader

ORG $002000

Xlines EQU $008000 ;Output port for rows

Ylines EQU $008002 ;Input port for columns

MOVE.B #%01111111,D0 ;Initial X value with ‘0’

MOVE.B #-1,D1 ;Preset X counter = -1

XLOOP ROL.B #1,D0 ;Rotate position of ‘0’

ADD.B #1,D1 ;Increment X counter

AND.B #%00000111,D1 ;X counter is modulo 8 (values 0-7 only)

MOVE.B D0,Xlines ;Output X value to keyboard

MOVE.B Ylines,D2 ;Read Y value from Keyboard to D2

CMP.B #%11111111,D2 ;Any ‘0’ in Y – Any key pressed?

BEQ XLOOP ;Repeat until key pressed

CLR.B D3 ;Preset Y counter = 0

YLOOP CMP.B #%11111110,D2 ;test for a ‘0’ in lsbit of D2

BEQ JOIN ;Exit to concatenate X & Y values

ROR.B #1,D2 ;Rotate D2 one place right

ADD.B #1,D3 ;update Y counter

BRA YLOOP ;test next bit position for ‘0’

JOIN LSL.B #3,D3 ;Shift Y counter 3 places to the left

OR.B D3,D1 ;Add in X counter

RTS ;Return value in bits: 00yyyxxx (0-6310)

Counter-Timer Chips

This example three separate counter-timers
Each has clock input, a gate input, and an output:

a)Clock can be supplied from the micro-
processor clock, or by an external system.

b) Gate is a signal that enables/disables
counting

c) The output is changed when the counter
reaches a preset value, counted down����0.

Uses:

• Output can be used as interrupt to uP

• Enables accurate time delays to be generated
under software control

• Multi-Mode configured by software

• Used for delay instead of software timing loops-
frees up uP to do other tasks

• Can be used to count external events

• Watchdog timer- unless software reloads counter
before an initial long count value reaches zero����
resets system. Checks against ‘endless loop’
type software hangups - ensures continued
operation of essential systems.

Examples of two of the many Modes provided by a Counter/Timer Chip:

Other modes:
Mode 1- Programmable One-Shot, Mode 2- Rate generator
Mode 4- Software Triggered Strobe, Mode 5- Hardware Triggered Strobe

Part 4.
Interrupts:

- Need for interrupts

- Principles of interrupt-driven I/O

- Interrupt programming techniques

- Interrupt Priority & Interrupt Vectors

Output to Port with fixed software delay (without interrupts)

Port EQU $01800 Location of Port

Count EQU 128 Size of block to output

Deloop EQU 64 wait loop

ORG $000400 Program origin

:

MOVE #Count,D1 ;set up loop counter

LEA Table,A0 ;A0 points to table in memory

LEA Port,A1 ;A1 points to Port

:

LOOP1 MOVE.B (A0)+,D0 ;D0memory([A0])

; [A0][A0]+1

MOVE.B D0,(A1) ;Output data

JSR Delay

SUB #1,D1 ;decrement loop count

BNE LOOP1 ;repeat for all 128 data

:

Delay MOVE #deloop, D2 ;set up delay loop time

Loop2 SUB #1,D2 ;decrement loop time

BNE Loop2 ;wait for loop time

RTS ;return from subroutine

ORG $002000

Table DS.B 128 ;128bytes reserved for data table

PSEUDO-PROGRAMME:

FOR i=1 to 128

move data from

table to port

wait a fixed time

END FOR

Disadvantages:

Need delay time between

outputs to be sufficient for

external devices.

No handshake used

Microprocessor tied up by
programme while waiting

Output to Port with polling (without interrupts)

Portdata EQU $08000 Location of Port data

Portstat EQU $08002 Location of Port’s status byte

Count EQU 128 Size of block to input

ORG $000400 Program origin

:

MOVE #Count, D1 ;set up loop counter

LEA Table,A0 ;A0 points to table in memory

LEA Portdat,A1 ;A1 points to Port data

LEA Portstat,A2 ;A2 points to Port status

:

:

LOOP MOVE.B (A0)+,D0 ;D0memory([A0])

; [A0][A0]+1

WAIT MOVE.B (A2),D2 ;Read status

AND.B #1,D2 ;mask off all but ready bit

BEQ WAIT ;wait for port ready

MOVE.B D0,(A1) ;Output data to peripheral

SUB #1,D1 ;decrement loop count

BNE LOOP1 ;repeat for all 128 data

:

:

ORG $002000

Table DS.B 128 ;128bytes reserved for data table

PSEUDO-PROGRAMME:

FOR i=1 to 128

get data from table

wait until port ready

output data

END FOR

Disadvantages:

Limited handshake

Microprocessor tied up
waiting for peripheral to
be ready

Need Interrupts...

Interrupt Driven I/O

OUTPUT EQU $008000 Location of O/P Port
ORG $000400 Start of programme

:
INT Y MOVEM.L D0-D7/A0-A6,-(A7) Save environment – general for subroutines

MOVEA.L POINTER,A0 Point A0 to buffer
MOVE.B (A0)+,D0 Read a byte from buffer
MOVE.B D0,Output Send to O/P port
MOVE.L A0,POINTER Save updated pointer
MOVEM.L (A7)+,Do-D7/A0-A6 Restore Environment
RTE Return from interrupt

:
ORG $002000 Data Origin

BUFFER DS.B 1024 Reserve 1024 bytes
POINTER DC.L BUFFER Reserve long word

In previous example (of last 2 slides): to obtain regular slow timed outputs- interrupt could be caused by
a software pre-programmed Timer/counter chip output connected to a processor interrupt line.

Each interrupt vector to subroutine
which:

Gets pointer for next entry, Reads a
byte, Outputs to port, Moves pointer to
next entry, Saves pointer in memory,
Returns from interrupt

Interrupt: Priority & Vectors

Interrupt Priority.

Example of 68000 has 7 levels of interrupt priority:

3 input pins IPL0-IPL2 can have values 0-7 (values negative logic)

0=no interrupt, 1=lowest priority interrupt � 7=highest priority level
interrupt.

All interrupts at level ≥ 3bit mask in 68000 status word are serviced

Level 7 is thus a non-maskable interrupt - always serviced

Software can control when to service Interrupts < level 7

e.g. don’t interrupt time critical processes

Interrupt Address Vectors (Interrupt programme control sequence)

Peripheral provides interrupt signal to Processor

Processor acknowledges to peripheral that it will accept interrupt

Peripheral provides interrupt vector to processor

Processor uses vector to look up location of interrupt handler routine

Multi – Peripheral
Interrupt +
Acknowledge

Each Peripheral:
provides interrupt
receives acknowledge

Priority Encoder:
converts IRQ1-IRQ7 to
three bits IPL0-IPL2

IACK Decoder:
decodes CPU response

function code = IACK
+ address = level

& generates IACK1-6

Peripheral with IACK:
Provides interrupt vector
e.g. 40H

CPU:
gets interrupt vector from
memory pointed to by
peripheral vector x 4 e.g =100H

Part 5.
Serial I/O:

- Asynchronous and synchronous transmission

- UARTs

- Serial I/O under program control

- Other standards

Serial Interfaces

Serial Transmission can be:

i) Asynchronous (e.g. traditional PC COM1 port)

ii) Synchronous (e.g. USB Port)

UART chip performs parallel-to-serial conversion on data sent from CPU and
serial-to-parallel conversion on data received by CPU. Mechanism of shift
register, shift out bits of data byte (or character) one at a time.

Bit-Serial Data

Non-Return to Zero (NRZ), quiescent level=‘1’

Bit serial data framed by start and stop bits with optional parity

bits for error checking. E.g. if 7bit character data(ASCII) then up to

11 bits required per character.

Above example of transmitting character ‘R’,

in ASCII is 52Hex (1010010b). Seven bit data. (8th MSBit discarded).

Character rate = bit rate / bits per character Bit rate = “baud rate”

Data Link can be:

1) Simplex (one way data transfer)

2) Half Duplex (two way data transfer, but only one at a time)

3) (Full) Duplex (two way data transfer simultaneously)

Typical example of serial communications

Extra signals needed for handshake with external serial devices:

RTS: Request to send. Computer asks modem if it is ready for data operations

CTS: Clear to send. In response to RTS modem tells computer data can be
sent

DCD: Data carrier detect. Modem tells computer that it receives carrier tone
on the telephone line

UART for 68000 - Asynchronous Communications Interface Adapter)

Using the ACIA: Example Software

Configuring ACIA:

ACIA EQU $800000 ;ACIA address

CR EQU 0 ;Control Register Offset

LEA ACIA,A0 ;A0 points to CR

MOVE.B #%00000011,CR(A0) ;software reset (user looks up codes in datasheet)

MOVE.B #%10110101,CR(A0) ;set baud rate, handshake, interrupt (“ “)

Receive a Character Subroutine:

RDRF EQU 0 ;RX data ready bit 0 of SR

SR EQU 0 ;Status register offset

DR EQU 2 ;Data register offset

LEA ACIA,A0 ;A0 points to ACIA

POLL TST.B #RDRF,SR(A0) ;Read RX status bit

BEQ POLL ;repeat until char received

MOVE.B DR(A0),D0 ;get input from ACIA to D0

RTS

Transmit a Character Subroutine:

TDRE EQU 1 ;Transmitter data register empty bit

LEA ACIA,A0 ;A0 points to ACIA

TPOLL BTST.B #TDRE,SR(A0) ;TX register empty?

BEQ TPOLL ;Repeat until ready to transmit

MOVE.B D0,DR(A0) ;Move byte from D0 to ACIA

RTS

Types Of Serial Interface:

RS232C: Logic 1 has value < -3V

(Bipolar) (typically -12V)

Logic 0 has value > +3V

(typically +5V).

RS423: Low impedance 50Ω

RS422: Low impedance

differential twisted pair

eliminates ground loop

pickup,etc

RS485:

Universal Serial Bus, USB
fast data + can power small devices from bus e.g. flash memory

Some other Standards:

Firewire (IEEE 1394)
External serial bus for fast data transfer 400Mb/s (developed by Apple).

Up to 63 devices can be connected in daisy-chain arrangement.

6 wires: two twisted pair for data ����, power, ground

GPIB, General Purpose Interface Bus (IEEE488).
Parallel Bus developed by Hewlett-Packard for test & measurement

equipment 1MByte/s.

24 lines: 8 data lines, 8 ground returns/screening, 3 handshake lines,

5 bus-management lines.

SCSI, Small Computer System Interface (“scuzzy”).
Parallel Bus with various variations & connectors

e.g.

a) SCSI-1- 25 pin connector 8-bit data + handshake, upto 4Mbytes/s

b) Wide Ultra SCSI-2, 16bit data at 80Mbytes/s

Part 6.
Analogue I/O (or Digital meets the real World):

- Digital-to-Analogue (DAC) principles

- Analogue-to-Digital (ADC) principles

- Software Interfacing methods

- Sampling and aliasing

- Programming techniques

- Introduction to digital filtering

Potential Divider Network DAC

Many resistors needed - 2n where n= number of bits, but all same value

D to A: Type= Binary-Weighted-Input DAC

a) Simple Explanation: Each bit if logic ‘1’ connects resistor to the circuit.

R values vary as 2:1 from bit to bit with MSB having the lowest value R

low R ����passes highest current ���� most effect on output voltage.

Disadvantage: need to have many different, precise R values

b) Detailed Explanation: Amplifier -ve input is virtual ground since feedback resistor from Vout holds
inputs at 0 volts. High impedance input amplifier takes zero input current, so all currents I0, I1, etc,
must pass through feedback resistor, Rf.

Total current in feedback resistor, If = b0 I0 + b1 I1 +b2 I2 + ….. (With each bit bn =0 or =1)
So final analogue voltage output= Vout = If Rf

An R-2R Ladder type DAC Advantage: only two different R values: R & 2R

Example: data value 1000

D3=1 ����5V via 2R to input held at
0V by feedback- all current
flows through Rf(=2R) so Vout

must be -5V.

Lumped value, Req of other
resistors not critical as no
current passes through Req

R-2R ladder DAC- another example value = 0010

Thevenin’s Theorem- any circuit can be reduced to an equivalent voltage in
series with an equivalent resistor.
Applying theorem to the left of R8 we have Vth=1.25V & Rth=R.
Again voltage across R7=0, then 1.25V through 2R to input will require Vout to be
-1.25V to keep input at zero voltage (Virtual earth).

Waveform Generator
Pseudo-Programmes

a) Square wave period T (without DAC):

Loop1 Output ‘0’ on port pin
wait T/2
Output ‘1’ on port pin
wait T/2
branch to Loop1 repeat forever

b) Sawtooth ramp period T (with 8 bit DAC)

initialise D0=0
Loop2 output D0 to DAC

increment D0
wait T/256
branch to Loop2 repeat forever

c) Triangular wave period T (with 8 bit DAC)

initialise D0=0
Loop3 output D0 to DAC

increment D0
wait T/512
compare D0 to #255
branch to Loop3 if not equal

Loop4 output D0 to DAC
decrement D0
wait T/512
compare D0 to #0
branch to Loop4 if not equal
branch to Loop3 repeat forever

256 steps up/down

DAC performance aspects:

Resolution

Improves with number of bits, n. % resolution = 100 * 1 / (2n – 1)

Accuracy

Ideally = resolution but in practice less because of accuracy of resistors

Linearity

Linear error is deviation from ideal straight line Vout= constant x digital value

Settling Time

Time taken for analogue output value to reach a new value in response to a

change in the digital input - depends on RC time constants , internal &

external capacitance.

Analogue to Digital Conversion:
Successive-Approximation

Example of 4bit ADC

1) Microprocessor sends SC (start conversion) to control

2) Control logic within ADC outputs a digital value to a DAC

3) The analogue input is compared with the DAC output

3) Control logic tries each bit in turn starting at MSB

Decision tree: Only four decisions (red lines) ����

4) After 4 successive approximations sends end of
conversion EOC signal to microprocessor

5) Microprocessor reads digital value

Flash ADC
3-bit example

Input analogue

signal fed in

parallel to many

comparators which

compare input

against a voltage

divider chain.

Bits set from bit 0

to the voltage tap

just below the input

voltage value.

An encoder then

converts the signal

to binary value.

e.g. Vin = Vexample

7… … .1

0000111 ���� 0112

Vexample����

Dual Slope ADC

Start: assume counter is zero and

output of integrator=0.

1) Switch connects +ve Vin to R

assume Vin steady (sample/hold)

2) C charges linearly(const I=V/R)

resulting in negative ramp at V0

3) When counter reaches a preset

value (time T) counter reset, &

control switches input to -Vref

causing C to discharge linearly

towards zero.

4) When Vo reaches zero

comparator stops count.

5) Count value t1 or t2 depends

on size of the input voltage.

6) Binary count t1/t2 read out

Main ADC Performance Aspects:

• Conversion Time

(application specific & the need to avoid aliasing)

• Conversion Accuracy

(increases with number of bits)

• Electrical Power consumption may be limited in
small systems

(power increases with conversion rate)

Example software to access ADC
ADCstatus EQU $8001 ADC status register address

ADCdata EQU $8000 ADC data register address

Size EQU $80 Number of values to read into table

Table EQU $4000 Address of destination table in memory

MOVEA.W A0,ADCstatus A0 points to ADC status register

MOVEA.W A1,ADCdata A1 points to ADC data register

MOVE D1,$Size D1 holds the number of values to read

MOVEA.W A2,table A2 points toTable of values read from ADC

Loop MOVE.B $01,(A0) Start ADC Conversion- set SC bit

Wait MOVE D0,(A0) Read ADC Status

AND A,$01 Mask off bits other than EOC bit

BNZ Wait Wait for End of Conversion EOC

MOV (A1),D0 Read ADC value

MOV D0,(A2)+ Store in table, increment table position

SUB $01, D1 Decrement Loop counter

BNZ Loop Repeat to complete data table

Sampling & Aliasing Error

a) For good reconstruction of signals the
sampling frequency, fsam, should be > 2 fmax,

where fmax is the maximum signal frequency
or, fmax ≤ Nyquist frequency (= fsam/2).

Example of sufficient sampling: figure on left.

b) Absolute limit of 2 samples per wave cycle
fsam = 2 fmax (figure lower left).

c) Aliasing errors occur when fsam< 2 fmax

as illustrated here in the figure below right.

i.e. less than 2 samples per wave cycle.
The reconstructed waveform is then a very
different frequency from the original signal.

Simple Digital Processing Example: e.g. moving average filter
Analogue signal ���� ADC ���� Digital Processing ���� DAC ���� Processed Analogue signal

Typical Filter Processing:

x(n)=sampled analogue waveform,

an =weights (coefficients, or scaling factor),

Z-1 =unit time delay = 1 sample period

Simple Digital Filtering
Moving Average FIR Filter:

Specific ADC ���� input, x(n) ���� {processing} ���� result, y(n) ���� DAC

y(n) = (1/4){ x(n) + x(n-1) + x(n-2) + x(n-3)}

Use four registers D0,D1,D2,D3 to store signal samples x(n), x(n-1), x(n-2), x(n-3)

LOOP
• Read new ADC value
• Store this new value in D0
• Add D0 to D1

• Divide by 2 (arith shift right) & store in D4 = (1/2){ x(n) + x(n-1)}

• Add D2 to D3

• Divide by 2 & store in D5 = (1/2){ x(n-2) + x(n-3)}
• Add D4 to D5
• Divide by 2
• Output this value to DAC = (1/4){ x(n) + x(n-1) + x(n-2) + x(n-3)}
• Move D2 contents to D3 x(n-2) ����x(n-3)
• Move D1 contents to D2 x(n-1) ����x(n-2)
• Move D0 contents to D1 x(n) ����x(n-1)
• Repeat LOOP forever get new x(n)

Note: No need to initialise D1-D3 as not important after 3 programme loops.

Part 7.
Microcontrollers for small embedded systems:

- Configurations

- Architectures

- Features

- Other aspects

Comparison of microcontroller with microprocessor

Computer Architectures:

Most microprocessors use von Neumann architecture as Harvard would
need many more pins to access two external buses.

However, more processing efficient Harvard Architecture with two buses
easily implemented internally within a microcontroller.

Multi-Processor / Parallel Processing

Microcontroller
Example.
An industry
standard : 8051
Don’t worry too much about
complicated schematic on left.
Mainly to show here the very

many features included within
one chip. Main ones are
highlighted: Ports0-3, RAM,
ROM, ALU, Oscillator, serial
port, timer/counter, etc

8051 chip Includes:

central processor
ROM & RAM
3 counter/timers
4 parallel ports
1 Serial port

Requires only crystal
for clock and Vcc.

Ports can be used
to expand ROM &
RAM bus externally

Some Microcontrollers8bit microcontrollers:

16bit microcontrollers:

Very many types &

manufacturers produce

various versions with

different facilities, e.g:

a) Speed: reduce

�1 clock / instruction

b) Memory

Data RAM upto 2kbyte

Programme ROM

upto128kbytes+

Types: EPROM, Flash,

EEROM.

c) Communications

RS232

I2C,

1-wire

CAN bus,

Ethernet, etc

d) Peripheral Drivers,

LCD, etc

Multi-Core and Parallel Processing

• Recent progress in processor speeds curbed by power dissipation
problems. Every transistor switch action has I*V. Very many transistors
at any one time often doing nothing but still dissipate heat!

• Over-clocking say from 3GHz to 3.6GHz possible – beyond
manufacturers specifications � running hot reduces component
lifetime� plan redundancy use 10year guarantee computer for only
4year

• Supercomputers- similar problems. Germanium Arsenide logic + exotic
components + liquid cooling � faster clocks.

• Supercomputer progress only through vastly parallel machines with
many processors (groups of 1000’s of PCs) - massively parallel
hardware and applications

• Desktop PCs co-opted supercomputer model � 2 to 4 CPU cores on a
single die. ‘Dual core’ , ‘Quad core’

10.0

• Typical 2 CPUs each with own L1 cache, share single L2 cache, that accesses
single external bus to off-chip memory (Cache memory- see later)

• But typically only ~1/3 of presently written PC programs can be parallelised
� only 50% speedup as go from single � dual core

(not the expected 100% - Amdahl’s law)

• Single bus from L2 to off chip external RAM memory still a bus bottleneck

• Programs only fast as long as work from L1.
But L1 size typically only 32-64kbytes! Small programs!, L2 typically 4Mbytes

• Multi-core (2 -4) use is presently optimised by operating system: multiple programs written
for single core. Primarily for speeding up Multi-tasking, Multiple threads

• Moving towards Many-cores >>4,

• Many-cores � really need to program specifically for parallel processors,
need effective parallel languages, auto-parallelising compiler � Active Research Area

Intel Core 2 Duo 64bit dual core 10.1

CELL Broadband Engine multi-processor for Playstation3

Overview:

9 processor elements on a single chip:

1 x 64 bit PowerPC processor element (PPE) optimised for operating system/control

8 x Synergistic processor elements (SPE) optimised for compute intensive applications

PPE access main storage via load/store to private register file. Operating system neutral

SPE access main storage via DMA to local memory for data & programme

See: http://www-01.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine

10.2

Xera flop 1027

Yotta flop 1024

Zetta flop 1021

Exa flop 1018

Peta flop 1015

Tera flop 1012

Giga flop 109

Mega flop 106

Kilo flop 103

Today: 1) Top of the range PC Quad-core 30Gigaflops;

2) Roadrunner super computer (~ 130kcores = 13k Cell processors[9core]+ 7k AMD dual core) ���� 1.7 Petaflop

Flops History:
Logarithmic plot

10.3

Future/Now: Processors as ‘CORES’ in FPGAs
Field Programmable Gate Arrays

Gate arrays- a sea of uncommitted logic cells can be configured as complex
system that includes several microprocessors.

For example, a single Xilinx Virtex 4 family FPGA chip can include

• Two PowerPC 32bit RISC processors
• 192 DSP slices (multiply-accumulate units- for signal processing)
• 4 x 10/100/1000 Ethernet interfaces
• 142K Logic cells
• Block RAM
etc

FPGAs can be re-configured in application to provide various
functionalities. e.g. mobile phone, GPS receiver, etc.

FPGA cores often operate at lower voltage than data buses, often mixed
voltage buses…. therefore there is a need to convert logic levels between
buses…..

Multi-Voltage Level Systems
Systems often utilise more than one voltage level logic to optimise the system by making use of the
most appropriate chips. Various logic level standards: 5V, 3.3V, 2.5V, 1.8V, 1.5V, etc.
Lower voltage ���� faster + lower power dissipation
Need bidirectional bus transceivers with voltage level shifting between different voltage buses.

Example below where, say, bus A is 5V logic and bus B is 3.3V logic.
Chip with 8 or 16 data lines, each connected as shown here.
Buses can be isolated or joined by ~Enable line, while data left-right direction is set by Direction line.

Part 8.

Other System Aspects:

- Direct Memory Access

- Cache memory

- Operating systems & Multi-tasking

- Connecting to sensors & actuators

I2C, 1-wire, CAN

- Programming, cross compiling,

system debug

Direct Memory Access, DMA: for Fast I/O ���� Memory

Direct Memory Access, DMA, cont’d

DMA modes:

‘Generous!’ ‘Reasonable’ ‘Greedy!’

CACHE MEMORY For Faster Programs
7.0

Memory Cache for faster programmes

Cache memory – local fast memory used to hold pre-fetched operation codes

Speed-up depends on (i) ratio of cache memory speed to main memory speed,

(ii) how often op-code is already in cache (a hit),

(iii) average number of machine/clock cycles per instruction

Cache controller needs to (a) ‘look ahead’ in programme to fetch instructions.

(b) keep address tags of instructions to identify ‘hits’

Note that the 68000 uses a standard simple 2-word pre-fetch, absorbing some
program op-code fetch cycles within execution cycles as many clock cyles/instruction.

Operating System

• Overall OS: Co-ordinates, optimises
efficiency, schedules tasks
(processes).

• Applications use resources provided
by OS

• OS hides details of the hardware.

Task Scheduling:

Each process is in one of three states:

• Runnable: available & waiting

• Running: running now

• Blocked: waiting for an essential

resource to become available.

Multi-Tasking

OS safely switches contexts
between processes.

Scheduler saves current
process’s context (volatile
portion) and invokes a new
Process.

Present state of each
process must be saved at
end of running it.

Previous state of each
process must be restored
at the start of running it
again.

Use separate stack areas
for each process to save
register status.

Connecting to other systems

Previously we mentioned RS232, USB, Firewire, SCSI, etc as main standards for

microprocessor / computer connection to peripherals.

Main standards for microprocessor/controllers networking to sensors/actuators:

• CAN, Controlled Area Network
Balanced 2-wire interface with differential line drivers / receivers (like RS485)

Used in Automobile, Transport & Industry for up to 100m communications.

e.g. Automotive Bus, Industrial Field Bus

• I2C,

Fast 2-wire bus, up to 400kbits/s

• 1-wire,

Single wire used by master to communicate with slaves, also used to power
slave devices. Economic in hardware resources. Ideal for short distances.

CANbus
Each byte transmitted as Non-

Return to Zero, NRZ, asynchronous,

with start & stop bits (like RS-232.).

Balanced 2-wire interface with

differential line drivers & receivers

in parallel (like RS422/RS485).

Data sent in frame:

Start of Frame

Arbitration Control: 11-29 bits

determine priority of message,

arbitrates between devices.

Data: 0-8 bytes of data

Cyclic Redundancy Check:

15 bit checksum

Acknowledge: any CANbus

device receiving acknowledges

TX retransmits if none.

End of Frame

I2C Bus
Each device on bus has unique address. Multi-master- more than 1 device can control bus.

Arbitration between contending devices.

Serial 8bit data. Two wire bus shared by all devices: SDA Serial Data line;SCL Serial Clock Line

Example:

1-wire (Maxim-Dallas)

Device families include: ADC, DAC, Analogue Switches, Memory, Temperature Sensors, etc.

Programming Microprocessors/Microcontrollers

Directly in Low Level Assembler Language.

• Slow, tedious, unforgiving, only practical for small systems

• Timing for critical programme loops and for interfaces can be set precisely
from number of clocks/intruction.

• Memory use/allocation can be easily organised/kept within bounds.

• Better to understand what is actually happening in fine detail.

• Difficult to appreciate the whole design.

Indirect via Cross Compiling from Higher Level Language, e.g. C

• Relatively quick, easy to implement in C, often necessary for large systems

• Difficult to ensure the precise timing of critical parts.

• Care must be taken in memory use and data variable type assignment.

• Easy to appreciate the whole and verify overall design functionality.

In practice overall system often written in a higher language with some time

critical sub-systems written directly in the relevant assembler language.

System Debug Tools

• ROM Emulator.(software development in real system)
Replace programme ROM in its socket by lead to ‘PC’ which provides code

CPU and remainder of target embedded system as is. Allows code to be run
from any given address up to user selectable breakpoints.

• In-Circuit Emulator, ICE (real in-system verification)
Extract CPU from socket (or attach adaptor & tristate CPU) and replace by
ICE system. ICE provides as for ROM emulator + more control: permits full
view of system, signals and bus devices with full trace facilities.

• Logic Analyser (real system hardware debug)

Multi-channel, multi-signal digital oscilloscope / monitor, specially for
detailed analysis of system bus. Most useful for debugging specific
problem events, e.g. system timing of communications between devices.

• Simulator (virtual system)

Software simulation – no use of actual hardware.

Course Summary

Problem Sheet 1: Address Decoding

A 68000 microprocessor with address lines A1-A23 is to be connected to memory chips:

a) Two ROM memory chips (each 2k x 16)

11 address lines A0-A10, /ROM (chip select)

a) Two RAM memory chips (each 4k x 16)

12 address lines A0-A11, /RAM (chip select), /WRITE

The required address space is:

ROM 0000H-0FFFH

RAM 1000H-2FFFH

Outline the connections for :

a) Simplest linear address decoding, assuming no other devices are on the bus

b) Full address decoding, allowing for system expansion

c) Full address decoding as in (b) but when the above chips are not available and the only
chips available are 2k x 8 ROMs and 4k x 8 RAMs

Work out for next week- we’ll go over possible solutions in lecture

Problem Sheet 2 : General Review

1) Draw and label the block diagram of a small microprocessor system that might
be used in a dedicated application. What is the function of each section.

2) Outline the sequence of operations involved in the execution of a typical instruction
by a microprocessor such as a 68000. Provide a labelled timing diagram.

3) Explain the differences between (a) operation-code (programme word) fetch cycle,
(b) data memory read cycle, and (c) data memory write cycle.

4) What is meant by a ‘wait state’ and how does its use affect the microprocessor bus
control signals and memory cycle times. What devices initiate wait states?

5) Discuss the operation and use of the programme counter and stack pointer and show
how they control the sequence of programme execution.

6) Explain the difference between static and dynamic RAM. What are the different types
of non-volatile memory?

7) A particular peripheral chip contains four internal address locations which may be
written to or read from. Draw a diagram of the bus connections necessary to connect
two such chips to a microprocessor using (a) linear addressing (b) fully decoded
addressing.

8) Explain the operation of data latches and buffers. How are these used for
microprocessor input and output ports?

9) What functions can be performed by counter-timer chips and how might these be
used?

Problem Sheet 3 : General Review

1) Explain the time sequence of actions that occur when a subroutine is called from the
main programme with particular reference to role of the stack pointer.

2) How does an external device interrupt the microprocessor programme? What is meant
by interrupt priority and how does the microprocessor control which devices can cause interrupts?

3) Explain the difference between synchronous and asynchronous serial data communication and
sketch a typical asynchronous data character. How would you obtain this signal from an 8bit
parallel data byte?

4) How does a Universal Asynchronous Receiver/Transmitter interface with (a) external systems,
and (b) with its host microprocessor?

5) Explain the operation of three types of digital to analogue convertors(DAC):
(a) Potential divider network DAC, (b)Binary weighted input DAC, and (c) R-2R ladder DAC.

6) With the aid of pseudo-code or flow charts explain microprocessor programme sequences
that use an 8-bit DAC to generate the following analogue signal patterns:
(a) square wave whose amplitude is software controlled, (b) a square wave whose period is software
controlled (c) a full amplitude sawtooth wave, and (d) a full amplitude triangular wave.

7) How might a microprocessor utilise a timer/counter chip, an input port, and a DAC to
provide an analogue sawtooth wave whose period is controlled by an external
digital input.

Problem Sheet 4 : General Review

1) Explain the following types of Analogue to Digital Convertors (ADC) operate:
(a) Successive approximation, (b) Flash ADC, and (c) Dual slope ADC.

2) What is meant by aliasing error? What does the Nyquist frequency signify?
What is the minimum sampling rate required for signals which contain frequency components up to

20kHz?

3) A microprocessor system has two ADC inputs, one DAC output, and an alarm bell operated by a
single output port bit. The two ADC inputs monitor the voltage across an electric motor and the
current taken by it.
Provide the pseudo-code, or flow chart, for a microprocessor programme that outputs an analogue
value proportional to the electric power taken by the motor and also rings an alarm whenever
the power taken exceeds a preset maximum value. (hint: power = voltage x current)

4) The motor of question (4) produces many short-term current spikes that cause false alarms.
Modify the pseudo- programme/ flow chart to reduce the effects of spikes by averaging over 8
successive current samples.

5) Describe a typical microcontroller and highlight its essential features, identifying their uses.

6) Choose a typical microcontroller application and show how the microcontroller is used.

7) What is Direct Memory Access (DMA) and why is it used?

8) What is Cache memory and what is it’s purpose?

9) Provide a brief description of different types of microcontroller network: I2C; CANbus; and 1-wire.

10) Outline the essential features of an operating system. What is meant by multi-tasking?

