
Computer Systems Architecture

MIPS Assembler and Procedure Calls

Numbers

Arithmetic and Logic Unit

Datapaths and Microprogramming

Caches

Pipelines

Input/Output

MIPS assembler – a ‘Load-Store’ architecture

• Familiarity with the major aspects of the instructions set. Arithmetic
instructions, branches, jumps, load and store:

add, sub, and, or, addi, subi, li, la

bez, bne, beq, slt

j, jr, jal

lw, sw, lb, sb

• R-type (3 registers), I-type (two registers) and J-type instructions.
[see diagram]

• Addressing modes: Immediate (li, addi), Register (add, jr),
Base (lw sw), PC relative (bne, blt),
Pseuodirect (j) [see diagram]

• Procedure calls: MIPS register conventions: $t, $s, $a,
$v, $sp, $ra

jal, jr

Stack use [see diagram]

53

19
98

 M
or

ga
n

K
au

fm
an

n
P

ub
lis

he
rs

•
si

m
p

le
 in

st
ru

ct
io

n
s

al
l 3

2
b

it
s

w
id

e
•

ve
ry

 s
tr

u
ct

u
re

d
, n

o
 u

n
n

ec
es

sa
ry

 b
ag

g
ag

e
•

o
n

ly
 t

h
re

e
 in

st
ru

ct
io

n
 f

o
rm

at
s

•
re

ly
 o

n
 c

o
m

p
ile

r
to

 a
ch

ie
ve

 p
er

fo
rm

an
ce

—
 w

h
at

 a
re

 t
h

e
co

m
p

ile
r'

s
g

o
al

s?
•

h
el

p
 c

o
m

p
ile

r
w

h
er

e
w

e
ca

n

o
p

r
s

r
t

r
d

s
h
a
m
t

f
u
n
c
t

o
p

r
s

r
t

1
6

b
i
t

a
d
d
r
e
s
s

o
p

2
6

b
i
t

a
d
d
r
e
s
s

R I J

O
ve

rv
ie

w
 o

f
M

IP
S

Nested procedure calls

A simple example

A: ...

...

jal B

...

B: ...

addi $sp, $sp, -4

sw $ra, 0($sp)

jal C

lw $ra, 0($sp)

addi $sp, $sp, 4

...

jr $ra

C: ...

...

jr $ra

6

Numbers

• Integer representation:

 Unsigned:

 Signed: 2s Compliment (invert, +1)

• Floating point representation:

value = (-1)s x (1 + mantissa) x 2(exponent – bias)

 Precision errors (10 000 000 + 0.0000006 = 10 000 000)

Arithmetic and Logic Unit

• Adder (half, full, ripple, carry-lookahead)

• ALU (multiplexor, control lines, addition and subtraction)

• Multiplication

Datapaths and Microprogramming

• CPU fetches an instruction and then uses the instruction to act on (it)

• Five stages: 1) Instruction Fetch (IF) 2) Register Read (RR)
3) Execute/ALU (EXE) 4) Memory Access (MA)
5) Register Write (RW)

• Single cycle CPU: all logic in one clock cycle
[see diagram]

• Multi cycle CPU: each stage in one clock cycle (need intervening
registers, multi-cycle control unit/FSM)

[see diagram]

Caches

Memory hierarchy: why? [see diagram]

Direct mapped Cache: modulo mapping, tags, valid bits, block size

Fully Associative Cache: logic too complicated

Set-Associative Cache: Compromise

Write Strategies: write-through, write-back

Replacement Strategies: Least recently used (needs h/w), random

Cache Misses: Cold start, Capacity (full up), Conflict (set full up)

Hazards: Data hazards (lw, add); Control hazards (bne)

cs 152 L1 6 .13 DAP Fa97, U.CB

Memory Hierarchy of a Modern Computer System

• Present the user with as much memory as is available in the
cheapest technology.

• Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor
R

egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s
 (10s ms)

Speed (ns): 10s 100s

100s
Gs

Size (bytes):
Ks Ms

Tertiary
Storage
(Disk)

10,000,000,000s
 (10s sec)

Ts

Pipelining

Pipelining: Each stage (e.g. 5) of the CPU runs one instruction

 Instruction Fetch IF
 Register Read RR
 Execute (ALU) EXE
 Memory Access MEM
 Register Write RW

[See diagram]

Hazzards: Structural: Hardware can’t support instruction combination

Control: Branch instructions

Data: Need previous (adjacent) calculations/fetches

Branch Prediction: Avoid control hazards (sometimes)
– Predict, ‘always fail’
– Use ‘branch table’ like cache to predict

Forwarding: Use clever logic in datapath to get at results
before instruction completion

[See diagram]

Figs 6.7, 6.8, 6.9, pp446-447

cs 152 L1 Intro.49 Patterson Fall 97 ©UCB

Summary: Computer System Components

Proc

Caches
Busses

Memory

I/O Devices:

Controllers

adapters

Disks
Displays
Keyboards

Networks

° All have interfaces & organizations

