Computer Systems Architecture

MIPS Assembler and Procedure Calls
Numbers

Arithmetic and Logic Unit

Datapaths and Microprogramming
Caches

Pipelines

Input/Output

MIPS assembler — a ‘Load-Store’ architecture
» Familiarity with the major aspects of the instructions set. Arithmetic
instructions, branches, jumps, load and store:
add, sub, and, or, addi, subi, 1i, 1la
bez, bne, beq, slt
j, jr, jal

1wl sSw, 1b, sb

* R-type (3 registers), I-type (two registers) and J-type instructions.
[see diagram]

* Addressing modes: Immediate (11, addi), Register (add, 3jr),
Base (lw sw), PC relative (bne, blt),
Pseuodirect (3) [see diagram]

* Procedure calls: MIPS register conventions: $t, $s, $a,
$v, $sp, Sra

jal, jr

Stack use [see diagram]

simple instructions all 32 bits wide

Overview of MIPS

very structured, no unnecessary baggage

only three instruction formats

D
0
o
3
H ||l n
0
5|8
al:
.ﬁm
L || a
.Hq’
Q gy
oo ||B
H‘_'-g
D
-~
Q
Plp ||l
Hl4 ||
0|l n
HIlY
Qo ||
oo |lo
M H b

rely on compiler to achieve performance

— what are the compiler's goals?

help compiler where we can

©1998 Morgan Kaufmann Publishers 53

1. Immediate addressing

I op I rs I rt | Immediate

2. Register addressing

Lop I rs | rt I rd] I funct] Registers
L

Il Register

3. Base addressing
I op] s l rt I Address I Memory

I Register | (B Hatfword | Word
[

4. PC-relative addressing

Lop l rs I rt I Address l Memory

{ PC | Word
[

5. Pseudodirect addressing

I op | Address —I Memory

L

[PC I Word

[

FIGURE 3.17 lllustration of the five MIPS addressing modes. The operands are shaded in color. The operand of
made 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of load and store access bytes, halt-
words, or words. For mode 1 the operand is 16 bits of the instruction itself. Modes 4 and 5 are used to address instructions
in memory, with imode 4 adding a 16-bit address to the PC and mode 5 concatenating a 26-bit address with the upper bits

of the PC.

Nested procedure calls

A simple example

A:
jal B

B: ...
addi Ssp, Ssp, -4
SW Sra, 0(S$sp)
jal C
1w Sra, 0(S$Ssp)
addi sp, Ssp, 4
jr Sra

C:
jr Sra

Numbers

* Integer representation:

Unsigned:
n bits
™1 22 | 21 20
msb Isb

Signed: 2s Compliment (invert, +1)

* Floating point representation:

1 bit _8 bits : 23 bits _
[5] exponent | mantissa

value = (-1)° x (1 +mantissa) x 2070 =bes)

Precision errors (10 000 000 + 0.0000006 = 10 000 000)

Arithmetic and Logic Unit

* Adder (half, full, ripple, carry-lookahead)

Carryln Operation
al —» Carryin
Resultd
bO ALUD
Ca I'W"'l CarryOut
a —= al = Carryin
ALUL Resultl
+ Sum by
b CarryOut
—
* a2 == Carryln
Result2
CarryOut b2 —ef ALU2
CarryOut
a3l —+ Carryin
[Result31
b ALU31

e ALU (multiplexor, control lines, addition

and subtraction)

Binvert Operation
Carryln
V. |
a > {
T)
-———D__i H—+ Result
+ 2

> LW

CarryOut

* Multiplication

Datapaths and Microprogramming

* CPU fetches an instruction and then uses the instruction to act on (it)

* Five stages: 1) Instruction Fetch (IF) 2) Register Read (RR)
3) Execute/ALU (EXE) 4) Memory Access (MA)
5) Register Write (RW)

* Single cycle CPU: all logic in one clock cycle
[see diagram]

e Multi cycle CPU: each stage in one clock cycle (need intervening
registers, multi-cycle control unit/FSM)
[see diagram]

MONTV Pue ‘g 'V (JAW) 19151321 eyep
Arourapy auy ‘() 193S1331 UOONISU] 3y} 1€ SI)SISal [eUORIppE Y, "UOHINISUT JUIes 3} JO SIPAD OO Usamiaq ejep
ploy yeyy sieysidar Arerodwiay mou se [[om se sioxa[dymu jo Suruepim o uonrppe ay3 saxmbar syun euonduny pareys
JO SN Y "S}IUN pareys asay} SUOKIR SUOROAUUOD dYj PUE ‘SuondNysur 3uowe pareys Ty S[SUIS e ‘Jiun Arowsur pareys
e pedejep ays jo sjuawdla £y a3 smoys amyid sy, ‘ypedeyep oj2Ado1nuw 8y} Jo MOIA [oAe-YFIYy 8yl O0E'S 3UNDId

Je)sidey i 19381304 ereq
g e - eyep |
1915180y |e—g Aowa N
elep io
T monv :._<A s191sj39y $— Cononnsul Kiowo
191S130Y |e=—d
¢ VY |e
ereq |« ssauppy —10d
N 19381824
uoponnsu [

‘s21n 8y juanbasqns ur swreu eudrs ay3 dorp am sny |, Jun [OXUOD dY) WOIJ
Appaaip SUTod auo weyy yjel ‘[eudls paALIdP B mOU ST dISDJ Jey) 910N ‘D XU 3y} jo uonda[as ayy sponuod ndino a3ed NV ays N1V oys woy
mdmo o1az ay3 pue yeusis [01UCd YourIq SY3 SUIGU0d 0] pasn st aje8 ANV uy (dONTV) TV 4y} 10§ [euSis [0nuod Jiq-7 € pue ‘(youelq) youeiq
Aqqussod 01 1ay3oym Sururuniajap ul pasn [euSis JIG-1 B ‘(SILUMUIBIA PUe ‘Peay sy ‘DL Say) AIowaw ejep pue o[y Jajs13a1 3Y3 Ul S3LIM PUE Spesl
Surronuod 105 speusis sany) ‘(SSYONUSIN pue ISV ‘1S(ASY) stoxardy[nur [oxuod o} pasn are jey speudls 11q-1 331Y) JO JSISUOD JUN {OIJU0D 3y} JO
sindino ay, ‘uononnsul ay; woyy pey 2poddo 31g-9 9y ST JIUnN [0J3U0d 3Y) 0} Indur Sy, "HUN [04u02 oY) YyuM yiedejep ojduls 9L 6T°S IUNDIL

[0-5] uononisu

\ [puexal
ugis N
91

[0-GT] uonanasu

eep
aAUM

Kowaw

eeq ejep

1M

“E3X o

eep
pesy

ssaippy

C eep
PEdY sigysiBay

1 elep
peay

19181801
SUIM

Z i9sidat

o E3 Xy

[TT-4T] vononnsu|

peay

1 Joysi8as

[9T -0z] uoionnsu}

peay

amMIaY

asnty [

STTE

donv

Bayouuay

%52d

o E3IX

peaywap

ynsas
nw

PPY

youeig
1sq8ey

jo1quod

[1Z-6Z) uononnsuj

Kowsw
uojanAsy|

[o-T€]
uononasy|

ssaippe
peay

[9z-1€] uononnsu|

)s

od

Caches

Memory hierarchy: why? [see diagram)]

Direct mapped Cache: modulo mapping, tags, valid bits, block size

Fully Associative Cache: logic too complicated

Set-Associative Cache: Compromise

Write Strategies: write-through, write-back

Replacement Strategies: Least recently used (needs h/w), random

Cache Misses: Cold start, Capacity (full up), Conflict (set full up)

Hazards: Data hazards (1w, add); Control hazards (bne)

Memory Hierarchy of a Modern Computer System

e Present the user with as much memory as is available in the
cheapest technology.

« Provide access at the speed offered by the fastest technology.

Tertiary
Storage
(Disk)

10,000,000s 10,000,000,000s

Processor
Control
Secondary
— Second Main S‘O.r age
Py o Level Memor (Disk)
Datapath| & Q3 y
apahfe 18 5 Cache | | (DRAM)
Q ® 2 (SRAM)
2]
Speed (ns): 1s 100s
Size (bytes): 100s Ms (10sms)

cs 152 L16.13

Gs

(10s sec)
Ts

DAP Fa97, © U.CB

Pipelining

Pipelining: Each stage (e.g. 5) of the CPU runs one instruction

Instruction Fetch IF

Register Read RR
Execute (ALU) EXE
Memory Access MEM
Register Write RW

[See diagram]

Hazzards: Structural: Hardware can’t support instruction combination

Control: Branch instructions

Data: Need previous (adjacent) calculations/fetches

Avoid control hazards (sometimes)
— Predict, ‘always fail’
— Use ‘branch table’ like cache to predict

Branch Prediction:

Use clever logic in datapath to get at results
before instruction completion

Forwarding:

[See diagram]

Register ALU Data Register
read operation | access write

Load word (1w) 2ns ins 2ns 2ns 1ns 8ns
Store word (Sw) 2ns 1ns 2ns 2ns 7ns
R-format (add, sub, and, or, s1t) 2ns ins 2ns 1ns 6 ns
[Branch (beq) 2ns 1ns 2ns \' 5ns

FIGURE 6.2 Total time for eight instructions calculated from the time for each component. This calcula-
tion assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no delay.

Program
execution
order

(in instructions)

Iw $1, 100($0)

Time

Iw $2, 200($0)

iw $3, 300($0)

Program
execution

order

(in instructions)

Iw $1, 100($0)

Time

Iw $2, 200($0)

Iw $3, 300($0)

2ns 2ns

2ns

2ns

2ns

2 4 6 8 10 12 14 16 18
T T T T T T T LI
Instruction Data
fetch Reg ALU access Reg
« ! (nstruction Data
8ns fetch Reg ALY access Reg
< ™ Instruction
8ns fetch
< >
8ns
2 4 6 8 10 12 14
T T T T T T T >
Instruction Data
fetch Reg AL access Reg
Instruction Data
2ns fetch Reg ALY access Reg
+——|instruction Data
2ns fetch Reg AL access Reg

FIGURE 6.3 Single-cycle, nonpipelined execution in top vs. plpelined execution in bottom. Both use the same
hardware components, whose time is listed in Figure 6.2. In this case we see a fourfold speedup on average time between
instructions, from 8 ns down to 2 ns. Compare this figure to Figure 6.1. For the laundry, we assumed all stages were equal.
If the dryer were slowest, then the dryer stage would set the stage time. The computer pipeline stage times are limited by
the slowest resource, either the ALU operation or the memory access. We assume the write to the register file occurs in the
first half of the clock cycle and the read from the register file occurs in the second half. We use this assumption throughout

this chapter.

Time T T T T T >

add $s0, $t0, $t1 MEMI— WB

FIGURE 6.7 Graphical representation of the instruction pipeline, similar in spirit to the
laundry pipeline in Figure 6.1 on page 437. Here we use symbols representing the physical
resources with the abbreviations for pipeline stages used throughout the chapter. The symbols
for the five stages: IF for the instruction fetch stage, with the box representing instruction mem-
ory; ID for the instruction decode/register file read stage, with the drawing showing the register
file being read; EX for the execution stage, with the drawing representing the ALU; MEM for the
memory access stage, with the box representing data memory; and WB for the write back stage,
with the drawing showing the register file being written. The shading indicates the element is
used by the instruction. Hence MEM has a white background because add does not access the
data memory. Shading on the right half of the register file or memory means the element is read
in that stage, and shading of the left half means jt is written in that stage. Hence the right half of
ID is shaded in the second stage because the register file is read, and the left half of WB is shaded
in the fifth stage because the register file is written.

Program

execution

order Time
(in instructions)

add $s0, $t0, $t1

sub $t2, $s0, $t3

FIGURE 6.8 Graphical representation of forwarding. The connection shows the forwarding
path from the output of the EX stage of add to the input of the EX stage for sub, replacing the
value from register $50 read in the second stage of sub.

Program Time T T T T T T T —>
execution

order

(in instructions)

Iw $s0, 20($t1)

sub $t2, $s0, $t3

FIGURE 6.9 We need a stall even with forwarding when an R-format instruction following a load
tries to use the data. Without the stall, the path from memory access stage output to execution stage
input would be going backwards in time, which is impossible.

Summary: Computer System Components

Proc
I
Caches
: Busses
| [::l adapters
Memory | |
Controllers
I/O Devices: D!sks | | | |
Displays ‘ Networks ’
Keyboards

° All have interfaces & organizations

cs 152 L1Intro.49 Patterson Fall 97 ©UCB

