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Part One
Type Providers
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- We need to bring information into the language

PLDI’16

Type Providers 
Problem: Languages do not integrate information 
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Before Type Providers With Type Providers

all data is typed
on-demand generation
autocompletion  
background type-checking 
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WorldBank Type Providers 

IDE/PROGRAM Source

Comr

Tye ve 



Useful for structured data?

How about structured communication?

👍
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A B C
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A B C

How about structured communication?

A generalisation to distributed protocols requires 
a notion of schema for structured interactions between services
an understanding of how to extract the localised behaviour for 
each services 



Part Two
Session Types
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POPL’08
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Session Types

Protocol Validation

Program Verification

A system of well-behaved processes is free from 
deadlocks, orphan messages and reception errors 
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(int) from C to S;          
(bool) from S to C; ✅

✅
runB c = let (x, c’) =  
   receive c in send true c’ 



Useful for structured data?

How about structured communication?
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Data Type providers bring information into the 
language as strongly tooled, strongly typed 

Session Type providers bring communication into 
the language as strongly tooled, strongly typed 

👍

👍



Our Solution: Session Type Providers

Session Type Provider 

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
   s.
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Div(x:int, y:int) from C to S;          
Res(z:float) from S to C;



Our Solution: Session Type Providers

Session Type Provider 

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
   s.
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Div(x:int, y:int) from C to S;          
Res(z:float) from S to C;



Our Solution: Session Type Providers

Session Type Provider 

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
   s.send(S, Div, 6, 3)
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Div(x:int, y:int) from C to S;         
Res(z:float) from S to C;



Our Solution: Session Type Providers

Session Type Provider 

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
   s.send(S, Div, 6, 3)
    .
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Div(x:int, y:int) from C to S;         
Res(z:float) from S to C;



Our Solution: Session Type Providers

Session Type Provider 

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
   s.send(S, Div, 6, 3)
    .receive(S, Res, y)
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Div(x:int, y:int) from C to S;          
Res(z:float) from S to C;



Our Solution: Session Type Providers

Session Type Provider 

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
   s.

17

Div(x:int, y:int) from S to C;         
Res(z:float) from S to C;



Our Solution: Session Type Providers

Session Type Provider 

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
   s.send(S, Div, 6, “hello”)
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Div(x:int, y:int) from C to S;         
Res(z:float) from S to C;

Wrong payload



Our Solution: Session Type Providers

Session Type Provider 

type Prot = STP<“Prot.scr”, A>
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Div(x:int, y:int) from C to S;         
Res(z:float) from S to C;

Wrong protocol



Session Type providers bring communication into 
the language as strongly tooled, strongly typed 



global protocol Calc(role S, role C){ 
 choice at C { 
 Div(x:int, y:int) from C to S; 
 Res(z:float) from C to S; 
 do Calc(C, S); 
} or { 
 Add(x:int, y:int) from C to S; 
 Res(z:int) from S to C; 
 do Calc(C, S); 
} or { 
 Sqrt(x:float) from C to S; 
 Res(y:float) from S to C; 
 do Calc(C, S); 
} or { 
 Bye() from C to S; 
 Bye() from S to C; 
} 

}

Calculator Revisited!
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y!=0

x>0



global protocol Calc(role S, role C){ 
 choice at C { 
 Div(x:int, y:int) from C to S;@y!=0 
 Res(z:float) from S to C; 
 do Calc(C, S); 
} or { 
 Add(x:int, y:int) from C to S; 
 Res(z:int) from S to C; 
 do Calc(C, S); 
} or { 
 Sqrt(x:float) from C to S;@x>0 
 Res(y:float) from S to C; 
 do Calc(C, S); 
} or { 
 Bye() from C to S; 
 Bye() from S to C; 
} 

}

Scribble with refinements
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interaction refinement 
New



Part Three
A Session Type Provider
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What do you get from a session type provider? 
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runtime enforcement of constraint 
implicitly send values that can be inferred (safe by construction)
do not send values that can be locally inferred  

Ineco rfien 

A statically well-typed endpoint program will never  perform a 
non-compliant I/O action w.r.t. the source protocol.

Ses Tye 

compile-time generation
background type checking & auto-completion
a platform for tool integration (e.g. protocol validation)

Tye ves 

Saf

Usat

Relit



A Session Type Provider (Architecture)

Scribble file

Scribble local file FSM + guards F# types

Validates Generate types

Model Checker

SMT Solver

F# Program

Ses Tye ve 

F# code

The type provider framework is used for tool integration
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Model Properties CFSM F# Type Code
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Model Properties CFSM F# Type Code

1(x:int) from A to C;  
2(y:int) from B to C; @y>x 
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Bounded model checking as a validation methodology [FASE’16]
Safety Properties: 

reception-error freedom 
orphan-message freedom
deadlock freedom



Model Properties CFSM F# Type Code

Refinement satisfiability

Refinement progress
/✅
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Model Properties CFSM F# Type Code

1(x:int) from A to B; @x>3 
choice at B {2() from B to A;}  
         or {3(y:int) from B to A; @y>x+1 and y<4}  

Refinement satisfiability 
check if the conjunction of all formulas is satisfiable

     e.g. (and (> y (+ x 1))(< y 4)(> x 3)) 

1(x:int) from A to B; @x>3 
choice at B {2() from B to A;}  
         or {3(y:int) from B to A; @y>x+1 and y>4}  ✅
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Checks if all execution paths are reachable   



Model Properties CFSM F# Type Code

1(x:int) from A to B; @x>3 
choice at B {2() from B to A;}  
         or {3(y:int) from B to A; @y>x+1 and y<4}  

Refinement satisfiability 
check if the conjunction of all formulas is satisfiable

     e.g. (and (> y (+ x 1))(< y 4)(> x 3)) 

1(x:int) from A to B; @x>3 
choice at B {2() from B to A;}  
         or {3(y:int) from B to A; @y>x+1 and y>4}  ✅
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Model Properties CFSM F# Type Code

1(x:int) from A to B; @x>3 
2(y:int) from A to B; 
choice at B {3() from B to A; @x>y}  
         or {4(y:int) from B to A; @x>y}   

Refinement progress 
check if formula is satisfiable  for all preceding solutions

     e.g.(forall ((x Int)(y Int))(=> (> x 3)(or (< x y)(> x y))))

1(x:int) from A to B; @x>3 
2(y:int) from A to B; 
choice at B {3() from B to A; @x>=y}  
         or {4(y:int) from B to A; @x>y}

✅

1(x:int) from A to B; @x>3 
2(y:int) from A to B; @y<=3 
choice at B {3() from B to A; @x>=y}  
         or {4(y:int) from B to A; @x<y}

✅
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Ensures that at any output point in the protocol 
implementations there will be always some 

values for which the formula holds 



Model Properties CFSM F# Type Code

1(x:int) from A to B; @x>3 
2(y:int) from A to B; 
choice at B {3() from B to A; @x>y}  
         or {4() from B to A; @x<y}   

Refinement progress 
check if formula is satisfiable  for all preceding solutions

     e.g.(forall ((x Int)(y Int))(=> (> x 3)(or (< x y)(> x y))))

1(x:int) from A to B; @x>3 
2(y:int) from A to B; 
choice at B {3() from B to A; @x>=y}  
         or {4() from B to A; @x<y}

✅

1(x:int) from A to B; @x>3 
2(y:int) from A to B; @y<=3 
choice at B {3() from B to A; @x>y}  
         or {4() from B to A; @x<y}

✅/
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Model Properties CFSM F# Type Code

(x:T1) from A to B;  (y:T2) from B to C; (z:T3) from C to A; 
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Model Properties CFSM F# Type Code

global protocol Calc(role S, role C){ 
choice at C { 
Div(x:int, y:int) from C to S; @y!=0 
Res(z:float) from S to C;  
do Calc(C, S); 
} or { 
Bye() from C to S; 
Bye() from S to C; 
} 

}
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Model Properties CFSM F# Type Code

3

1

2

4

C?Bye

C!Bye

C!Res(float)

C?Div(int,int)

Map each state to a class

Map each transition to a method, e.g: 
          send method 
          receive method



Model Properties CFSM F# Type Code

3

1

2

4

C?Bye

C!Bye

C!Res(float)

C?Div(int,int)

type State2 =  
     member send: C*Res*float→ State1 

type State3 =  
     member send: C*Bye→ State4 

type State4 =  
     member finish: unit→ End 



Model Properties CFSM F# Type Code

global protocol Calc(role S, role C){ 
 choice at C { 
  Div(x:int, y:int) from C to S; @y!=0 
  Res(z:float) from S to C; @z=x/y 
  do Addeer(C, S); 
} or { 
  Bye() from C to S; 
  Bye() from S to C; 
} 

}

 Client as C

Server as S

Div

Bye

Rec

{ Res

Bye
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Model Properties CFSM F# Type Code

3

1

2

4

C?Bye

C!Bye

C!Res(float)

C?Div(int,int)

type State2 =  
     member send: C*Res*float→ State1 

type State3 =  
     member send: C*Bye→ State4 

type State4 =  
     member finish: unit→ End 

type State1 =  
member branch: unit→ ChoiceS1 

type Div = interface  ChoiceS1  
     member receive: int*int→ State2 
type Bye = interface ChoiceS1  
     member receive: → State3 



Model Properties CFSM F# Type Code
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1

2

4

C?Bye

C!Bye

C!Res

C?Div let rec calcServer (c:Calc.State1) =
 
  match c.branch() with
  |:? Calc.Bye as bye->
  

    
  |:? Calc.Div as div -> 
  
              
            
calcServer c1
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Model Properties CFSM F# Type Code

let rec calcServer (c:Calc.State1) =
 let x, y = new Buf<int>(),new Buf<int>()
  match c.branch() with
  |:? Calc.Bye as bye->
   bye.receive(C)

 .send(C, Bye).finish()
    
  |:? Calc.Div as div -> 
   let c1 = div.receive(C, x, y)
               .send(C, Res, x.Val/y.Val)
            
   calcServer c1

3

1

2

4

C?Bye

C!Bye

C!Res

C?Div



Model Properties CFSM F# Type Code
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serialise payload

manage and use  TCP sockets

constraints as lambda functions

send quotations 
splicing 



Session Type Provider 

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
   s.send(S, Div, 6, 3)
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Compiler
Type declarations How to compile this code?

AST of 
generated code

emit

.Net IL CODE  

Model Properties CFSM F# Type Code



A statically well-typed STP-endpoint program will never  
perform a non-compliant I/O action w.r.t. the source protocol. 

Model Properties CFSM F# Type Code

Safety guarantees



Compile-time performance
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Type and Code Generation (no refinements)
Protocol checking (no refinements)
Type and Code Generation (with refinements)
Protocol checking (with refinements)

API Generation does not impact the development time

ping-pong



Run-time performance

Runtime overhead due to: 
branching, runtime checks, serialisation

The performance overhead of the library stays in 5%-7% range 
The performance overhead of run-time checks is up to 10%-12%
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ping-pong-no-refinements ping-pong-refinements



Static verification of refinements
Partial model checking 
Support for erased type providers (event-driven branching)

Future work and Resources 
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Session type provider: https://session-type-provider.github.io
Scribble:  http://scribble.doc.ic.ac.uk/
MRG: mrg.doc.ic.ac.uk

Type-driven development of distributed protocols
Support for refinements on message interactions
…ask me for more supported features

Framework Summary

Future Work

Resources: 

http://mrg.doc.ic.ac.uk


Thank you!
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Q & A 

Questions Answers

pa-> ans -> pet ri 
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Questions Answers

pa-> ans -> pet ri 
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documentation on the fly 
non-blocking receive 
explicit connections

Che t ol  me tu:
recompilation on protocol change
online vs offline mode
support by any .Net language  
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Q & A 


