
A Session Type Provider

Compile-Time API Generation of Distributed Protocols with Refinements in F#

Rumyana Neykova Raymond Hu Nobuko Yoshida Fahd Abdeljallal

1

Part One
Type Providers

2

- We need to bring information into the language

PLDI’16

Type Providers
Problem: Languages do not integrate information

3

4

Before Type Providers With Type Providers

all data is typed
on-demand generation
autocompletion
background type-checking

5

WorldBank Type Providers

IDE/PROGRAM Source

Comr

Tye ve

Useful for structured data?

How about structured communication?

👍

6

A B C

7

A B C

How about structured communication?

A generalisation to distributed protocols requires
a notion of schema for structured interactions between services
an understanding of how to extract the localised behaviour for
each services

Part Two
Session Types

8

POPL’08

9

Session Types

Protocol Validation

Program Verification

A system of well-behaved processes is free from
deadlocks, orphan messages and reception errors

10

(int) from C to S;
(bool) from S to C; ✅

✅
runB c = let (x, c’) =
 receive c in send true c’

Useful for structured data?

How about structured communication?

11

Data Type providers bring information into the
language as strongly tooled, strongly typed

Session Type providers bring communication into
the language as strongly tooled, strongly typed

👍

👍

Our Solution: Session Type Providers

Session Type Provider

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
 s.

12

Div(x:int, y:int) from C to S;
Res(z:float) from S to C;

Our Solution: Session Type Providers

Session Type Provider

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
 s.

13

Div(x:int, y:int) from C to S;
Res(z:float) from S to C;

Our Solution: Session Type Providers

Session Type Provider

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
 s.send(S, Div, 6, 3)

14

Div(x:int, y:int) from C to S;
Res(z:float) from S to C;

Our Solution: Session Type Providers

Session Type Provider

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
 s.send(S, Div, 6, 3)
 .

15

Div(x:int, y:int) from C to S;
Res(z:float) from S to C;

Our Solution: Session Type Providers

Session Type Provider

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
 s.send(S, Div, 6, 3)
 .receive(S, Res, y)

16

Div(x:int, y:int) from C to S;
Res(z:float) from S to C;

Our Solution: Session Type Providers

Session Type Provider

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
 s.

17

Div(x:int, y:int) from S to C;
Res(z:float) from S to C;

Our Solution: Session Type Providers

Session Type Provider

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
 s.send(S, Div, 6, “hello”)

18

Div(x:int, y:int) from C to S;
Res(z:float) from S to C;

Wrong payload

Our Solution: Session Type Providers

Session Type Provider

type Prot = STP<“Prot.scr”, A>

19

Div(x:int, y:int) from C to S;
Res(z:float) from S to C;

Wrong protocol

Session Type providers bring communication into
the language as strongly tooled, strongly typed

global protocol Calc(role S, role C){
 choice at C {
 Div(x:int, y:int) from C to S;
 Res(z:float) from C to S;
 do Calc(C, S);
} or {
 Add(x:int, y:int) from C to S;
 Res(z:int) from S to C;
 do Calc(C, S);
} or {
 Sqrt(x:float) from C to S;
 Res(y:float) from S to C;
 do Calc(C, S);
} or {
 Bye() from C to S;
 Bye() from S to C;
}

}

Calculator Revisited!

21

y!=0

x>0

global protocol Calc(role S, role C){
 choice at C {
 Div(x:int, y:int) from C to S;@y!=0
 Res(z:float) from S to C;
 do Calc(C, S);
} or {
 Add(x:int, y:int) from C to S;
 Res(z:int) from S to C;
 do Calc(C, S);
} or {
 Sqrt(x:float) from C to S;@x>0
 Res(y:float) from S to C;
 do Calc(C, S);
} or {
 Bye() from C to S;
 Bye() from S to C;
}

}

Scribble with refinements

22

interaction refinement
New

Part Three
A Session Type Provider

23

What do you get from a session type provider?

24

runtime enforcement of constraint
implicitly send values that can be inferred (safe by construction)
do not send values that can be locally inferred

Ineco rfien

A statically well-typed endpoint program will never perform a
non-compliant I/O action w.r.t. the source protocol.

Ses Tye

compile-time generation
background type checking & auto-completion
a platform for tool integration (e.g. protocol validation)

Tye ves

Saf

Usat

Relit

A Session Type Provider (Architecture)

Scribble file

Scribble local file FSM + guards F# types

Validates Generate types

Model Checker

SMT Solver

F# Program

Ses Tye ve

F# code

The type provider framework is used for tool integration

25

Model Properties CFSM F# Type Code

26

Model Properties CFSM F# Type Code

1(x:int) from A to C;
2(y:int) from B to C; @y>x

27

Bounded model checking as a validation methodology [FASE’16]
Safety Properties:

reception-error freedom
orphan-message freedom
deadlock freedom

Model Properties CFSM F# Type Code

Refinement satisfiability

Refinement progress
/✅

28

Model Properties CFSM F# Type Code

1(x:int) from A to B; @x>3
choice at B {2() from B to A;}
 or {3(y:int) from B to A; @y>x+1 and y<4}

Refinement satisfiability
check if the conjunction of all formulas is satisfiable

 e.g. (and (> y (+ x 1))(< y 4)(> x 3))

1(x:int) from A to B; @x>3
choice at B {2() from B to A;}
 or {3(y:int) from B to A; @y>x+1 and y>4} ✅

29

Checks if all execution paths are reachable

Model Properties CFSM F# Type Code

1(x:int) from A to B; @x>3
choice at B {2() from B to A;}
 or {3(y:int) from B to A; @y>x+1 and y<4}

Refinement satisfiability
check if the conjunction of all formulas is satisfiable

 e.g. (and (> y (+ x 1))(< y 4)(> x 3))

1(x:int) from A to B; @x>3
choice at B {2() from B to A;}
 or {3(y:int) from B to A; @y>x+1 and y>4} ✅

30

Model Properties CFSM F# Type Code

1(x:int) from A to B; @x>3
2(y:int) from A to B;
choice at B {3() from B to A; @x>y}
 or {4(y:int) from B to A; @x>y}

Refinement progress
check if formula is satisfiable for all preceding solutions

 e.g.(forall ((x Int)(y Int))(=> (> x 3)(or (< x y)(> x y))))

1(x:int) from A to B; @x>3
2(y:int) from A to B;
choice at B {3() from B to A; @x>=y}
 or {4(y:int) from B to A; @x>y}

✅

1(x:int) from A to B; @x>3
2(y:int) from A to B; @y<=3
choice at B {3() from B to A; @x>=y}
 or {4(y:int) from B to A; @x<y}

✅

31

Ensures that at any output point in the protocol
implementations there will be always some

values for which the formula holds

Model Properties CFSM F# Type Code

1(x:int) from A to B; @x>3
2(y:int) from A to B;
choice at B {3() from B to A; @x>y}
 or {4() from B to A; @x<y}

Refinement progress
check if formula is satisfiable for all preceding solutions

 e.g.(forall ((x Int)(y Int))(=> (> x 3)(or (< x y)(> x y))))

1(x:int) from A to B; @x>3
2(y:int) from A to B;
choice at B {3() from B to A; @x>=y}
 or {4() from B to A; @x<y}

✅

1(x:int) from A to B; @x>3
2(y:int) from A to B; @y<=3
choice at B {3() from B to A; @x>y}
 or {4() from B to A; @x<y}

✅/

32

Model Properties CFSM F# Type Code

(x:T1) from A to B; (y:T2) from B to C; (z:T3) from C to A;

33

Model Properties CFSM F# Type Code

global protocol Calc(role S, role C){
choice at C {
Div(x:int, y:int) from C to S; @y!=0
Res(z:float) from S to C;
do Calc(C, S);
} or {
Bye() from C to S;
Bye() from S to C;
}

}

34

Model Properties CFSM F# Type Code

3

1

2

4

C?Bye

C!Bye

C!Res(float)

C?Div(int,int)

Map each state to a class

Map each transition to a method, e.g:
 send method
 receive method

Model Properties CFSM F# Type Code

3

1

2

4

C?Bye

C!Bye

C!Res(float)

C?Div(int,int)

type State2 =  
 member send: C*Res*float→ State1

type State3 =  
 member send: C*Bye→ State4

type State4 =  
 member finish: unit→ End

Model Properties CFSM F# Type Code

global protocol Calc(role S, role C){
 choice at C {
 Div(x:int, y:int) from C to S; @y!=0
 Res(z:float) from S to C; @z=x/y
 do Addeer(C, S);
} or {
 Bye() from C to S;
 Bye() from S to C;
}

}

 Client as C

Server as S

Div

Bye

Rec

{ Res

Bye

37

Model Properties CFSM F# Type Code

3

1

2

4

C?Bye

C!Bye

C!Res(float)

C?Div(int,int)

type State2 =  
 member send: C*Res*float→ State1

type State3 =  
 member send: C*Bye→ State4

type State4 =  
 member finish: unit→ End

type State1 =  
member branch: unit→ ChoiceS1

type Div = interface ChoiceS1  
 member receive: int*int→ State2
type Bye = interface ChoiceS1  
 member receive: → State3

Model Properties CFSM F# Type Code

3

1

2

4

C?Bye

C!Bye

C!Res

C?Div let rec calcServer (c:Calc.State1) =

 match c.branch() with
 |:? Calc.Bye as bye->

 |:? Calc.Div as div ->

calcServer c1

39

Model Properties CFSM F# Type Code

let rec calcServer (c:Calc.State1) =
 let x, y = new Buf<int>(),new Buf<int>()
 match c.branch() with
 |:? Calc.Bye as bye->
 bye.receive(C)

 .send(C, Bye).finish()

 |:? Calc.Div as div ->
 let c1 = div.receive(C, x, y)
 .send(C, Res, x.Val/y.Val)

 calcServer c1

3

1

2

4

C?Bye

C!Bye

C!Res

C?Div

Model Properties CFSM F# Type Code

41

serialise payload

manage and use TCP sockets

constraints as lambda functions

send quotations
splicing

Session Type Provider

type Prot = STP<“Prot.scr”, C>
 let s = new Prot().Init()
 s.send(S, Div, 6, 3)

42

Compiler
Type declarations How to compile this code?

AST of
generated code

emit

.Net IL CODE

Model Properties CFSM F# Type Code

A statically well-typed STP-endpoint program will never
perform a non-compliant I/O action w.r.t. the source protocol.

Model Properties CFSM F# Type Code

Safety guarantees

Compile-time performance

44

Type and Code Generation (no refinements)
Protocol checking (no refinements)
Type and Code Generation (with refinements)
Protocol checking (with refinements)

API Generation does not impact the development time

ping-pong

Run-time performance

Runtime overhead due to:
branching, runtime checks, serialisation

The performance overhead of the library stays in 5%-7% range
The performance overhead of run-time checks is up to 10%-12%

45

ping-pong-no-refinements ping-pong-refinements

Static verification of refinements
Partial model checking
Support for erased type providers (event-driven branching)

Future work and Resources

46

Session type provider: https://session-type-provider.github.io
Scribble: http://scribble.doc.ic.ac.uk/
MRG: mrg.doc.ic.ac.uk

Type-driven development of distributed protocols
Support for refinements on message interactions
…ask me for more supported features

Framework Summary

Future Work

Resources:

http://mrg.doc.ic.ac.uk

Thank you!

47

Q & A

Questions Answers

pa-> ans -> pet ri

48
48

Questions Answers

pa-> ans -> pet ri

49

documentation on the fly
non-blocking receive
explicit connections

Che t ol me tu:
recompilation on protocol change
online vs offline mode
support by any .Net language

49

Q & A

