Sequentiality and the w-Calculus*

Martin Bergerf, Kohei Hondaf, and Nobuko Yoshidat

Abstract.. We present a type discipline for the w-calculus which precisely
captures the notion of sequential functional computation as a specific class
of name passing interactive behaviour. The typed calculus allows direct in-
terpretation of both call-by-name and call-by-value sequential functions. The
precision of the representation is demonstrated by way of a fully abstract
encoding of PCF. The result shows how a typed w-calculus can be used as a
descriptive tool for a significant class of programming languages without losing
the latter’s semantic properties. Close correspondence with games semantics
and process-theoretic reasoning techniques are together used to establish full
abstraction.

1 Introduction

This paper studies a type discipline for the m-calculus which precisely captures
the notion of sequential functional computation. The precision of the represen-
tation is demonstrated by way of a fully abstract encoding of PCF. Preceding
studies have shown that while operational encodings of diverse programming
language constructs into the m-calculus are possible, they are rarely fully ab-
stract [34,39]: we necessarily lose information by such a translation. This is
because the translation of a source term M will generally result in a process
containing superfluous behaviour. Type disciplines for the w-calculus with sig-
nificant properties such as linearity and deadlock-freedom have been studied
before [8,17,26,27, 35,37, 44]; however, to our knowledge, no previous typing
system for the mw-calculus has enabled a fully abstract translation of functional
sequentiality. The present work shows that a relatively simple typing system suf-
fices for this purpose. Despite its simplicity, the type discipline is general enough
to give clean representations of both call-by-name and call-by-value sequential-
ity, offering a basic articulation of functional sequentiality without relying on
particular evaluation strategies.

The core idea of the typing system is that affineness and stateless replication
ensure deterministic computation. Sequentiality is guaranteed by controlling the
number of threads through restricting the shape of processes. While the idea itself
is simple, the result would offer a technical underpinning for the potential use of
typed m-calculi as meta-languages for programming language study: having fully
abstract descriptions in this setting means ensuring the results obtained in the

* Last modifiedon August 12, 2001. The extended abstract appeared in
Proc. TLCA’01, LNCS, Springer, 2001. ' Queen Mary, London, U.K. University
of Leicester, Leicester, U.K.

meta-language to be transferable, in principle, to object languages. This opens
the possibility to use the proposed typed syntax for the analysis of programming
languages, especially when coupled with process-theoretic reasoning techniques.

From the viewpoint of the semantic study of sequentiality [5,10, 33], our work
positions sequentiality as a sub-class of the general universe of name passing in-
teractive behaviour. This characterisation allows us to delineate sequentiality
against the background of a broad computational universe which, among others,
includes concurrency and non-determinism, offering a uniform basis on which
various semantic findings can be integrated and extensions considered. Note se-
quential functional computation and its syntactic embodiment, the A-calculus,
have been the focus of diverse type structures and semantic structures which
have been studied so far. By faithfully embedding a basic notion of sequentiality
as a class of interacting processes preserving its type structure, the present work
opens the possibility of using the 7-calculus as a basic mathematical tool for the
study of semantics and types of computation with the vast heritage from the
studies on typed functional calculi and their semantics. This aspect is closely re-
lated with the lack of full abstraction in process encoding we already discussed:
this lack indicates, at a deeper level, that the encoded types in the typed w-calculi
guarantee only a weaker notion of behavioural properties than the original ones,
so that the essential content of types is partially lost through the translation.
The solution to this issue in the present work involves not only faithfulness in the
embedding of the original type structure but also its generalisation, articulating
a broader realm of typed functional behaviour. Not only, as mentioned above,
can the new type structure conveniently encase both call-by-name and call-by-
value sequentiality but also its simple extensions can capture other prominent
notions of typed computation. As an example, [45] reports how a small change
in the presented type structure allows the fully abstract embedding of the class
of strongly normalising sequential computation. Other refinements, which can
capture polymorphism, state and control, will be reported elsewhere (for prelim-
inary accounts, see [19,25]).

A significant point in this context is the close connection between the pre-
sented calculus and game semantics [3,24,28]: the structure of interaction of
typed processes (with respect to typed environments) precisely conforms to the
intensional structures of games introduced in [28] and studied in e.g. [2, 12, 24, 30,
32]. It is notable that the type discipline itself does not mention basic intensional
notions in game semantics such as visibility, well-bracketing and innocence (al-
though it does use a syntactic form of IO-alternation): yet they are derivable as
operational properties of typed processes. We use this correspondence combined
with process-theoretic reasoning techniques to establish full abstraction. Other
forms of proofs would be possible: however the correspondence, in addition to
facilitating the proof, offers deeper understanding of the present type discipline
and game semantics.

We briefly give comparisons with related work. Hyland and Ong [29] pre-
sented a mw-calculus encoding of innocent strategies of their games and show op-
erational correspondence with a w-calculus encoding of PCF. Fiore and Honda

[12] propose another m-calculus encoding for call-by-value games [24]. Our work,
while being built on these preceding studies, is novel in that it puts forward
a general type discipline where typability ensures functional sequentiality. In
comparison with game semantics, our approach differs as it is based on a syntac-
tic calculus representing a general notion of computational behaviour, including
concurrently interacting processes. As another difference in approach, game se-
mantics starts from sequential behaviour, and relaxes its constraints to obtain
other classes. Here the articulation goes in the other direction, starting from gen-
eral, unconstrained behaviours to their specific subsets. All the more because of
this difference, the coincidence of two characterisations would be a promising
sign of their robustness. We also note that our results confirm some of the signif-
icant findings in game semantics, such as the equal status owned by call-by-name
and call-by-value evaluation. From a different viewpoint, our work shows an ef-
fective way to apply game semantics to the study of basic typing systems for the
m-calculus, in particular for the proof of full abstraction of encodings.

Concerning the use of the m-calculus as the target language for translations,
[34] was the first to point out the difficulty of fully abstract embeddings of
functional sequentiality in the w-calculus and [39] showed that the same problems
arise even with the higher-order 7-calculus. While some preceding work studies
the significance of replication and linearity of channels [8,17,27, 35, 38,41, 44],
none offers a fully abstract interpretation of functional sequentiality. One of
the novel features in this regard is the incorporation of duality into the type
structures (cf. [14,28]). This duality is closely related to the choice of syntax in
our typed calculus, including the use of bound name passing.

There is a vast body of studies on the semantic characterisation of sequen-
tiality. Apart from game semantics, there are a few recent work which treat a
notion of sequentiality which incorporates control (which is related to Berry and
Curien’s sequential algorithms [5]). Cartwright, Curien, and Felleisen [9] present
intensional characterisation of sequentiality with observable exceptions. More
recently, Longley [31] studies classes of higher-order functions, first constructing
them intensionally then studying them in terms of the internal structure of their
extensional representation. Different representations would help the understand-
ing of computational behaviour from different viewpoints. The approach based
on 7-calculus (or processes) would have a merit for uniformly capturing those
classes of computation which may not be easily characterisable by functions,
such as those with nondeterminism.

In the remainder, Section 2 and 3 introduce the typed calculus. Section 4
analyses operational structures of typed terms. Based on them Section 5 estab-
lishes full abstraction. The technical details, including proofs omitted from the
main sections of the paper, are found in the appendices.

Acknowledgements. We thank Masato Hasegawa and Vasco Vasconcelos for
their comments on the early version of the paper. Conversation with Masato
Hasegawa, Luke Ong and Barry Jay deepened our understanding on the re-
lated topics. The first two authors are partially supported by EPSRC grant
GR/N/37633. The last author is partially supported by EPSRC grant GR/R33465.

2 Processes

2.1 Syntax

We use a variant of the m-calculus as our base syntax. As in typed A-calculi, we
start from the leanest untyped syntax. The following gives the reduction rule of
the asynchronous version of the m-calculus, introduced in [7, 21]:

z(§)-P|z(@) — P{7/g} (1)

Here 4 denotes a potentially empty vector y; ...y, | denotes parallel composition,
z(y).P is input, and Z(?) is asynchronous output. Operationally, this reduction
represents the consumption of an asynchronous message by a receptor. The idea
extends to a replicated receptor ! z(y).P:

te(9)-P | z(0) — '2(9)-P | P{v/5}, (2)

where the replicated process remains in the configuration after reduction.

Types for processes prescribe usage of names [35,43]. To be able to do this
with precision, it is important to control dynamic sharing of names. For this
purpose it is essential to distinguish free name passing and bound (private) name
passing: the latter allows tight control of sharing and can control name usage in
more stringent ways. In the present study, using bound name passing alone is
sufficient. Further, to have tractable inference rules, it is vital to specify bound
names associated with the concerned output. Thus, instead of (v §)(Z(%)|P), we
write Z(y) P, and replace (1) by the following reduction rule.

z(§)-P1z(%) @ — (v§)(P|Q) 3)

Here “zZ(¥) Q” indicates that Z(¥) is an asynchronous output exporting ¢ which
are local to Q. The rule corresponding to (2) is given accordingly. To ensure
asynchrony of outputs, we add the following rule to the standard closure rules
for | and (v z).

P — P = z() P — z(%) P (4)

Further, the following structural rules are added to allow inference of interaction
under an output prefix.

Z(2) (PlQ) = ((2) P)lQ iffn(Q)n{z} =0, (5)
z(2) (vy)P = (vy)z(?) P ify ¢ {z, 7}, (6)

By these rules we maintain the dynamics based on the original asynchronous
calculus (up to the equation z(2) P = (v 2)(z(Z)|P)), while enabling output
actions to be typed with the same ease as input actions. Name-passing calculi
using only bound name passing, called wI-calculi, have been studied in [6, 40].
Another useful construct for typing is branching. Branching is similar to the
“case” construct in typed A-calculi and can represent both base values such as

booleans or integers and conditionals. While binary branching has some merit,
we use indexed branching because it simplifies the description of base value
passing. The branching variant of the reduction (3) becomes:

z[&;er(¥i)-Pi] | ing(45) Q@ — (v §;)(F;| Q) (7)

where we assume j € I, with I (# 0) denoting a finite or countably infinite
indexing set. Accordingly we define the rule for replicated branching. Branching
constructs of this kind have been studied in tyco [42] and other calculi [13, 16, 20]
(the corresponding type structure already appeared in Linear Logic [1,14]).

Augmenting the original asynchronous syntax with bound output and branch-
ing, we now arrive at the following grammar.

P := z(y).P input | P|Q parallel
| z(y) P output | (wz)P hiding
| [&;cr(¥:)-P;] branching input | O inaction
| Tiny(2) P selection | 1P replication

In !P we require P to be either a unary or branching input. The bound/free
names/variables are defined as usual and we assume the variable convention for
bound names. The structural rules are standard except for the omission of !P =
!P|P and the incorporation of (5) as well as (6) together with the corresponding
rules for branching output. The reduction rules are as explained above, which
also include variants of (3) and (7) for replicated branching inputs.

2.2 Examples

Henceforth we omit trailing zeros and null arguments and write z[&;P;] for

z[&;().P;].

(1)]« gl u(a).@in,. Each time [n], is invoked, it replies by telling its number,
n. Here a natural number becomes a stateless server.

(i1) [succ]y & u(ya).y(b) b[&n @in,y1]. [succ], describes the behaviour of a
successor function, which queries for its argument, a natural number as in
(i) above, and returns its increment. This is another stateless server but this
time it asks its client for an input.

(iii) 'w(za).Z(2b) ([1]. | b[&iain;]). This represents a type-2 functional Az.zl :
(Nat=-Nat) = Nat. When the process is invoked, it queries for its argument
(which is a function itself), that function then asks back for its own argument,
to which [1], replies. Finally the process receives, at b, an answer to its own
question, based on which it answers to the initial question.

3 Typing

3.1 Action Modes

Functional computation is deterministic. There are two basic ways to realise this
in interacting processes. One is to have (at most) one input and (at most) one

output at a given channel (such a channel is called affine). Another is to have
a unique stateless replicated input with zero or more dual outputs. These ideas
have been studied in the past [14,16,17,26,27,38,41,44]. To capture them in
typing, we use the following action modes, denoted p,q,...:

!y Affine input ?; Affine output
!» Replicated input ?» Output to replicated input

We also use | to denote the presence of both input and output at an affine
channel. In the table above, the mode on the left and that on the right in the
same row are dual to each other, denoted 7 (for example, !; = 7;).

3.2 Channel Types

Channel types indicate possible usage of channels. We use sorting [35] augmented
with branching [1, 14, 16, 20, 42] and action modes. The grammar follows.

[&ier 7_'%]!1 | [&ier 7_';]!“’

an= (1, T) 1 = (T)1 | (P
= [@icr 7] | [@ier 7]

ORIGIE

In the first line 7 denotes the dual of 7, which is the result of dualising all action
modes and exchanging @ and &. A type of form (7,7) is called pair type, which

we regard as a set. [&;cs...] corresponds to branching and [@®;c;...] corresponds

to selection. As an example of types, let Nat® %' [@;cn]™ and Nat® & (Nat®)'.

Then in la(z).Zin,, z is used as Nat® while a is used as Nat®.
A further idea in functional computation is asking a question and receiving
a unique answer [3,28]. A type is sequential when for each subexpression:!

Tu=T1 | T To

(i) In (7)', there is at most one 7; of mode ?;, with the rest being of mode ?,,.
Dually for (7)?<. The same applies to [&;c 7i]' and [@;es 73] 7«

(ii) In ()", each 7; is of mode ?,,, dually for (7)?1. The same applies to [&;cr 7:]"
and [@ier 73]

As an example, (Nat°Nat®)' is a sequential type for [succ], in §2.2 (ii).

3.3 Action Types and I0-Modes

The sequents we use have the form I' -y P> A. T is a base, i.e. a finite map
from names to channel types, P is a process with type annotations on binding
names, A is an action type, and ¢ is an IO-mode. Intuitively, an action type
witnesses the real usage of channels in P with respect to their modes specified
in T' (thus controlling determinacy); an I0-mode ensures P contains at most one
active thread (thus controlling sequentiality). Below in (i) we use a symmetric

! (i) below is a generalisation of what is given in [?]. This makes the type structure
akin to those used in game semantics, thoughy no difference comes about as far as
the main results in the paper go.

partial operator ® on action modes generated from !y ®?;, =1,?,07%, =7,
and !, ® 7, =!,. Thus, for example, !, ® !, is undefined. This partial algebra
ensures that only one-one (resp. one-many) connection is possible at an affine
(resp. replicated) channel.

(i) An action type assigns action modes to names. Each assignment is written
pz. fn(A) denotes the set of names in A. A partial operator A ® B is defined
iff p ® q is defined whenever pr € A and gz € B; then we set A® B =
(A\B)U(B\A)U{(p©®q)z | pz € A,qz € B}. We write A < B when A® B
is defined. The set of modes used in A is md(A4).

(it) An IO-mode is one of {1,0}. Weset it®1=1and 1@o=001 = 0. Note 0®0
is not defined. When ¢; ® ¢ is defined we write ¢ < ¢o.

In I0-modes, o indicates a unique active output (consider it as a thread): thus
0 % o shows that we do not want more than one thread in a process.

3.4 Typing Rules

(Par) (Res)
(Zero) Tky, B>A; (1=1,2) I''z:aby PrAQpzx
T" Sequential A x Ay 1 X pe{l,l}
I‘|—10[>@ P|—¢1®¢2 P1|P2DA1®A2 F|—¢ (um:a)PDA
(In't) (C/7="7A4) (Out™) (C/y=Ax<?z) (Weak-1)
Tka: (F)t Tkz:(7)n Thz:!,7
F-g:‘l-"l—gPDC_z F-g:’i-:l—IPDC].—‘|—451:’[>A_:E

T'rra(y:7).PrAQ Lz ThoZ(y:) PPAG iz 'ty PrAQ lz

(In'*) (C/7=1.4) (Out’™) (C/g=Ax?.z) (Weak-?.)
Fl—z':('r'")!‘" Fl—z:(%’)?“’ Tkz:?,
[g:7k P>C® I-g:7F1 PoC [hy PrA™®

PHlz(y:7).PrAQYwz ThoZ(§:7)PrAGTL2 'y PrAQ 2,z

Fig. 1. Sequential Typing System

The typing rules are given in Figure 1. The rules for branching/selection are
defined similarly and left to Appendix A. The following notation is used:

2,4 Ast md(4) = {7} AT Ast zdfn(A)
?7A Ast.md(4)={?,,71} AQ®B AUBs.t. fn(A)Nfn(B)=10
Az A\{pz}st. {£} Cfn(4) T-A TUAst f)Nf(A)=10

'k z:7 denotes z:7 or z:(7,7) in I', while ' F z: p indicates ' F z : 7 such
that the mode of 7 is p. Typed processes are often called sequential processes.
The sequent I' -4 P> A is often abbreviated to I" -4 P.

We briefly illustrate each typing rule. In (Zero), we start in 1-mode since
there is no active output. In (Par), “<” controls composability, ensuring that at
most one thread is active in a given term. In (Res), we do not allow ?;, 7, or
!;-channel to be restricted since these actions expect their dual actions exist in
the environment (cf. [17,22,27]). (In't) ensures that = occurs precisely once (by
C®) and no free input is suppressed under prefix (by C/7 = ?7A). (Out™) also
ensures an output at & occurs precisely once, but does not suppress the body
by prefix since output is asynchronous (essentially the rule composes the output
prefix and the body in parallel). (Weak-_1) allows assigning the same type after a
pair of dual affine channels disappears following an interaction. This is essential
for subject reduction. (In'~) is the same as (In'1) except no free ?;-channels are
suppressed (note that if a ?;-channel is under replication then it can be used
more than once). (Out’~) and (Weak-?,) say ?,-channels occur zero or more
times, and it does not suppress any actions. Finally, in (Out’*) and (Out®~), the
premise must have 1-mode for otherwise we would end up with more than one
thread. Note that, for input, we require the premise to be s-mode. This together
ensures single-threadedness to be invariant under reduction, as we discuss later.

3.5 Examples

The following examples indicate how the present type discipline imposes strong
constraints on term structure.

(i) Given T'=a:()"-b:{()",()™) - ¢: ()™, we build sequential processes one by
one, starting from inaction. (1) '+ 0> 0, (2) I’y @a> ?;1a, and
(3) T k1 ba>?1a ® !'1b. Then we have:

Thob|ba>?ia® b with ?;6@ b= 1b and 0c@1="0

where “1b” means name b is no longer composable. Note for any ¢, I' /4
b.a | b.c since b is affine.
(ii) Given T =a: ()% b:{()!«,()?~), we have:

—TI'kg a|lbar?,a® b with ?,a0?,a=7,aand 0®1=0; and

— Ty ba|b>?,a®!,b with 7,0 1,b = 1ub.
However, for any ¢, I' I/4 @ | !b.a | b since 0 ® o is undefined. This example
shows control by modes is essential even if ?,-mode channel does not appear
in parallel; we can check after one step interaction between !b.a@ and b, two
messages to a will appear in parallel.

(iii) For [n], in Example 2.2 (i), we have u:Nat® -1 [n], (see § 3.2 for Nat®).

(iv) For [succ], in Example 2.2 (ii), we can derive u:(Nat°Nat®)' F; [succ]y,.

(v) For the process in Example 2.2 (iii), let 7 def ((Nat°Nat®)?~Nat®)'~. Then we

have w : 7 1 lu(za).Z(2b) ([1] . | b[&ienain;]) > !, u.

(vi) A copy-cat [z — y]|” Gl:ef!m(a).y(b)b.ﬁ copies all behaviour starting at one
channel to those starting at another. Let 7 = (()**)'v and T = z:7-y: 7.
Then (1) T-a:()**-b: ()" k1 ba>?1a® b, (2) T-a:()" Fo g(b)b.a>?1a®?,y,
with (?1a® 110)/b=71a,and (3) T't1 [z = y]" > Lz @ Tuy.

Taking for example (v z)(P|[z — y]”) with P e Z(a)a.c, we can check that
all actions of P are copied from z to y (this does not include ¢ which is
emitted by P).
(vii) Let A = z:(7,7)-y:(1,7)-2:(r,7) and 7 = (()?*)'>. Then we have:
— connection of two links: 'y [z = y]" | [y — 2]" > luz ® Lwy ® Tw2z with
!wy ® ?wy = !wy'
— links to a shared resource at z: T'k1 [z — 2]" | [y = 2] > luz® Ly ® 7wz
with 7,2 ® 2,2 = 2.
However, for any ¢ and environent, [z — z]” | [z — y|” which represents
non-deterministic forwarding is untypable since !,z ® !, is undefined.

(viil) Let p 2 ([@ien]™)' and Q2 = (v ay)(z = v)’|ly — 2)’[F(a) alicnZin)).
Then u:p Frlu(z).Q2 >!,u. Unlike [n],, it returns nothing when asked, rep-
resenting the undefined.

3.6 Basic Syntactic Properties

The type discipline satisfies the following standard properties. In (i) and (ii)
below, the partial order < on bases is generated from set inclusion and the rule
<A = T-z:7 <A-z:{(r,7). The order on action types is simply set

inclusion. In (iii) we let —» def U(—)*.

Proposition 1. (i) (weakening) If A <T and Aty P thenT k4 P.

(ii) (minimal type) A typable process has a minimum base and action type. Fur-
ther, if T' 4 P and A -y P then ¢ = 1.

(iii) (subject reduction) IfI'Fy P and P —» Q thenT' 4 Q.

We say an occurrence (subterm) in a process is an active input (resp. active
output) if it is an input-prefixed (resp. output-prefixed) term which neither occurs
under an input prefix nor has its subject bound by an output prefix.

Proposition 2. (i) LetT' F4 P> A Q px such that p € {!,,'1}. Then there is
an active input with free subject = in P.

(ii) Let T' k4 P. (1) If ¢ = 1 there is no active output in P; (2) If ¢ = o there
is a unique active output in P; and (3) In both cases, two input processes
never share the same name for their subjects, either bound or free.

Corollary 1. (determinacy) IfT' Fy P and P — Q; (i = 1,2) then Q1 = Q2
and ¢ = o.

3.7 Contextual Equality

Corollary 1 suggests non-deterministic state change (which plays a basic role in
e.g. bisimilarity and testing/failure equivalence) may safely be ignored in typed
equality, so that a Morris-like contextual equivalence suffices as a basic equality
over processes. Let us say z is active when it is the free subject of an active
input/output, e.g. z in (v W)(Z(F)P | R) assuming = ¢ wW. We first define:

def

'ty P, & ThryP—» P withzactivein P’ and T'ky P>AQ ? 2.

Choosing only affine output as observables induces a strictly coarser (pre-)con-
gruence than if we had also included non-affine output (?,-actions are not con-
sidered since, intuitively, they do not affect the environment). We can now define
a typed equality. Below, a relation over sequential processes is typed if it relates
only processes with identical base, action type and IO-mode. A relation D= is
a typed congruence when it is a typed equivalence closed under typed contexts
and, moreover, it satisfies: if ' > A and Ay P = Q then I' -4 P = Q.

Definition 1. &, is the maximum typed congruence on sequential processes
such that: if 'Fy P =, Qand ' -4 P |, then I' -4 @ ..

While the use of |}, in Definition 1 may look ad hoc, this is not so. The status
of the theory is clarified by the following characterisation. Let us say a typed
term I' - P is insensitive when P —* P’ implies P’ does not own neither free
active input nor free active output. We then say a typed congruence =’ is sound
(cf. [23]) iff: (1) it is a consistent equality (i.e. not universal) which includes =;
(2) it is reduction closed (i.e. P 22’ @ and P — P’ implies for some Q' we have
Q —* Q' and P’ 2 Q') and, moreover, (3) it always equates insensitive terms
with the same type. Then we can show, using the same method employed in
[23], that the maximum sound congruence (exists and) coincides with 22, (see
Appendix D.3 for the outline of the proof). Thus 2, (and the corresponding
observable |},) arises canonically, just as the standard observational congruence
on PCF terms arises as a maximal consistent equality of some kind.

4 Analysis of Sequential Interactive Behaviour

4.1 Preamble

The purpose of the rest of the paper is to demonstrate that our typed processes
precisely characterise the notion of functional sequentiality. By functional se-
quentiality we mean the class of computational dynamics that is exhibited by,
for example, call-by-name and call-by-value PCF. Concretely we show, via an
interpretation u : a® F1 [M; : af, that, for a PCF term - M; : a (i = 1,2),
we have My = My iff u: a® b1 [My @ @]y Zeq [Ma2 : @]y. Here 22 is the stan-
dard contextual equality on PCF-terms [15]. To this end we first introduce typed
transitions to give a tractable account of processes interacting in typed contexts
(the latter, like the former, must be input-output alternating). We then show

10

that these transitions satisfy central properties of the intensional structures of
games introduced in [28], namely visibility, bracketing and innocence. In partic-
ular, by innocence, any sequential process is representable by the corresponding
innocent function up to redundant 7-actions. Further, the typed behaviour of a
composite process P|Q is completely determined by that of P and Q. Finally
we show, 4 la game semantics, that any difference between typed processes in
2., can be detected by sequential “tester” processes whose graphs as innocent
functions are finite. But finite processes in (the interpretation of) PCF types
are in turn representable by PCF-terms up to =, leading to the completeness of
the interpretation. Since soundness is easy by operational correspondence, this
establishes full abstraction. In the following we illustrate key steps of reasoning
to reach finite definability.

Note on terminology. In this section, correspondence with typed transition
and intensional structures of games is a central topic. Since there is some dif-
ference in terminology between process calculi and game semantics, we list the
correspondence for reference.

O’s Question (0Q) [P’s Answer (PA) | 7,
P’s Question (PQ) (7. O’s Answer (OA)) %

Note that “O” is usually used to indicate “Opponent” in game semantics, which
corresponds to input in our (process-algebraic) terminology. To avoid confusion,
we shall consistently use “input” and “output” rather than “Opponent” and
“Player”.

4.2 Typed Transitions

Let P dﬁf!w(yz).y(c)c.z and Q &' Z(yz)(ly(c).c|z.w). Then P|Q is well-typed, and
we have:

PIQ—
_>
_>
_>

Ply(c)ez) | (ty(c)-clzw))
(Ple.z) | (clzw|ly(c).2))
(P[2) | (=-w]'y(c)-€))

P | (wl'y(c)-e)).

This example suggests that input and output alternate in typed interaction.
Indeed this is the only way sequential processes interact: if P does an output
and @ does an input, then the derivatives of P and @ should now be in 1-mode
and o-mode, respectively. If they interact again, input and output are reversed.
Typed transitions are built on this idea.

vyz)(
v yzc)
v yzc)
v yzc)

P~~~ o~~~
—_— =~

First we generate untyped transitions P LN Q, with labels 7, z(9), Z(¥),
zin; (%) and ZTin;(y) by the following rules.

(In) 2(5).P "8 P (ovr) zFHP AP
(BrA) e[&icr(@)-P] “29) B, (SEL) zminy(2)P Y p

11

The rules for replicated input are defined similarly. The contextual rules are stan-
dard except for closure under asynchronous output (we omit the corresponding
rule for branching).

(Our-¢) P-5 P withfn()N{j} =0 = z(#P -5 z()P

To turn this into typed transitions, we first restrict the transitions of a pro-
cess of mode o to only 7-actions and outputs since (as discussed at the outset)
the interacting party should always be in 1-mode. Secondly, if a process has L
(resp. !,z) in its action type, then both input and output at z (resp. output at
z) are excluded since, again, such actions can never be observed in a typed con-
text. It is easy to check that sequential processes are closed under the restricted
transition relation. The resulting typed transitions are written:

Thy P-HT .7k, Q

where ¥/: 7 assigns names introduced in [as prescribed by I'. Typed 7-transitions
coincide with untyped 7-transitions, hence typing of transitions restricts only
observability of actions, not computation. Basic properties of transitions follow.

Proposition 3. (i) (IO-alternation) LetT' -4 P LL-GN Fy Q. Then (1) ¢ =,
and (2) 1y is input iff lo is output and vice versa.

(i) (determinacy) If T4 P -5 A by Q; (i = 1,2) then Q1 =a Qo.

(ifi) (unique output) If T o P -5 P; (i = 1,2) then Iy =q ly.

As an example of typed transitions, let 7 def (Nat°Nat®)'~. Then, using the

notation in Examples 2.2 (ii), we have:

z:7 b1 [succ]y g uw:T,y:Nat®,a:Nat® o 7(b) b[&;ien @in; 1] | [suce]y

v u:T,y:Nat®,a:Nat®,b:Nat® 1 b[&;en ain; 1] | [succ]y
ﬂ u:T,y:Nat’,a:Nat®,b:Nat® b @in;j 4 | [succ],
“Z94 wir,y:Nat®, a:Nat®,b:Nat® F; 0 | [succ]

4.3 Visibility and Well-Bracketing

Let us write T by PS8 Aby Qif T hy P 0™y Ty T AL, Q
with I; # 7 (0 < i <n). For 7 < j, we write {; ~p I; (read: I; binds /;) when the
subject of I; is bound by I; (e.g. z(y) ~b ¥in,). Clearly, in typable processes,
input only binds output and vice versa. ~vy, corresponds to justification of moves
in games. Now we define the notion of views as follows. "I;...l,, © is defined first,

with s,t,... ranging over sequences of labels.
reo =0
Fs-1,° ={n}urs™® l,, output
rs-1,° = {n} l,, input, Vi.i /Ap n
Cs1-li-s2-l, P ={i,n}U"s " 1, input,i ~p n

12

Input view, denoted "s™, is defined dually by exchanging os and 1s as well
as input and output. We often confuse "s™ and "s™ with the corresponding
sequences. We now define:

Definition 2. (visibility) Let T' 4 P == Ay Q. Then s = [; - - -1, is input-
visible if whenever ;1 is input such that I; ~}, I;, we have j € Ty - - ;7. Dually
we define output-visibility. We say I' k4 P is visible if whenever I' -4 P = and
s is input-visible then it is output-visible.

The first key result follows.
Proposition 4. ' 4 P is visible.

The proof proceeds by first establishing that it suffices to consider only well-
knit traces where the only free input (if any) is an initial one. We then use
induction on the typing rules to show that well-knit traces are visible. The only
non-trivial cases are input prefixes and parallel composition. For input prefixes
we use Proposition 3.2 (i). For parallel composition, we use composite transitions
of I -4 P|Q which record the transitions of P and @ contributing to the those
of P|Q as a whole. Such transitions can be written in a matrix with four rows.
For example, a composite transition of a sequential process (omitting types)
lz(c).y(e).-e[&ientinit1] | ly(e).Z(e').€'[&icn€in;] is given as follows, writing P
and @ for the first and second components of parallel composition:

P-visible : z(c) Cing
P-r: y(e) eing
Q-T: y(e) €ing
Q-visible : Z(e') €'ingy

If such a sequence is well-knit and input-visible in its observable part (i.e. the
first and fourth rows), then it satisfies the switching condition [3,28], i.e. the
action of P (resp. (}) moving from one row to another is always an output. To
establish this we use IO-modes of derivatives and input-visibility. Then output
visibility is immediate using standard game semantics technique [24, 28, 32].

Next, well-bracketing [3,28] says that later questions are always answered
first, i.e. nesting of bracketing is always properly matched. Below, following the
table in §4.1, we call actions of mode !, and ?,, questions while actions of mode
!, and ?; are answers.

Definition 3. Let ' 4 P == A I, Q be input-visible. Then s is well-
bracketing if, whenever s’ = so - l; - s1 - l; for a prefix s’ of s is such that (1)
l; is a question and (2) [; is an answer free in s; - l;, we have I; ~yp [;.

Now we say I' ¢4 P is well-bracketing if whenever I' 4 P é, s is well-
bracketing and [is output, then sl is well-bracketing. Then we have:

Proposition 5. I' 4 P is well-bracketing.

13

The proof uses induction on typing rules, noting that it suffices to consider well-
knit sequences. The non-trivial cases are input by !, and parallel composition.
The former holds because a !,,-prefix does not suppress a free output with action
mode ?;, while the latter follows from the switching condition [24, 28, 32].

Definition 4. (legal trace) Let I' -y P ==. Then s is legal if it is both input-
visible and well-bracketing.

4.4 Innocence

Innocence [28] says that a process does the same action whenever it is in the
same “context”, i.e. in the same output-view. To establish innocence of traces of
typed processes we begin with the following lemma, proved by analysis of possible
redexes relying on the shape of the syntax imposed by the type discipline.

Lemma 1. (permutation) Let T' +; P hlalgls A Fr Q such that 1y Ap ly and
Iy A ls. Then T 1 P BB82 AL .

By the above lemma and visibility, we can transform any transition of form

ks P =2, with { output, to T kg P =% where t = "s™. Since an output is
always unique (cf. Proposition 2 (ii)), we can now conclude:

Proposition 6. (innocence) Let I' +, P Sy (¢ = 1,2) such that: (1) both
sequences are legal; (2) both I and ly are output; and (3) "s17° =4 Ts27°. Then
we have "s1 0 - 1] =4 T8270 - 5.

Note that contingency completeness in [28] corresponds to the property that any
legal trace ending in an output has a legal extension ending with an input, which
is immediate by Proposition 3.2 (i) and typability of transitions. Therefore, up
to redundant 7-actions, a sequential process is precisely characterised by the
function mapping a set of output views to next actions. This is the innocent
function representation of a sequential process.

It is now easy to see that well-knit legal traces of I' -4 P;|P, are uniquely
determined by those of I F, P; (¢ = 1,2) in the same way that innocent
strategies are composed in the appropriate category of games [28].

4.5 Factoring Observables

An important property of =, is that any violation of £,,, can be detected by a
tester process which is finite in the sense that the cardinality of the graph of its
induced innocent function is finite. In particular, for our full abstraction result,
we need finite processes which are type-wise translatable to (the interpretation
of) PCF terms. To this end, we first show that the congruence &, can be
obtained by only closing terms under |, given an appropriate base (Context

Lemma, cf. [33]). Then we use the following result to unfold replication.

14

Proposition 7. (open replication) Assume I' -, P; | P» | R where R is a repli-
cation with subject x. Then Tty Py | Py | R =, (P | R) | (vz)(P:2 | R).

The proof of Proposition 7 uses a bisimulation induced by the typed transition
(which stays within 22). We can then establish the following proposition where
T" denotes the result of dualising each type occurring in I'.

Proposition 8. (finite testability) AssumeT'Fr Pib?,y1 ® -+ 7uyn ® !wz_(i =
1,2) such that fn(I') = {¢,2z}. Then T b1 P1 #., P> iff there ezist finite I' b1
Rj>lyy; (1 < j < n)anda finite T -z : Nat® g S>?,2Q® 712 such that

(IL;R;|P1|S) U2 and (II; R;| P2|S) Y=, or its symmetric case.

Towards the proof, we first take, by the Context Lemma mentioned above, a
tester of form I' - z : Nat® - 7" which, when composed with P;, gives different
observables. We then make, using Proposition 7, all shared replicated processes
private to their “clients”. This gives processes R, and S’ which have the same
types as R; and S above. Finally, the shapes of types allow to consider processes
R;, P; and S (to be precise by turning S to lu(z).S) as strategies in games. We
can now appeal to finite testability in games, cf. [28], from which, by retranslat-
ing finite innocent strategies to finite processes, we conclude that finite testers
suffice. Alternatively we can directly reason at the level of the m-calculus and
its typed transitions, showing that any behaviour characterised by a finite inno-
cent function (which is enough for testability) is realisable by (typable) syntactic
processes [4,45].

5 Full Abstraction

5.1 Interpretation

We consider PCF with a single base type, Nat, without loss of generality. Let
o == Nat | = 3. We write [oy..an,Nat] (n > 0) for a; = (...(an = Nat)..).
Now the syntax of PCF terms are given by:

M 2= z|Az:a.M| MN |n|succ(M) | pred(M)
| ifzero M then N else L |pz:a.M

We omit operational semantics and the typing rules [15]. The mappings from
PCF types and terms to m-types and terms, which are due to Hyland and Ong
[29], are given in Figure 2. Copy-cat processes are given by [z — z/]&:7]? def
m[&i(gj}).?in,i(y_;i)ﬂij [y;] — y;;]7] and, for replicated types, [z — z'] (&7t def
le[&; (). in; (47 ;) TL,; [yi; — ¥i;]™]. Copy-cats for unary types are special cases
where the indexing sets are singletons. The interpretation of [a;..a,, Nat] says a
process, when asked for its value, asks back questions at types oy, .., @,, receives
the results to these questions, and finally returns a natural number as the answer

to the initial question.

15

(Type) Nat® % [@ien]” [1..0m_1Nat]® ¥ (a5..a5 ;Nat®)'

(Base) 0° g (B-z:a)° f Bo.giae

(Terms) Below we set 3 = [a1..an—1Nat].
[z : a]. def [u— z]*°
[Azo : a0-M : ap=] Lef Vu(zozr-Tn_12)-(vu')([M]y | Arg(u' @i ..xn_12)P)
[MN : Blu C Vu(@r.n_12). (0w z0)([M : = Blur | [N : o]z | Arg(u'zo...zn_12)")
[n: Nat]. def lu(z).Zin,
[suce(M) : Natlu " tu(z).(v @) ([M]s | T(1)y[&nen Zinn1])
[pred(M) : Nat], ' tu(z).(v 2) (IM]s | Z(y)y[&nen Zing 1))
[ifzero M then N else L : 3],
) w(@r. 2n_12). (0 M) ([M]m | T(2)2 [&: (v 0)(P; | Argla'1..2n—12)P)))
where Py def [N]w else P; ef [L]w-
[z : .M : a]u & wm)(ju— m*° | [M : a]m | [— m]*")

a4 (') (Tlyh — wil° | [— 2V)

Arg(zyz)

Fig. 2. Encoding of PCF

5.2 Soundness

This is by the standard computational adequacy [33], which is proved by both-
way operational correspondence, cf. [34]. Below let | Nat° gl u(z).QNt° where

Q7 is given in Example 3.5 (v).
Theorem 1. (computational adequacy) M :Nat |} iff [M : Nat], %, LN*".

Corollary 2. (soundness) EF M 2 N:a if E°-u:a® by [M:a], 2., [N:a].

5.3 Completeness

Assume P is typed under (the interpretation of) a PCF-type and, moreover, it
is finite, i.e. is representable by an innocent function. By [3,28] or by a direct
syntactic transformation, P can be mapped into a so-called finite canonical-form,
which in turn is easily transformed to a standard PCF term without changing
meaning in its interpretation up to =,. Thus we obtain:

Theorem 2. (finite definability) Let E°-u:a® 1 P> !,u be finite. Then E°-u:
a® F [M:a]y Zeq P for some M.

This result indicates that, in essence, only sequential functional behaviour inhab-
its each type. Now suppose - M1 = M, : « but u : Nat® by [Mi]y P [Ma]w.

16

Then the latter’s difference is detectable by finite processes (Proposition 8). By
Theorem 2 we can consider these finite testers as interpretations of PCF-terms
so that we know, for example, [C[M;] : Nat] || and [C[M>] : Nat] f}. But this
means, by Theorem 1, C[M;] : Nat || and C[M] : Nat {}, contradicting our
assumption. We have now reached the main result of the paper.

Theorem 3. (full abstraction) E°-u:a® F [M; :], 2., [Ms : @] if and only
ifEl_Mlglea.

By replacing =,,, and = with the corresponding precongruences, we similarly
obtain inequational full abstraction.

5.4 Call-by-Value Sequentiality

This section briefly discusses how we can fully abstractly embed the call-by-value
PCF to the same typed calculus by merely changing the interpretation of types.
The call-by-value PCF uses the same set of types and terms except the standard
restriction of recursion to terms of function types. We still write o, 3,... and
M,N,... for types and preterms. The operational semantics is standard. The
induced contextual congruence is denoted £2,,.

The embeddings are given in Figure 3. The mapping of types is written
a*, defined using an auxiliary map denoted o°. The mapping of typed terms
takes the form (M : a)§ where £ is an environment which is a finite map
from variables to natural numbers whose domain includes all free variables in
M of type Nat. We write (M : o)), when € is empty. We also use the following
notations: (1) Z(%)™ stands for Z(&)II;[c; — v;]™, similarly for selection (cf. [18]);
and (2) C|[Jier stands for a context with multiple holes indexed by I.

The encoding is directly based on the call-by-value game semantics intro-
duced in [24]. As an example of the encoding of types, Nat=-Nat is interpreted
as ([&ien[@ien]’!]'*)?*, which says that the function first signals itself, receives
a natural number, then returns the result.

The notation Z(3) would make the correspondence with Milner’s call-by-value
encoding in [35] clear (note the encoding in [35] only use a function type). The
environment (albeit its slightly different format) has the same functionality as
those used in the process encoding of call-by-value games presented in [12]. We
can easily check E - M :a (in the call-by-value PCF) implies E° - u:a* by (M:
a)f > ?,5® ?1u for any appropriate £.

The proof of full abstraction follows that of the call-by-name PCF. First,
using the same method as for Theorem 1, we can easily establish computational
adequacy, hence soundness. For completeness, noting the results in §4.1 to §4.4
are given for general sequential processes, we immediately obtain:

Theorem 4. (finite definability) Let E°-u:a* kg P> ?1u be finite where the
range of E only contains function types. Then E°-u:a* F (M :a))y . P for
some E '+ M:a.

By Theorem 4 together with the analogue of Proposition 8 we finally obtain:

17

e ? e ? e &iEN *]te a=
(Type) Nat* E[@icn]™ (a=B)" T (a=H))" (a:»ﬁ)“‘:f{ﬁmf!w] EI)N "

o dae o de E° (=N t)
(Base) 0° &0 (5-wia) {70 o)
(Terms)
o\ def uing(z) (o = Nat)
(@:ahu = {U(c)"‘<> (else)
u(c)!c[&nen(m). (M : g5 (=Nat)
w(c)le(zm).(M:B)E, (else)
(vmn)((M:a=B)7 | m(c)-((N:)7 | nl&ieneini(u)®])) (a=Nat)
(vmn)((M:a=B)5 | m(c).((N:a)s | n(e)e(ew)* ")) (else)

\e.M:a=p)E & {

(MN:B)s < {

{(n:Nat)€ % zin,,

(succ(M):Nat)Z % (m)((M :Nat)Z, |m[&icntini 1)

((ifzero M then N else L : A)E %" (v m)((M : Nat)&, |m[&icnPi])

(where Py % (N : B)Z, Pis & (L : B)2)

def

(ue.M:a)s & Ca(e)(we)(Pille — " Yier (where (M:a)f &'

= Clu(c)Pilicr)

Fig. 3. Encoding of Call-by-Value PCF

Theorem 5. (full abstraction) E° - u:a* b (M : @)y g (M2 : @), if and
only if E- My, &, M5 : .

References

1. Abramsky, S., Computational interpretation of linear logic. TCS, Vol. 111, 1993.

2. Abramsky, S., Honda, K. and McCusker, G., A Fully Abstract Game Semantics
for General References. LICS, 334-344, IEEE, 1998.

3. Abramsky, S., Jagadeesan, R. and Malacaria, P., Full Abstraction for PCF.
Info. & Comp., Vol. 163, 2000.

4. Berger, M. Honda, K. and N. Yoshida. Genericity in the w-Calculus. To appear as
a QMW DCS Technical Report, 2001.

5. Berry, G. and Curien, P. L., Sequential algorithms on concrete data structures
TCS, 20(3), 265-321, North-Holland, 1982.

6. Boreale, M. and Sangiorgi, D., Some congruence properties for m-calculus bisimi-
larities, T'CS, 198, 159-176, 1998.

7. Boudol, G., Asynchrony and the pi-calculus, INRIA Research Report 1702, 1992.

Boudol, G., The pi-calculus in direct style, POPL’97, 228-241, ACM, 1997.

9. Cartwright, R., Curien, P.-L. and Felleisen, M., Full abstract semantics for observ-
ably sequential languages. I €. C, 1994.

®

18

10.

11.

12.

13.

14.
15.

16.
17.
18.
19.

20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.

37.

Curien, P. L., Sequentiality and full abstraction. Proc. of Application of Categories
in Computer Science, LNM 177, 86-94, Cambridge Press, 1995.

Degano, P. and Priami, C. Proved Trees, ICALP’92, LNCS 623, 629-640, Springer
1992.

Fiore, M. and Honda, K., Recursive Types in Games: axiomatics and process rep-
resentation, LICS’98, 345-356, IEEE, 1998.

Gay, S. and Hole, M., Types and Subtypes for Client-Server Interactions, ESOP’99,
LNCS 1576, 74-90, Springer, 1999.

Girard, J.-Y., Linear Logic, T'CS, Vol. 50, 1-102, 1987.

Gunter, C., Semantics of Programming Languages: Structures and Techniques, MIT
Press, 1992.

Honda, K., Types for Dyadic Interaction. CONCUR’93, LNCS 715, 509-523, 1993.
Honda, K., Composing Processes, POPL’96, 344-357, ACM, 1996.

Honda, K., Notes on Linear Typing for Free Outputs, May, 2001. Available at
www.dcs.qmw.ac.uk/ kohei.

Honda, K., Notes on the linear m-calculus and LLP, June, 2001. Available at
www.dcs.qmw.ac.uk/ kohei.

Honda, K., Kubo, M. and Vasconcelos, V., Language Primitives and Type Disci-
pline for Structured Communication-Based Programming. ESOP’98, LNCS 1381,
122-138. Springer-Verlag, 1998.

Honda, K. and Tokoro, M., An Object Calculus for Asynchronous Communication.
ECOOP’91, LNCS 512, 133-147, Springer-Verlag 1991.

Honda, K. Vasconcelos, V., and Yoshida, N. Secure Information Flow as Typed
Process Behaviour, ESOP ’99, LNCS 1782, 180-199, Springer-Verlag, 2000.
Honda, K. and Yoshida, N., On Reduction-Based Process Semantics. TCS, 437—
486, Vol. 151, North-Holland, 1995.

Honda, K. and Yoshida, N. Game-theoretic analysis of call-by-value computation.
TCS Vol. 221 (1999), 393-456, North-Holland, 1999.

Honda, K. and Yoshida, N. A Uniform Type Structure for Secure Information
Flow, July 2001, available at www.mcs.le.ac.uk/ nyoshida/paper.html.
Kobayashi, N., A partially deadlock-free typed process calculus, ACM TOPLAS,
Vol. 20, No. 2, 436-482, 1998.

Kobayashi, N., Pierce, B., and Turner, D., Linear Types and n-calculus, POPL’96,
358-371, ACM Press, 1996.

Hyland, M. and Ong, L., On Full Abstraction for PCF: I, IT and III. 130 pages,
1994. To appear in Info. & Comp.

Hyland, M. and Ong, L., Pi-calculus, dialogue games and PCF, FPCA’95, ACM,
1995.

Laird, J., Full abstraction for functional languages with control, LICS’97, IEEE,
1997.

Longley, J., The sequentially realizable functionals, Annals of Pure and Applied
Logic, Available as LFCS Report ECS-LFCS-98-402. December 1998.

McCusker, G., Games and Full Abstraction for FPC. LICS’96, IEEE, 1996.
Milner, R., Fully abstract models of typed lambda calculi. TCS, 4:1-22, 1977.
Milner, R., Functions as Processes. MSCS, 2(2), 119-146, CUP, 1992.

Milner, R., Polyadic w-Calculus: a tutorial. Proceedings of the International Sum-
mer School on Logic Algebra of Specification, Marktoberdorf, 1992.

Milner, R., Parrow, J.G. and Walker, D.J., A Calculus of Mobile Processes, Infor-
mation and Computation 100(1), 1-77, 1992.

Pierce, B.C. and Sangiorgi. D, Typing and subtyping for mobile processes. LICS’93,
187-215, IEEE, 1993.

19

38.

39.

40.

41.

42.

43.

44.

45.

Quaglia, P. and Walker, D., On Synchronous and Asynchronous Mobile Processes,
FoSSaCS 00, LNCS 1784, 283-296, Springer, 2000.

Sangiorgi, D., Ezpressing Mobility in Process Algebras: First Order and Higher
Order Paradigms. Ph.D. Thesis, University of Edinburgh, 1992.

Sangiorgi, D. #-calculus, internal mobility, and agent-passing calculi. TCS,
167(2):235-271, North-Holland, 1996.

Sangiorgi, D., The name discipline of uniform receptiveness, ICALP’97, LNCS
1256, 303-313, Springer, 1997.

Vasconcelos, V., Typed concurrent objects. ECOOP’94, LNCS 821, 100-117.
Springer, 1994.

Vasconcelos, V. and Honda, K., Principal Typing Scheme for Polyadic w-Calculus.
CONCUR’93, LNCS 715, 524-538, Springer-Verlag, 1993.

Yoshida, N., Graph Types for Monadic Mobile Processes, FST/TCS’16, LNCS
1180, 371-387, Springer-Verlag, December, 1996. Full version as LFCS Technical
Report, ECS-LFCS-96-350, 1996.

N. Yoshida., Berger, M. and Honda, K., Strong Normalisation in the w-Calculus,
LICS’01, IEEE, 2001. Full version as MCS Technical Report, 2001-09, May, 2001.

20

Summary of Appendices A—J

Appendices offer details of definitions and technical development omitted in the
main sections. In particular they contain detailed proofs of the central results of
the paper. The appendices are organised as follows.

“=d QEE O Qe

Typing Rules for Branching.

Definition of copy-cats.

Definitions of structural congruence, reduction relation and transition rela-
tion for the untyped processes.

Properties of the typing system as well as a couple of the properties of =,
(Section 3).

Formal definitions and basic properties of typed transitions (Section 4).
Formal treatment of occurrences and transitions enriched with redexes.
Proofs of the results stated in Sections 4.3 and 4.4 (visibility, well-bracketing
and innocence).

The proof of Context Lemma (Section 4.5).

The proof of Finite Tester Lemma (Section 4.6).

The proof of Computational Adequacy and Finite Definability (Section 5).

Throughout the rest of the appendix we assume the standard variable convention
for bound names.

A

Typing Rules for Branching

(Brah) (Ci/gi = 74) (Sel™) (Cf5i =Axa)

I'x2: [&iejﬁ]!l
F-g’i:ﬁl—g 1311>C'.:ac

I'Fzx: [@iel 7_"1']?1

T-§:% b PoC

T'r w[&lel(ﬁgﬁ)PZ] >AR iz T kg $1n(T,)P bAG T,
(Bra'*) (Ci/%: = TwA) (Sel’*) (Ci/3: = A= .wm)
DFz: [&icrTi)™ I'ka: [@er ﬁ-]?w
I‘gj’lﬁ}—gPle;” F]jq,ﬁl_IPDC

T Frlz[&icr(§i: 7). P> A® L,z I'bkoZin(y; :) PPAG T,

B

Copy-cat Processes

The copy cat [z — y]™ is given by:

E ()2 (v)Ly, — vl

[m_)wl][&i‘?i]!l def 2[&:(§:).x 1n,(y I l][ygj %yij]ﬁ
e — 2] E(g).d (YL, — vl

AR def _
[z — wl][&l g lz[&; (7) n’t(y)H’L] [y'z] - yz]] i

[z — x’](ﬂ!l

21

C Reduction and Transition

C.1 Structural Congruence
The structural congruence = is the least congruence generated by:

—If P=, @ then P = Q.

P|0 =P, P|Q = Q|P and (P|Q)|R = P|(Q|R).

— (vz)0=0and (vz)(vy)P = (vy)(vz)P.

If z ¢ fn(P) then (v z)(P|Q) = P|(v z)Q.

1£ {7}nf(P) = 0 then 7(3) (P1Q) = PI7(2)Q and 7ini(7)(P|Q) = Plzini(7)Q.
— Ifz ¢ {y, Z}, then (v 2)y(2)P = y(2)(v z) P and (v x)yin;(Z)P = yin,(2)(v z)P.

The axioms given under the last two clauses are not usually among those use for
generating structural congruences for 7-calculi.

C.2 Reduction Rules

The relation — on untyped terms is generated by the following rules.

(Com) «(§).P|2HQ — wH)(PlQ)
(BRA) o[&i(§).Pi] | Zini(5)Q — (v3i)(Pi| Q)

(Comy) !z(3).P|2(§)Q —'z(y)-Pl(v §)(P|Q)

(BrA) lel&i(§)-P] | Zini(§:)Q — ol&:()-Pl|(v) (PIQ)
(REs) P—Q = (vz)P — (va)Q
(PAR) P — P = P|Q — P'|Q
(OuT) P —Q — z(HP — 2(HQ

(Boutr) P — Q = Tin;(y)P — Tin(9)Q

(Cong) P=P —Q=Q = P—Q

C.3 Transitions

The untyped transition relation — has labels of the form 7, z(¥), T(¥), zin;(7)
and Zin;(¥) and is inductively generated by the following rules.

() =(@)-P =3P (Bra) altier(@)-P) 2P P,

e [&icr(7:)-P]

zin; ()

() 12(§).P 2 Def).PIP (BrA) '2[&icr(7)-P]

(2

(ouvr) zE@)PEp (SeL) zim(H)P Y p

22

(Com) P p % o — PIQ T vi)(P'|Q')
(Com;) P2 p ™20 g — PIQ T vi)(P'|Q)
(Res) P -5 Q,z ¢sbj(l) = (va)P - (v2)Q
(Par) P -5 P/, fn(Q)nbn(l) =0 = P|Q - P'|Q
(Out-¢) P-5H P in()n{i} =0 = z(H)P —> z(§)P'
(Out-&) P -5 P fn(0)n{Fi} =0 = Ziny(§i)P — Zin; () P’
(ALPHA) P =, P’—l>Q’ = Q = P—I>Q

Theorem 6. Reductions coincide with T-transitions: P — Q if and only if
P 5L=qQ.

PROOF: Standard, along the lines of [34]. [|

In the rest of this text, the notation P —» @) signifies that the processes P, Q
may be untyped while I' 4 P — (@ indicates that P and () are sequentially
typed, and similarly for transitions.

D Proofs for Section 3

D.1 Properties of the typing system

Most of the proofs of Section 3, which establish basic properties of the sequential
typing system, are the same as those in the long version of [22], except that the
proofs are simpler since the present typing system has no ordering between nodes
and secrecy levels,

Proof of Proposition 1 (i) By induction on the derivation of typing rules
in Figure 1. First we note that if 7 is sequential, then (r, 7) is sequential. For
(Zero), suppose A < T' and A 1 0. Then, if A is sequential, I' must also be
sequential. Hence we have I' 1 0. Similarly for other cases, noting that for all z
such that AF z:7, if A <T, then we have I' - z: 7.

(ii) For the former, we can construct the minimum typing system by deleting
weakening rules as in Appendix C in [22]. The latter is immediate from (i).
(iii) We first prove that ' -4 P> A and P = Q imply ' 4 Q > A.

First, associativity P | Q@ = @ | P is immediate by definition.

For (P|Q)|R = P|(Q|R), we have to prove commutativity of IO-modes
(P10 d2) © 3 = 1@ (d2 ® ¢p3) and commutativity of action types (A®B)®C =
A® (B®C). Both are proved by case analysis. For IO0-modes, if (¢1 ® ¢2) © ¢3 is
defined, then we have either (1) all three modes are 1 or (2) one of three is 0 and
others are 1. Both cases are proved mechanically. For action types, we only have

23

to check commutativity of modes of each action node, p® (g®r)=(p®q) O r.
Then, if p® (¢ ©r) is defined, either (1) all three modes are ?,, or (2) one of the
three is !, and the others are ?,,. Hence the proof is again mechanical.

The scope opening rule (ra)(P | Q) = (va)P | Q is the same as the cor-
responding proof in [22] because this is not related to I0-modes. The rule
(v 2)Z(y)-P = Z(y)-(v 2) P is also similar to the rule (v 2)(vy)P = (vy)(v 2)P.

The only remaining interesting rule is Z(2': 7)- (P|Q) = (z(z': 7)- P)|Q with
fn(Q) N {z} = 0. Here we only have to check IO-modes (hence below we omit
action types). Suppose I' 4 Z(2)-(P|Q). Then ¢ = o and I'-Z: 7 F; (P|Q). If
1= ¢ ©, then ¢ = 1 = 1. So the sequent must be derived from I'-2: 7 1 P
and I'-Z:7 F; Q. Then by applying (In't) or (In'w), we have I Iy Z(2)-P. By
fn(Q)N{zZ} = 0, we have I' 1 Q. Hence by 0®1 = 0, we have I b1 (z(2:7)-P)|Q.
The other direction is similar.

Now we prove that [' -4 P> A and P — @ imply ' k4 @ > A by induction
on the derivation of —. Suppose that ' b4 z(¥:71).P | Z(§:72)-Q > A and

2(§:71).P|2(§:72)-Q — (wg: (71, 72))(P|Q).

Then we have ' by z(§:71).P> iz @ A; and T Hq Z(7: 72)-Q > 712 © Ay with
A=1z® Ay @Az and T Fz:!,7;. Note that ¢ = 0 by 0 ® 1 = 0. The above
two sequences are derived from

Fg:Aite P>A; and T-g5:7hF1 Q> As

Then by Proposition 1 (i), we know I'y: (71, 72) Fo P>A; and I'g: (71, 72) F1
Q> A;. Hence we have

P'g2<’7_"1, ’?2> I_(] P|QI>A1 ®A2

Note that z € fn(A; ® A2) and T'F z : !4, ?;. Hence by using (Weak-_1) and then
applying (Res), we can conclude the proof. The input replication case is similar
to this case, the only difference being modes of action types, cf. [22]. Other cases,
including the rule P — Q@ = Z(Z)P — Z(2)Q, are straightforward from the
induction hypothesis. n

Proof of Proposition 2 (i) is obvious by the side condition ?A4 and ?,A4 in
the premises of (In't) and (In'~), respectively. (ii) is also straightforward: for (1),
if there is an active output subject, we can write P = Z(Z)P’. Since typing rules
are closed under =, we have I' iy P, which contradicts the assumption. (2) and
(3) are obvious since neither 0 ® 0, !, ® !, nor !y ®!; is defined. [|

Proof of Corollary 1 By Proposition 2 (ii)(2,3), we always have at most one

active input and at most one active output for each free name; hence Q1 = Q5.
Furthermore, ¢ = o follows by (ii)(1). [|

We shall also use the following small fact later.

24

Fact 1 Let Z(y)(P|Q) be typable and Q’s active subjects are not among y. Then
fn(Q) N {7} = 0.

ProorF: This is because an output only exports input channels which should
always be among active subjects of the body. []

Fact 1 indicates that, in output prefixing rules, we can assume all active subjects
(i-e. free subjects which are not prefixed under input prefixes) of a prefixed body
are to be abstracted. Thus we can use the following restricted output prefixing
rules instead of the original ones (showing only the unary cases and writing
Act(P) for the active subjects of P).

(Out™) (C/j=A=Tz) (Out’) (C/j=Ax?.2)

Thz:(F)n Thz:(7)

T-§:7F PoC T.§:7k PoC (8)
Act(P) = {3} Act(P) = {y}

T zZ(y:) P>AO Nz ' z(y:PrAG?,z

Because the premise should be in 1-mode, we are automatically restricting P
above to be parallel composition of input processes whose subjects are ¢. Fact 1
ensures we can retain the same typability up to =. This reduced typing system
simplifies induction on the derivation of typing judgements since reduction and
transitions do not rely on transformation of terms by =.

D.2 Contextual Equality and Reduction

In Section 3.7, we introduced the basic typed equality on sequential processes
.- In the following we offer the proof that reduction is contained in this re-
lation, which also illuminates the dynamics of sequential processes. We use the
strong barbs (observables) defined as follows. Below, as in Section 3.7, we say z
is active when it is the free subject of an active input or output.

L'k Py & 4 is active in P’ andT'Hg PrAQ® 7.

Lemma 2. IfT' 4 P|Q |, then one of the following must be the case: (1) P |,
and Q Vi or (2) P)y and Q |..

PROOF: By straightforward induction on derivation of the typing judgement. B
Lemma 3. IfTFy P — Q, thenT' 4 P J,.

PROOF: Assume that P — Q. By Corollary 1 this means ¢ = o, hence by
Proposition 2 (ii) there is a unique active output, say Pp, in P, hence P =
(v 2)(Py|Qo|R) such that Qo is an input with subject z and z ¢ {Z}. Now as-
sume further I' -y P |,. By definition there is an active output with free subject
x in P which therefore should coincide with Py. Hence ()¢ above is an input with

25

free subject z. Then by easy rule induction we have I' by (v 2)(Po|Qo|R) > B
such that pz € B with either p = !, or p = L, which contradicts I' -4 P |, as
required. |

Lemma 4. If C[P] is typable and C[P] |, then either C[| ls or P |,.

PROOF: By straightforward induction on the structure of C|]. [

Below and henceforth we write C[] |, and C[] — C'[] when the processes
which constitute the given context has a barb and a reduction by itself, respec-
tively, in the latter case preserving the binding over the hole.

Lemma 5. Assume that P — Q and C[] is a context (which might not be
a reduction contexrt) such that C[P] is typable. Then C[P] — R implies that
ezactly one of the following is the case: (1) C[] is not a reduction-context and
R=C'[P] and C[]| — C'[]; and (2) C[] is a reduction contezt and R = C[Q).

PROOF: The case when C] | is not a reduction-context is immediate. Suppose
C[] is a reduction context. Since P — @, there is an active output together
with a matching active input in P which is still active in C[P] as C is a reduction
context. Since C[P] is typable, C|] itself cannot contain an active output. But
C[] cannot contain a matching input redex either since the subject for an input
can only occur once as input in any typed term. Hence C|[] can neither contribute
an input nor an output to a reduction of C[P] and (2) is the only possibility for
C[P]’s reductions. [

Lemma 6. If 'y P — Q thenI' -y P =, Q.

PRrOOF: Choose an appropriate context C|] and a weak barb |},,. Clearly C[Q] |-
implies C[P] |},. For the reverse implication, assume A -, C[P] |, and let n
be such that C[P] = Ry — -+ — R, |z (n is determined uniquely by
determinacy). By partial induction on ¢ € {0,...,n} we show that one of the
following must be the case for R;.

1. R; =C'[P] where C[] — Ci{[] — ... — C][] &ef C'[] and, moreover, for
0<j<i-1, Cj[]is not a reduction context.

In the base case, (1) holds trivially. For the inductive step, assume that 0 < 7 < n.
If (2) holds for R;, then it also holds for R;;1, so assume that (1) is the case.
If C/ is not a reduction context we immediately have (1). By Lemma 5 exactly
one of the following must be true:

— R, = C'[P] — R;41 is C'[P] — C"[P] for some reduction context C"'[]
such that C'[] — C"[], or
— R; = C'[P] — C'[Q] = Rit1-

26

If the former is the case, then (1) holds for ¢ + 1. Otherwise, C[] —» C’[] and
C[Q] — C'[Q] = R;+1 imply (2). This concludes the induction.

Now assume that (1) holds for R,,: then Lemma 4 allows for only the following
two mutually exclusive possibilities: C'[| | and P . The latter is in violation
of Lemma 3, so we are left with the former, hence C[Q] J.. On the other hand
if (2) holds then C[Q] | is immediate. [

Theorem 7. If P — Q then P =, Q.

ProoF: By=C =_,,and — o — C = o= ==. [

D.3 Contextual Equality as a Maximal Consistent Theory

cAs we briefly noted in Section 3.7, =, arises as a certain maximal consistent
equality. We outline the essential part of the proof in the following. Let = be
a sound equality in the sense of [23], i.e. it is a reduction-closed non-trivial
equality which respects insensitivity. Assume given I" -y P; > A where, w.l.0.g.
all types in I" are paired. Suppose we have P; = P, and P; |, but =P, |},. For
simplicity, assume z has type ()?* (this does not lose generality since we can
always transform an affine output of arbitrary form to this form). We now show
this implies an arbitrary pair of two terms with the same type are equated in
2 which contradicts the non-trivialness of 2. We use the following property of
typed terms:

Proposition 9. (i) If z(y).P is typable and T' -4 P> A then we have md(A) C
{?1,?,}. Similarly for branching prefiz.

(ii) If P is typable, then either P = II;P; or P = (v Z)(I; P;)|S where each P; is
an input-prefized process and S is an output-prefized prime process.

Based on the above observations we first show all typed processes of the same
type whose action modes are outputs are equated in 2. By (i) this tells us
all input-prefixed processes of the same type are equated (by the congruence
of =) and by (ii) this tells us all typed terms of the same type are equated,
contradicting 2 is not trivial.

So take an arbitary I' -y S > B such that (1) B only contains outputs and
(2) fn(A) N fn(B) = 0. Then (v z)(z.S|P;) (¢ = 1,2) is also well-typed. Further
write A fore a dual of A and let C| | be given by:

Cl 1= (v n(4)(Q5 I)

where the agent Q%I is as given in Appendix G. Note C[(vz)(z.S|F;)] (i =

1,2) has type B. Note C[] hides all and only free names of P;,, so that
fn(C(v z)(z.S|P;)]) = fn(S). In particular C[(v z)(z.S|P,)] is insensitive, thus
by soundness we conclude C[(v z)(z.S|P2)] = Q¢ 0. Since P; does have an output
at z, we also have:

Cl(vz)(z.5|P)] — S|(an(A))(Q%,I|P1’) ~ S

27

This because Frmode (¥ fn(A))(Q%I|P1') >) is insensitive, hence in particular
equated with 0: then we use 2D=. By reduction closure we have S = Q¢ g, as
requied.

E Typed Transition

This appendix formally introduces typed transitions and studies their basic prop-
erties. We also introduce composite transitions for sequential processes and es-
tablish their basic properties.

E.1 Typed Transitions

Typed transitions describe the observations a sequentially typed observer can
make of sequentially typed processes. Typed transitions are a proper subset of
untyped transitions (as given in Appendix C.3) which however do not restrict the
original 7-transition. To define typed transitions we use the following predicates.

(i) AF I, when either: (1) I = T, or (2) sbj(!) = and pz € A such that : (2-a)
p # L; and (2-b) if I is output then p # !,.
(ii) ¢+ I, when if [is input then ¢ = 1 else ¢ = 0.
(iii) A,¢ I, when both AF [and ¢+ L.

In (i), if p = L then both input and output are supplied for the affine channel z,
so no action with the outside at that channel should be possible; similarly when
p = !,. (il) makes sense since if P and @ interact in P|Q, then, if P is in o-mode,
Q should be in 1-mode. In this case no output of @ (input in P) can take place.
Given the predicate A, ¢ | [, typed transitions are defined as follows.

Tk, PoA, P-5 P, Agrl, bn(l)nfa(l) =0
ifl=7theny =¢else) =¢

Tty P -5 T new(i") by, P’

Here new(I"') denotes the name-type pairs introduced by ! under T (for example,
new(z(yz)') = y : 7,2 : 7 if T F 2 : (1172)"). As expected, ¢ returns the
I0-mode dual to ¢. Before proving Proposition 3, we need to show:

Proposition 10. If T4, P —5 A+, Q then Aty Q.

PROOF: Suppose ' 4 P —» A b, Q. Then by definition, T' -, P> A, A,¢ 1

and P - Q. The case I = 7 is proven by using the Subject Reduction Theorem.
For the other cases, we proceed by induction on the inference of the untyped

transition P — Q. Suppose P SN Q is inferred by (IN). Then we can write

P=af:7).Qand P @ Q.ByT k; Pr A, wehave: T -§: 7 b Qb C®
with C/y = 7A’ and A = A’ ® !;z. Note that new(I') = : 7 and T = 0. Hence

28

T -new(I") y @ is well-typed. The other base cases (OuT), (BAR), (SEL),
(INy) and (BRA;) are similar. We also note that there is no typed transition

I'F4 P -5 Aty Q such that P —5 Q is derivable by (OUT-£,£;). Since if so,
by ¢ = o and definition of ¢ + [, [should be output. However by Proposition
2 (ii-2), if P = a(j)R and R — with fn(1) N {7/} = 0, then I should be input.
Other contextual rules such that parallel composition, restriction and structure
rules are easy using the induction hypothesis. []

Lemma 7. LetI' k4 P.

(i) (determinacy) IfT'F4 P LA Fy Qi (i=1,2) then Q1 =4 Q2.
(i) (unique output) If T ko P -5 (i = 1,2) then Iy =q la.
(iii) (action and mode, 1) I -y P LA F¢ Q implies that | is input and ¢ = 0.
Conversely, if I' -4 P BLINYN Fy Q with | input then ¢ = 1.
(iv) (action and mode, 2) T Fq P LA Fo Q implies that either | = T and

¢ =0, orl is output and ¢ = I. Conversely, if I' -4 P s with 1 not being
input then ¢ = 0.

(v) (IO-alternation) Let T' 4 P LLAYN Fy Q. Then (1) ¢ = 9, and (2) 1y is
input iff lo is output and vice versa.

PROOF: (i)...(iv) are easy by induction on typing rules. (v) is a direct corollary
of (iii) and (iv).]

E.2 Composite Transitions

Composite transitions record interactions of two sequential processes composed
in parallel, including their mutual interactions and their interactions with the
outside.

Definition 5. The relation I' -4 P|Q = b8 Fy (v §)(P'Q'), called a com-
posite transition of P|Q, is defined by the following induction. For the base case,

we set I' g P|Q de) p F¢ P|Q if ' k4 P|Q. For the inductive step, assume
'ty PIQ = &) Fyr (v 37)(P’|Q’) and assume names in bn(l) to be fresh.

(Visible Action) if P’ — P" such that ! # 7, then ', P|Q —> sl{ttu)

(v 9)(P"|Q'). Symmetrically when Q' has a non-7-action.
(r-action, 1) If P’ -7 P” thenT k4 P|Q ¥ I 1y (v §)(P"|Q'). Symmet-
rically when Q' has a T-action.

T/ by

T

(r-action, 2) If P'|Q' — (v 2)(P"|Q") from P’ Ly P" and Q' SN Q", then
T kg PIQ *E 1 1y (w32)(P)QY).

Since reduction is deterministic, s uniquely determines t and u inI' 4 P|Q == S<t Y

I by (vy)(P'|Q).

29

F Term Trees and Enriched Transition

To establish the basic results in Section 4, we need to analyse the structure of
typed terms and how it affects their dynamics. To do so we need tools to precisely
specify and manipulate syntactic structures. This appendix offers a formal treat-
ment of term trees and occurrences and introduces enriched transitions, which
record not only transitions but also their generating redexes (subterms). These
notions are closely related to the proved transitions of [11]. The readers may
jump to the next section for the main analysis of typed transitions, referring
back to this section as necessary.

F.1 Term Trees

We first introduce standard ideas from term algebra and formally define the
signature for the calculus. For simplicity and without loss of generality, in this
section we assume all indices in branching and selections to be in N (the set
of natural numbers) and the corresponding indexing sets to be initial segments
of N. We shall also consistently neglect type annotations in typed terms in this
section.

Definition 6.

(i) A signature X is a set of pairs (f,n) (n € NU{N}) such that (f,n),(f,n’') € £
implies n = n'. Here f is a symbol and n is f’s arity. We shall often write
3(f) =n to denote (f,n) € X. We sometimes omit f’s arity.

(ii) Given a signature X, a X-tree is a partial function T : N* — ¥ such that
(1) if T(o.y) is defined so is T(co), and (2) if T(c) = (f,n) then T(o.3) is
defined iff 0 < i <n—1. We write £,£,... for occurrences of a given tree,
i.e. elements of its domain. Two occurrences &1 and &3 are incomparable if
neither is a prefiz of the other. The meet of £ and &', denoted £ ¢, is the
longest common prefiz of £ and &' (which can be the empty string).

(iii) We define a signature X, as follows, with z,y,... ranging over names,
i,j,... over N and I,J,... over the set of non-empty subsets of N. A se-
quence of names in parenthesis is assumed to be pairwise distinct.

Y. = {(0’)’ ((Vw)al)’ (|v2)’ (w(g)al)’ (w[&ieI(yi)]’I)a
" (5(17),1),(Eini(ﬁ),l),(!w(g‘),l), (!a’[&iel(_})]aI)}

From now on we shall concentrate on the signature .. X, -trees are often
simply called trees from now on.

The treatment easily extends to (one-hole and multiple-hole) contexts, which
we omit. Clearly there is a one-to-one correspondence between X,-trees and
processes in the sense of Section 3.

The following two operations on trees are used to be able to define transitions
on X -trees and to insert new restrictions into a tree. This is necessary to capture
the effect of scope extensions induced by 7-actions.

30

Definition 7. (substitution and insertion)

(i) Let & € dom(T'). Then T[T"/&] denotes the result of substituting the occur-
rence £ of T by T'. Formally:

T'(6) v=¢.96

T/ = {T(’y) otherwise

(ii) Let T be a tree, & be an occurrence in T and fi,..., fn be unary symbols
(n > 0). Then we write T(f1...fn/&) for the result of inserting the sequence
of symbols f1...fn at position £. Formally:

T(ES) ~=¢£05
T(fr-fn/E)(y) = fi y=£0,0<i<n
T(v) otherwise

F.2 Redexes

Hereafter we identify processes and X -trees, writing P, @, ... to denote them.
We are mainly interested in subtrees (subterms) corresponding to occurrences
of a given term, which we also write P(£),Q(¢'), ... if no confusion arises. Note
that P(&;) is a subterm of P(£3) when &5 is a prefix of ;.

Definition 8. (continuation) Given a prefized P, an action | of P and the I-
continuation of P are defined as follows.

— If P =z(y).P', z(y) is its action, and P' is the z(Y)-continuation. Similarly
if P(€) = z[&ic1(¥:)-P], each zin;(y;) is its action and P} is the zin;(y;)-
continuation.

— If P =z(y)P', Z(9) is its action, and P’ is the T(§)-continuation. Similarly
if P(§) = Tin;(¥) P, Tin;(y) is its action and P’ is the Tin;(y)-continuation.

— If P =lz(9).P', () is its action, and (P'|'z(y).P’) is the z(y)-continuation.
Similarly if P(§) ='z[&;c1(9:)-P}], each zin;(y;) is its action and P]|\z[&;c1(7;). P
is the zin;(g;)-continuation.

We write cont(P,1) for the l-continuation of P when l is an action of P.

We also formalise the idea of binding. Given occurrences ¢ and £.¢ of P, the
binder of £ over £.i, denoted vp(&,1), is defined as follows:

{g} P(¢) is of form z(y).P', Z(y)P', Tin;(y) P’ or lz(y).P’
{7:} P(§) is of form z[&;(9;)P}] or l[&:(¥;)P;]

{y} P(¢) is of form (vy)P’

0 otherwise

VP(£7 7/) =

Note that, in the first case, we always have ¢ = 0. For an input to interact
with an appropriate output, each must “travel” up the X, -tree towards the first

31

node that is an ancestor of both the input and the output occurrence. The joint
subject of the two actions must not be restricted or bound along the path from
the input (or output) up to the said ancestor. The following definition aids in
formalising that constraint.

Definition 9. Let €psc be a preficx of Eeng- We then define resp(€pase, Eend) by
the following induction.

resp (gbasea gend) = {0 (gend - £base)

We write resp(€eng) for resp(e,€end)-
We are now ready to define redexes.

Definition 10. (i) An input-redex (Tesp. output-redex) in P is an occurrence
& of P such that P(§) is input-prefized (resp. output-prefized). A redex in P
is active if it is not a subterm of an input prefized-term.

(ii) Two active redezes & and & in P are complementary if (1) P(&1) and P(&2)
have actions | and | (where l is the dual of); and (2) for | in (1) we have
Sb](l) ¢ resP(£1 mn 52,51') fori=1,2.

Above (3) formalises what has been alluded to above, that binders of interacting
redexes can only be common ancestors of both participating redexes.

Lemma 8. LetT'F4 P A below.

(i) If ¢ = 0 then P has ezactly one active output redex with subject x such that
lzeAor?izecAor?,zeAorl,zcA.
(ii) If ¢ = I then P has no active output redezes.
(iii) If {&} (2 € I) is the set of input redexes of P, then i # j implies sbj(&;) #
sbj(&;). Further, for alli € I, we have Lz; € A or liz; € A or l,z; € A.
(iv) If ¢ = 0, &, is the unique output redex in P and for some i € I: sbj(&,) =
sbj(&;) = z then Lz € A or !,z € A.
(v) If P has an active output redex with subject x then 212 € A or 7,z € A or
lz € A or!,z € A. The reverse implication does not hold.
(vi) 1z € A if and only if P has an active input redex with subject x which is
not replicated.
(vii) 'wz € A if and only if P has an active replicated redex with subject x.
(viii) If P has two distinct active redezes &,&' such that sbj(§) = = = sbj(¢’) then
& and &' are complementary and either 1x € A or !,z € A.
(ix) If Lz € A and there is an active redex £ in P with sbj(§) = x then there
erists a complementary active redex for £ in P.

PROOF: All are easy inductions on the derivation of typing judgement. []

32

vp (é.base '£resta ’L) U resp (é.basey Ebase'é.end) (gend = gbase 'é.rest'

.

F.3 Enriched Transitions

Below we introduce enriched transitions of two kinds: P 5 Q indicating that

j LN @ where £ is the occurrence firing the action and P bt @ which indicates
P = Q where & and &, are the corresponding redexes giving rise to the 7-
action. In (ii) below we write P{(v z;..z,)/€) for P{(v z1)(v z2)..(v 2,,) /&) (cf.
Definition 7 (ii)).

Definition 11. (enriched transitions)

(i) P RN Q with 1 # 7 if, for P! =, P, we have Q =, P'[R/&] where (1)
R = cont(P'(£),1) and (2) £ is an active redex such that sbj(l) & resp(&).

(i) P % Q if, for P' =, P, we have Q =, P'[R1/&][Ra/&:)((v §)/61 1 &)
where (1) R; = cont(P'(&),l;) (i =1,2) with l; = ls; and (2) &1,& are two
active and complementary redexes in P.

Clearly P LN Q with [# 7 iff P e, Q for some active redex ¢ with action [/ in
P. Similarly P -+ Q iff there are complementary active redexes &;, {5 in P such
that their shared subject is not restricted in resp(&; M &y, ¢&;) for i = 1,2. Also

. . . l, .
note that [is completely determined by P, £ and Q in P e, @ so we sometimes
omit it.

G Visibility, Well-Bracketing and Innocence

In this appendix we establish basic facts about the behaviour of typed processes
as stated in Section 4, namely visibility, well-bracketing and innocence. Although
visibility can be established without using the Permutation Lemma (Lemma 1),
for economy of presentation, we shall first prove the Permutation Lemma and
use it to establish visibility.

G.1 Enabling Relations

We introduce two enabling relations on transition sequences, ~, and v, which
we shall use extensively in the following.

Definition 12. (enabling relations, 1)

(i) We define the prefixing relation ~, as follows: P by QR 242 S when
Q =R, & is a prefiz of &2 and 1y is an input action.

(ii) We define the binding relation ~, as follows: P b4 QR 28 5 when
Q =R, & is a prefiz of &2 and sbj(l2) € bn(ly).

We shall often write I; v I3 or & vy &2 for P ll—gi Q ~p Q 12—53 R when
the processes in question are irrelevant or easily determined from the context.
Similar conventions are used for the other relations on transitions.

Next we extend these relations to 7-transitions. Below we say o is a §-shift
prefiz of v if 0 = 0’.0” and v = ¢'.6.6" .4 for some o',0",7’.

33

Definition 13. (enabling relations, 2)

(i) P Lty QR L& S when Q = R, | is an output and the input redezr in
{&1,&} is an 0...0-shift prefiz of & with n the arity of the output redezx in

{£11 {2} :

(ii) P L QR 8 S when Q = R, | is an input action and & prefizes the
output action in {£1,&2}.

(iii) P Lk Q~p R % S when Q = R and, assuming that §; is an input redex
and {; and output redez, then &; is an 0...0-shift prefiz of (; where, as above,

n
n is the arity of the output reder in & .

The relation vy, is extended to T-transition just as ~p, but replacing prefiz-
ing with binding. Finally the enabling relation ~ is the union of prefizing and
binding: "= U nvp.

From now on we extensively (and often implicitly) use the following properties
of enabling.

Lemma 9.
(i) fTky P by here ly is either output or T-action, then li My la.
@) IfT g o(@).P 2855, then 2(g) A3 L.

PROOF: (i) is mechanical by induction. (ii) is a simple corollary of (i). [

G.2 Permutation Lemma

When permuting actions we arrive at states which are not sequential. To deal
with these states, we use processes which are typable by a typing system which
is the sequential one except that it forgets IO-modes.

Definition 14. (affine processes and transition) We write I' - P> A, or simply
T - P, for a typed process derived by typing rules of Figure 1 (together with
Appendiz A) which ignore all conditions on IO-modes. Accordingly we write

TFP-LS AF Q for the typed transition given as in Appendiz E.1 except for
ignoring the condition on IO-modes.

Note that the newly introduced typed processes and transitions strictly include
the original processes and transitions. Note also that we use the identical set of
bases for typing. By the same reasoning as for Proposition 10, we observe:

Fact 2 I‘I—P%AI—QimpliesAl—Q.

34

Note that if we write e.g. I' k4 P A Fy @ then this indicates that both

mentioned processes and transitions are sequential, while I' - P AR Q
indicates that we ignore IO-modes in both typability and transitions.

We need two properties from the newly introduced transitions. The second
one pertains to “statelessness” of replication.

Lemma 10. Let T -2 ... ‘= A+ Q. If l; ~p l; then one of the following
must be the case: l; =T =1; orl;,l; # .

PROOF: No visible action can bind a redex in a 7-action, for otherwise the visible
action would have to bind both redexes which would mean that both input and
output types would occur bound by an input. This would violate sequentiality
constraints on channel types. Similarly, a redex in a 7-action can never bind a
visible action because the input and the dual output generating the 7-action
both bind the same names which are restricted and remain so after launching
the binding 7-action. Thus the bound visible action could not actually become
visible. |

Lemma 11. (one-step permutability) Let T' + P by by AR Q such that
neither 1 ~p la norly ~p ly. Then T H P by BoAR Q.

PROOF: There are nine cases to consider, with each /; being either input, output
or a 7T-action. We abbreviate these cases to OO, IO, OI, II, Or, 7O, IT, 71
and 77. The first seven cases are immediately permutable since the redex(es)
of I, are already active in P and are disjoint (not contained in) a redex of I;.
Among then we show two cases. The case II is permutable because if the [; in

TP gi) A F @ are both input then the redex for l; does not contain
that of I3 because (1) input cannot bind input (by the assumptions) and (2) no
free input subject can be prefixed (by the typing rule for input). On the other
hand the case Ot is permutable since output is asynchronous and an output
redex cannot bind a redex of 7 by Lemma 10. For the final three cases, from
the assumptions the redex of ls cannot be properly contained in a redex of ;.
Therefore the only possibility that they are not disjoint is when they share the
same redex, that is when both actions involve an identical replicated input. By
rule induction of the derivation of transition this case is easily permutable be-
cause replication is persistent. [|

The exact unit of permutation in sequential transitions becomes clear from the
following observation.

Lemma 12. Whenever we have I' -1 P hly A F1 Q, this transition is induced
by transitions of form P EEINLANL-N Q.

PROOF: We use Lemma 7 to conclude that [; must be an input action and hence
the mode turns to the output mode. By Lemma, 7, a process in output mode can
only do 7 or output, but if the latter takes place the mode turns to the input

35

mode again, so only the last action can be an input. []
A key lemma for permutability of sequential transitions follows.

lﬂ lI T*ln
Lemma 13. Let T y P 252 A F1 Q such that Iy /Ap la. Then for some
Py, P|, Py, P} and T such that P = (vZ)(P1|P2) and Q = (vZ)(P;|P;), we have
lﬂ lITmlﬂ
P, — (vZ)P] and P, *—° (vZ)P;.
PRrOOF: By Fact 1, we can set P = (v 2)(P1|P,) such that P; is an output-
prefixed process (whose subject is not among Z and) which has no free input

lﬂ
subjects, either active or inactive. Let T' g P — A F; (v 2)(P{|Pz) from
ll]
P, — P|. Then all active subjects (which are all input by Lemma 7) in P] are

lI
bound by I;. This and l; /A, l2 imply that the redex for Pj|P, —+ should come
from P,. By Lemma 10 the redexes for the subsequent 7-actions cannot be in P/l

‘We also observe:

R LI LAy L
Lemma 14. Let T 1 P = A b1 Q such that Ly, o Linv1- Then
whenever l; is a T-action before l,, and l; is a T-action after l,, we have

L b L

PROOF: Assume [; is the first 7-action after /,,,; which is bound by some 7-
action before l,,. We show by partial induction on k € {m +2,...,j — 1} that
thereis k' € {m+2,...,k} and some k" € {m+1,...,k'} such that lg» ~vp lg.
This contradicts Lemma 10 when £ = m + 2. We show the reasoning for k£ = j,
which is identical with the induction step. By Lemma i, the output redex of [;
is contained in the input redex, say &, of I;_;. In the corresponding occurrence
at the time of the action [;, {’s subject should be bound for otherwise the in-
put redex of I; prefixes a free input subject, which is not possible by the typing
rules. Therefore l;_; = [,,,;1 cannot be the case since the subject of [,, 1 should
already be free in P by L, /Ap lm+1- By our hypothesis, the subject of the redex
of I;_; is bound either (1) by a(n output) redex of a T-action after /,,1, which
is contained by some input redex of, say lj~, or (2) by a restriction inside the
input redex of I;_», which we set l;. Note that the same condition as [; applies
to lx» in both cases so that we can use induction. [|

‘We can now prove the Permutation Lemma 1, which we state again for reference.

Lemma 15. (permutation) Let I -y P hlalgla A Fr Q such that Iy Ay 1y and
lo b ls. Then T 1 P BB82 AL Q.

ProoF: By Lemma 12 T + P hrilalgr®la A F: @ can be permuted into I' -

p BTl A Lo (the latter is a sequential transition sequence by easy
induction). By our assumption and by Lemmas 13 and 14, no action including

36

and between I3 and [, is either bound or prefixed by action including and between
l; and l3. We can now use Lemma 11 to permute each of the actions including
and between I3 and l4 to the position immediately preceding l;, starting from
l3, resulting in the required transition sequence. []

G.3 Components and Well-Knit Sequences

Here we introduce the notion of components in a visible transition sequence (i.e.

its subsequence whose actions are related by ~; and ~y) and show that any

sequential transition can be rearranged into a concatenation of sequences each
being a component (by using the Permutation Lemma).

Definition 15. Given a sequence li...l,, its (set of) component boundaries,
cb(l;...l,) is defined as follows.

{’L | md(lz) = I,Vj.lj 7&1, lz} md(ll) =1

Cbal"l")::{{i|nﬁ(h)_.Lvyljg&bh}LJ{l} md(l;) =0

Fiz a sequence o = l;...l,,. The component of l; in o, comp,_(l;), is defined nexzt.

i i € cb(ly..ly),
comp, (I;) = ¢ comp, (I;) i ¢ cb(ly...lp), 1 b 1,
comp,(l;i—1) ¢ cb(li...ln),l; /A L.

We shall often abbreviate comp, (1) to comp(l).

Definition 16. Let 'y P == A by Q. A (contiguous) substring v of o is a
contiguous component of o if (1) 7 is closed under binding, that is, v; ~p 0
implies o =y for some k; (2) if an input l is in v and it is not the last action
of o then the next output is also in v; and (8) it is a mazimal such subsequence,
i.e. no proper superstring of v in o has the properties (1) and (2).

Definition 17. Let ' -4 P = A Fy Q. We say o is blockwise well-knit if
o ="7...77, where

— each v; is a contiguous component of o,
— if a contiguous component has a free (with respect to o) input then it is the
first element of the contiguous component.

Lemma 16. LetT' 4 P = A Fy Q. Then there is a componentwise permuta-
tion o' of o which is blockwise well-knit.

PROOF: By repeated applications of Lemma 1. []

37

G.4 Visibility
We first reiterate the definitions of both input views and output views.

Definition 18. The input view of I1...l,, "1;...1, %, is defined as follows.

|—€—|I — 0

Col, ™t ={n}uTo™ md(l,) =1

ro.d, — {n} md(l,) = 0,¥id; /b In
rordioada ™= {i,n}UTor ™ md(ln) = 0,5; b In

The corresponding output view, "l;...1, 0 is defined dually.

re—m — @

Co.l, ={n}uro™ md(l,) =0

Fo.l, 0 = {n} md(l,) = I,Vil; /b by
rdl.li.dz.lnju = {z,n} U I—O'l_m md(ln) = I,li Mp ln

Here o =1...1,, and 01 = 1;...l;_1 are non-empty strings and o3 = l;11...1,,.

Convention 1 Given "l;...1,7"°, there is the unique subsequence of li...l, in-
duced by "11...1,7°. We shall identify the two. Dually for the input view.

The output visibility and input visibility have been defined in the main section:
the empty sequence € is output visible; a non-empty sequence o = I;...l,, is
output visible if each proper prefix of o is output visible and if md(l,,) = 0 and
l; ~p 1, then i € "1;...1,7%. Dually for input visibility. Below we say a sequence
o extends a sequence o' if o’ is a postfix of 0. We observe:

Lemma 17. (i) If 1.0 extends o3.0, then o1 extends os.
(ii) If o' =1..1}, and o0 = 13...1,,1}...l}, such that o extends o'. Then
(a) U, € cb(o) implies I; € cb(c'). It is not the case that cb(c) C cb(o’).
(b) comp,,(l;) C comp, (£;)-
(i) If o extends o’ then "o’ ® C "o . The dual result holds for the input view.

PROOF: The first two are straightforward from the definitions. For (iii) assume
that o/ =1{...l, and o = 1;...l,,1]...l},. We proceed by induction on m. The base
case o0 = ¢’ is immediate. For the inductive step consider " = I5...1,,,1}...l},. By
(IH) we know that "o’ C "¢ and similarly for the output view. We conclude
Fo'10 C """ from the following fact: "y '° C "1.y7® whether there is a binding
l ~p l; into v or not. That fact is proved by straightforward induction on the
length of ~.]

Lemma 18. Given a sequence o = ly...1,,

— o has only one component if and only if it has no free inputs or exactly on,
at l] .
— Assume that o has just one component and n > 0 then 1 € "o °.

38

PROOF: The first is immediate from the definitions and the second is proved by
induction on the length of . []

Definition 19. LetT'+4 P == A+, Q. A componentwise permutation of o is

a string o' of visible actions such thatT' -4 P = A Fy @ can be obtained from
Cky P = A Fy @ by zero or more applications of the Permutation Lemma 1.

Lemma 19. LetT +4 P <L A Fy Q and assume that o' lo}, is a componentwise
permutation of o. Then "ol = "¢}1™.

PROOF: Lemma 1 allows permutation of pairs of adjacent actions in visible ty-
pable traces only if they are in the different components. On the other hand, ™ °
chases binding pointers ~p, so " '° will always be within one component and is
unaffected by the permutations Lemma 1 permits. [|

Immediately:

Corollary 3. LetT' -4 P = A Fy Q and assume that o' is a componentwise
permutation of o. Then o is output visible if and only if o' is output visible.

Thus considering (output) visibility in general sequential transitions is the same
thing as considering it in well-knit sequences. We now observe:

Proposition 11. IfT' 4 P|Q) Fy (v9)(P'1Q") and s is well-knit and
output (input) visible. Then t and u are output (input) visible.

PRrROOF: We treat the case when ¢ = 1. The case when ¢ = o is similar. At
each step, an output is immediately output-visible for both the whole term and
its components if the previous sequence is input-visible. Hence we have only to
check that (1) each input of a residual of (say) P is input-visible if it is so for
the whole term, and that (2) the interaction between two components results in
output visible sequences. The proof uses the so-called switching condition. As
noted in the main section, we first introduce the board presentation of the above
composite transition. It consists of four rows and n columns. In the first row, we
write P’s visible transitions; the second row is P’s interaction with @; the third
row is Q’s interaction with P (which is dual to the second row): finally we write
Q@’s visible transition. Note that actions in each column occur in one of the three
forms in the board presentation:

(1) In the first row only.
(2) In the second and third rows, dual to each other.
(3) In the fourth row only.

We now prove this, together with one of the most basic properties of functional
interaction propounded in games semantics, the switching condition. Below by
a component process we mean one of a pair of processes (i.e. P or @ in the above
case).

39

Claim. (switching condition) In the board presentation of composite transition,
whenever an action of a component process moves from one row to another, then
the moving action is an output.

PRrROOF: The proof is by induction, showing at the same time:

(a) If an action is done in the first (resp. the fourth) row then its next action
cannot be done in the fourth (resp. the first) row;

(b) Each time an action is done in a single row, the mode of the other component
always stays in 1, so that the mode of the whole term is determined by that
of the former process (it is then immediate that the whole term has mode
o where input and output alternate in each component when actions are at
the second and third rows); and

(c) When the input view starting from any output in one of the first /fourth rows
only involves actions in that row.

Let P and @ be component processes whose actions are recorded in the first-
second rows and third-fourth rows, respectively. W.0.l.g we assume that both
start in 1-mode (other cases are covered by starting from the intermediate point
below). Below residuals of P and @ are also designated by P and Q.

Base case. Assume P’s action is first recorded. Then @ is clearly in 1-mode.

Within the first row. Assume there are two consecutive actions by P in the
first row. Let it be input. Then the next is output. Since @ stays as before,
its mode does not change, hence (b) is trivial. For (c) if the output is free it
trivially holds. If not it holds by induction by the switching condition (note
when we move back to the binding input, then the immediately preceding
output should stay in the same row).

Within the second/third rows. In this case (a)(b)(c) are vacuous.

Change from the first to another. Assume there are two consecutive ac-
tions moving from the first row to another. We show (a) together with the
switching condition. Assume first the actions are output-input. Then the
input-view starting from it stays in the first row. Since the whole sequence
is well-knit no free input is possible. This violates the visibility, hence this
case is not possible. This shows the switching condition. Since the mode of
Q is r-mode the output cannot be done at the fourth row, showing (a).

Change from the second to another. Assume there are two actions, the first
one in the second row by P and the second one in the first or fourth row.
Assume the first one is output. Immediately the mode of @ as well as the
whole term is 0. The only possible visible action is thus an output by @ at
the fourth row, establishing the switching condition, and (b) immediately
holds. If the second action by @ is free, (c) is vacuous. If not, it goes to some
action in the fourth row, from where we can use induction by the switching
condition, hence (c) holds.

Using exactly the same reasoning for the dual cases, this concludes the proof of
the claim. The reasoning for output visibility of the resulting visible sequence

40

precisely follows the known reasoning in game semantics (cf. [28], A.13 of [24],
[32]). [

The result should also hold when s is not well-knit: however the proof may
become more complex. We are now ready to prove visibility of sequential tran-
sitions.

Theorem 8. IfT -, P = A Fy @ and s is input visible then s is output
vistible.

ProoF: Let I' -4 P = A Fy Q. By Corollary 3 we safely assume s is well-knit
and show it is output visible if it is input-visible by induction on the derivation
of I' 4 P. The base case, the weakening rules and restriction are trivial. The

case when I' -4 P def Py |P; is direct from Corollary 3 and Proposition 11 (note
that we use input visibility). For output prefixes, by Fact 1 we can safely assume
P to have no free active subject except that of the outer-most output prefix.
Thus s is of form Is’ where [is output where s’ is the transition sequence of
the continuation of P. By Lemma 17 (iii) s’ is input visible hence, by induction
hypothesis, s’ is output visible and consequentially, so is s. For input prefixes,
suppose P is input prefixed. Then we can write, by well-knitness, that s = [s’
where the subject of I never occurs again in s’, so that it is a transition sequence
of the continuation of P, hence by induction hypothesis it is output visible. If
I does not bind any action in s’ then the output view of each output in s’ is
contained in that in s hence s is output visible. If it does bind an output action
in §', say I', then the redex of I’ is contained in that of [. Since s is well-knit, no
free input subject occurs in s except in the initial /. By easy induction on the
length of such an intermediate sequence this implies the output view of I’ in s
reaches [. []

G.5 Well-Bracketing

The following lemmas are known in game semantic literature, if not in the general
setting we prove them here.

Lemma 20. LetT'+, P L, be such that (1)1 is output, (2) s is well-bracketing,
and (8) the component of l in sl is well-bracketing. Then sl is well-bracketing.

PROOF: If either ! is of mode ?,, (i.e. is “(”) or s = ¢, then sl is trivially well-
bracketing. Suppose [is an of mode ?; (i.e. is “]”) and s # e. We first consider
the case [is free. Let the immediately preceding input be I’. By the definition of
component, | and I’ are in the same component. Since this component is well-
bracketing, !’ is an answer of type “)”. We now argue that the O-view of s has
one of the following two forms, where, in both cases, the last “)” is I'.

Case (A): “()..()()”, with the initial “(” being initial in s; or
Case (B): “)..()()”?, with the initial “)” free but not necessarily initial in s.

41

In other words, the view does not contain “[”. Because all actions between each
matching pair of “(” and “)” in s should match in bracketing (by s being well-
bracketing), and because the prefix of s before the initial “)” in the case of B
should not contain an unanswered question, this proves sl is well-bracketing. We
proceed by induction on the length of s.

(s is of length 1). Then !’ is free so that it has form (B).

(s is of length n+1 assuming the property holds for length less than n).
Let s = l;5'. By induction hypothesis either (A) or (B) holds in s’. Suppose the
stated property holds up to length n and let s = l;s’. By induction hypothesis
either (A) or (B) holds in s'. If (A) holds in "s'™ then I; can only be “)” since
sl should be well-bracketing. Hence s has form (A), and we are done with this
case. If on the other hand "s'™ has form (B), then either [; binds “)” that is
initial in "8’ ™, in which case we have the case (A) as a whole (note “]”, i.e. 7y,
can never bind “)”, i.e. !1), or I; does not bind such “)”, in which case we still
have the form (B), hence as required.

“ [”

This proves the case when [is free in s. If not, i.e. if sl = 510”5l such that
" ~yp 1. Then, precisely following the same reasoning, we can show the postfixes
of "s57® have form (A) or (B), by induction of their length. Since the output
visibility implies the output view of I" s, should reach I”, "s,® as a whole should
have form (A), so that !"ssl has completly matching pairs of brackets. Immedi-
ately sl is well-bracketing, and we are done. []

Another key result follows.
Lemma 21. Let T' b4 P|Q el A Fr (v §)(P'|Q') such that (1)1 is output,
(2) u, t and s are well-bracketing. Then s is well-bracketing.

PROOF: By the standard parity argument, cf. [28], A.13 of [24], [32]). [

We are now ready to establish Proposition 5.
Proposition 12. I' -4 P s well-bracketing.

PROOF: By induction on typing rules, using the equivalence between well-knit
transitions and non-well-knit ones in terms of legality. The inaction is trivial
since it has no transitions. Similarly for the weakening rules which do not change
transitions. For hiding, by the definition of typed transitions, I' k4 (v : a)P
has the same well-knit transitions as I' - = : o -4 P except for those which start
from inputs at = when !,, € md(a), hence as required. Parallel composition holds
by Lemma 21. For the prefixing rules we only present the case of unary prefixes.
Branching prefixes can be dealt with similarly. For output, we again assume that
their abstraction covers all active free names of the prefix’s continuation, cf. Fact
1. Thus, if T' -z : 7 k¢ Z(§: 7¥)P -, then we can assume that s = Z(¥)s’ such

that '-¢: 71 P 3—I> where s’ is well-bracketing and that s itself is well-knit. If
md(7) = ?; then s is immediately well-bracketing. If md(7) = ?,, then, if z(%)
binds, or equivalently: is answered by an action in s then let s’ = spl’s| where

42

' is that action. By well-bracketing of s’, we know that s has no unanswered
questions and that s} itself is well-bracketing. By an argument similar to that
in the proof of Lemma 20, we can show, by induction on the length of s}, that
s} is of form “[..][..][..]” where each pair of “[” and “|” is matching. Since s}
itself is well-bracketed, so are the actions in-between. Thus z(g)s}l’ (hence s) is
well-bracketed, as required. The case when z(3) does not bind any action in s
is the same as the above setting s’ = sj,. Finally, for input prefixing rules, if the
prefix is of mode !y (that is: of type “)”) there is nothing to prove. If not, let
T'-z:7hkplz(7:7)P —> and assume s to be well-knit. Thus s = z(%)s’ where
z is the only free input. Assume s’ = spl’s] where z(y) is answered by I’ and,
by s’ being well-bracketing, s} is well-bracketing. By the typing rule there is no
free action of mode ?; (i.e. of type “”) in s’ nor is there any free input action.
Thus, in particular, no free answers occur in sj. Hence, by well-bracketing, these
actions have matching parenthesis as required. Finally, the case when there is
no such !’ is the same because s;, has no free answers.]

G.6 Innocence

Lemma 22. Let T 4 P =% be well-knit and s = "¢™°. ThenT b4 P =%,

PROOF: Assume w.l.o.g. ¢ = 1. We show I 4 P t:t’> with ¢ of even length and

s ="t implies T' 4 P =L, by induction on the length of ¢. When t = ¢ the
result trivially holds. When ¢ = ¢yl2, we can write ¢t = t(l%,_,18. If [,,_; is free,
by well-knitness ¢, = £ hence done. If not, we have t; = t;1;t] where i ~y, n—1,

SOtllllnflln

that is "t = sgl,,—1l, where so = "tyl;™°. By (IH), we have I' -y P~ —5
If] = & we are done. If not, by visibility ,, is either free or is bound from an
action in sg, hence we can repeatedly use the Permutation Lemma to obtain

soln—1ln

'y P "— ", as required. []

We can now prove Proposition 6.

Proposition 13. (innocence) Let I' -, P iy (i = 1,2) such that: (1) both
sequences are legal; (2) both ly and ly are outputs; and (3) "s17° =, "s37°. Then
we have 5170 1] =4 T2 0 - .

PRrOOF: We can safely assume that both sequences are well-knit. Let I' -, P Sily
(¢ = 1,2) with the above condition. W.Lo.g. let t = "s;® = "5,7°. By Lemma

22 and noting tl; = "s;;°, we have I' -y P LN By Lemma 3 (i) there is at
most one output action possible from a given process, hence we know [y =, lo,
as required. [|

H Context Lemma

This appendix introduces and studies a basic preorder on processes which can
be characterised either as the may-preorder, as the simulation preorder or as

43

the set inclusion of the innocent function representation. We also introduce the
induced equivalence.

H.1 Preorder

Definition 20. We define a typed relation C,, as follows: T' 4 P, C, P if
['kg Py == implies T 4 P, ==

Immediately, C,,, is a preorder. Further by the determinacy of — we have
— U —1CL.,. Also we can restrict traces considered in the definition of C,,,
to well-knit ones (or even output views), by the characterisations we have given
so far. Another observation is that C,, only pertains to output, because of the
following:

Fact 3 Let R be any typed relation and T' 1 PRQ). Then P LN implies Q) .

This is because enabled input actions are determined by action types which are
shared by processes related by a typed relation. We now prove:

Proposition 14. C_, is a typed precongruence.

PROOF: We use rule induction on typing rules. The base case, I' 4 0 C,,, 0, is
trivial. Similarly for the weakening rules. For the other rules:

(Res) AssumeI'-z:aty Pi T, P> such that I' - (v : o)P; is well-typed.
Assume T+ (vz : @)P; ==. W.l.o.g. we assume z ¢ fn(s). Since all actions in
s are never prohibited by hidden pz, we know I - z : a - P; ==. By induction
hypothesis T -z : a - P, ==, hence I' - (v z : a) P, == as required.

(Par) Assume I' -y P; C,,, P> sit. I' by P;|R is well-typed. Assume I' F

Pi|R ==. W.lo.g. we assume s is well-knit. By Proposition 11 we can write

T ks PR Y with u and ¢ legal. Hence T k4 P, =%, that is T -y Py =%

Since the transitions of P,|R are solely determined by visible actions of P, and

R we obtain T 4 P3|R “%Y, as required.
(Prefix) All rules are mechanical. For output prefixes we use the restricted
form given in (8). We show the case of affine output. I' - : 71 P, C,,, Ps s.t.

T tq Z(9)P; is well-typed under T' - z : ?;. Assume T' by Z(9)P; N where,
w.l.o.g. ls is well-knit. By the restricted form in (8), it should be (w.l.o.g.)
| =%(%) and T -4 : ¥ F; P; ==. By induction hypothesis T' - : 7 -1 Py ==,
therefore I' by Z(9) Py L5 as required. [

H.2 Equivalence =,
Write =, for the equivalence induced by C,,,. We observe:
Proposition 15. =, is a typed congruence and =,,C=,,

q°

44

PRrROOF: The first part is an immediate corollary of Proposition 14. The second
part is by (i) and the definition of =,,. [|

Note Proposition 15 gives another proof of Theorem 7 (since P =>and P — P’
implies P’ == by determinacy).

Next we introduce a useful characterisation of ~.,,. Let us say a legal sequence
ly..l, matches ¢ if either n = 0 or, if not, I, is output (resp. input) iff § = o
(resp. ¢ =1).

Definition 21. A family of typed relations {R*% }; is a sequential bisimulation
if, whenever I' -4 PR® (), s matches [, and the following and its symmetric case

hold: if T -4 P — A by, P’ with s-{ legal, then T' b4 Q@ = A b Q' such that
Aty PPR*LQ.If T +, PR®Q for some sequential bisimulation R, we write
T'hy P2 Q.

Proposition 16. = ==~

~
seq

PROOF: ~ C~,,, is immediate. For the converse, we construct a family of typed

relations {R°} as follows, starting from R® ==~,,,.

i i
Ty PLREL, P, & 3Q1,Q2 Ay Qi RS Qe Ay Q;=THy P

Here (¢ = 1,2). It is easy to see that I' k4 P; R} P, implies that P, and P,
have the same trace as far as legal sequences with the prefix s are concerned (by
determinacy). We now show {R*} is a bisimulation. Suppose I' -4 PR} P> and

kg Py N Ay P such that sl is legal. If | = 7 we simulate this by the non-
transition of I' 4 P> and the result is in R® again. Otherwise this is simulated

by I' ¢ Py =L Ay Pj and the result is in R*! by definition, hence Rg Cri,. N
Proposition 17. IfT 4 P ~%, P, and T b4 P, 5 Ay P! (i = 1,2) such
that sl is legal, then A \y P| =2 P},

seq

H.3 Context Lemma

Definition 22. (i) (reduction-closed congruence) A reduction-closed congru-
ence, say R, is a typed congruence over sequential processes which satis-
fies the following condition: whenever PRQ we have (1) P — P’ implies
Q —» Q' such that P'RQ’; and in addition (2) P |, implies the ezistence of
a process Q' such that Q |},. We write =2, for the mazimum reduction-closed
equality.

(ii) (]-congruences) A |-congruence is a typed equivalence which includes = and
which is closed under typed parallel composition. =, | denotes the maxi-
mum |-congruence which satisfies the same condition on observables as in
> s While = | denotes the mazimum |-congruence which satisfies the same
condition as in =

T seq”

45

~ ~/

Similarly =,,, == -

~!
T seq’

Proposition 18. & =

PRrROOF: By Proposition 15 (iii), +»C22,, so that 22, is reduction-closed. Since
P2~ Q@ implies P 2, Q, we are done. The same reasoning applies to the latter

seq

since &, | D¥,,. [|

seq, | =
We can now prove the context lemma.
Lemma 23. (context lemma) =, =2 .

PROOF: By Proposition 18 it suffices to show = == . By definition =/ C=/ .
We show the congruent closure of =/, | (which we write R) is a reduction-closed
congruence. For brevity we omit types in the following proof. Let PR P,. Then

P, = C[P11]..[P1n] and Py = C[Py1]..[Pay] such that, for each 3, Pi; &, | Poi.
(i) Reduction-closure. Suppose P, —» P|. There are three cases.

— The redezes are in C. Trivial.

— The redexes are in P;;. Immediate from Py; =, | Pa;.

— One redez is in Py; and another is in Pij (i # j) or in C. We only treat
the case when redexes are in Py; and Py, since the other case is similar. By
definition of reduction we know Py; and P;; are neither under input prefix
nor under output prefix which binds their subjects. Noting the situation is
the same for P»; and P,; (since input subjects are determined by action
types), we can apply Fact 1 to obtain:

Py = C'[Pip]nggijy [(Pril Prj)]
Py = C'[Pan]nggi,j3 [(Pil Poj))-

By assumption Pi;|Pij =, | P2;|Ps;, by which P, simulates P;’s reduction
ending up in the same closure, hence as required.

(ii) Observables. Suppose P; |.. Then either C |, or Py; |, for some i. The
former case is trivial, while for the latter case we know Py; |, by Pi; =, | P,
hence as required. []

H.4 Another Characterisation of [,

The innocent function of T -4 P, denoted inn(T' 4 P), is defined as the min-
imum function mapping visible typed traces to their one-step extensions, sat-
isfying the condition: if I" 4 P =L and [is output, and, moreover, "s? = s,
then inn(T" k4 P)(s) = sl. We always consider elements of inn(I" 4 P) mod-
ulo a-equality. The following characterisation is immediate from contingency
completeness and determinacy of typed transitions.

Proposition 19. T+, P, T P, iff inn(T' k¢ Py) Cinn(T 4 Py).

46

H.5 Undefined Processes

First we define Q %' (v zy)(lz.y|ly.z|T). Clearly I kg € for an arbitrary I'. Then
Q7 (the undefined process) is inductively defined as follows (copy-cat agents
[z — y]™ are given in Appendix B).

Q0" 4 (7).0
Qe def lz(9).Q7¢ (md(7:) = 1)
z 1z(7).Q (~Ji.md(r;) = 71)
0™ % (1r2129) (21 = 2] [z = 2] (e AL
Qe def g

The undefined process for branching/selection types are similarly defined. The
affine channel occurring in Qf)?l is necessary because the present type discipline
demands that such a channel occurs free, though semantically it plays no role
(we can indeed construct an alternative version of the sequential typing system
in which we add the weakening for the affine channel and I0-mode, with exactly
the same set of typed terms up to the untyped weak bisimilarity). Write io(7)
for the I0-mode corresponding to 7. We observe:

Proposition 20. For each 7, we have x : T bio(ry QF > md(7)z.

To define undefined processes under general types, we use a variant of the above
processes given as follows. Let 7 and p be such that md(7) = !; and md(p) = ?;.

Qe def z(Z).Qf (7 unary)
v z[&(%;).Qp] (7 branching)

From Proposition 20 we easily know z : 7,y : p 1 Q77 > iz @ 71y.
Now write I' - A when the modes given to names in A conform to I in the
obvious sense. We then write I' -4 A when I' - A and, moreover,

(1) If ¢ = 1, then the number of the channles with mode !; in A and that of
those with mode ?7; coincide; and

(2) If ¢ = o, then either: (2-a) we have the same condition as (1) above, or
(2-b) the number of the channles with mode !y in A is less than that of
those with mode ?7; coincide exactly by one.

We can now construct the undefined processes for general types as follows. We
consider only those cases when action types do not contain | since such channels
can simply be restricted.

Definition 23. Let I' Fy A such that 1 ¢ md(A). Then we define Qid, as
follows.

(1) If ¢ = 1 and hence the condition (1) above is satisfied, then for § of mode
!1 and Z of mode 71 in A, together with W of mode !, in A, we define

def
Qgﬂﬁ = (Hiﬂwiyi) (Hjij)-

47

(ii-a) If ¢ = o and the condition (2-a) above is satisfied, then, letting §, T and

W be as (i) above, QE@ = (M4,)| (T4,) [Q2.

(ii-b) If ¢ = o and the condition (2-a) above is satisfied, then, letting §, Tz’

. . . - N def
and @ as (i) above assuming & and § are in bijection, we set QY 6 =
b

(M%) (T Q) | Q-

It is easy to check I' -4 in 4> A. Before showing 957 ¢ is indeed the least defined
process in each type, we first observe:

Proposition 21. I' -4 A iff for some P we haveT' 4 P> A.

PROOF: The “if” direction is by induction on typing rules. For (Inact), the con-
dition (1) trivially holds. (Par), (Res), the output prefix rules and the weakening
rules are also trivial. For (In't), we assume the condition (2) (either of (2-a)
and (2-b) is fine) to hold in the premise by the induction hypothesis, and cut
off several ?,-nodes from the action type, and add one !1, so that the condition
(1) does hold in the consequence. For (In'~), in the premise we should have the
degenerate case of (2) (with no affine input) in the action type, so that (1) easily
holds in the consequence, hence done. For the “only if” direction, we simply use
Ql;l,qﬁ if there is no L in A. If there is, let A = B ® L4. We now define, with

md(7) =11, L7 def (v y)(z(W).y|y-Q%). Assuming the input part of the types of @

being 7, we can now take, the process Qg‘ ¢|H,~L;ii, which does type-check under
T, ¢ and A, as required.]

We can finally reach the main result of this subsection.
Proposition 22. (undefined processes)

(i) z:7 ki) QF Cug P>md(7)z for any z : 7 Fo(r) P> md(7)z.
(ii) Let 'y A such that | ¢ md(A). ThenT' Fy Q , C,, P forany I' by P>A.

PRrROOF: For both (i) and (ii), we merely note that these agents have no visible

output after the the obligatory inputs (if any). []

H.6 Tester Lemma

Definition 24. Let A, B be action types. We write AL B when the following
and its symmetric case holds: if pz € A and p ¢ {_L} then pz € B.

Below we say A is closed if pz € A implies p € {L,!,}.
Proposition 23. A1 B implies (1) A< B and (2) A® B is closed.

Lemma 24. (Lid Lemma) Letz : 7-y : p-T' g P>AQ®pz®?1y with io(p) = o.
Then (i) y:p-T Fo P|QL>A® 71y and (i1) P Uy iff P|QL {,.

48

PRroOOF: Both are immediate from the construction. |

We say I is saturated when each type mentioned in I' is paired. Note whenever
I'F4 P> A we can saturate I' without changing typability.

Lemma 25. (Tester Lemma) Assume I is saturated. ThenT 1 P} %, Pa> A
iff there exists I' g R>B ® 71z with I’ = z: ()" - T such that (1) BLA and
(2) T+ Pi|R |, and T' + P|R 1}, or its symmetric case.

PROOF: By Lemma 23, there exists '+ A -z : 7 kg .S with md(7) = ?; such that,
say, (P1|S) |, and (P|S) 1, for which we again assume A is saturated without
loss of generality. Assume

F''Az:7HS8pC®C' ®7:2

where C' does not contain a node of form !;w;. Then we can write S = T|T"
where T” are the composition of affine input processes whose active subjects are
from C’, so that we have

' A z:7HT>rC®72.
Since the processes in 7" cannot be engaged in interaction, we still have (P;|T) |,

and (P2|T) f. Let S def 2(4@).Z|T. We now convert S into the stated form, by

closing A by restriction. Let C = Co®C"’ such that I' - Cp and A + C’, such that

C' = (®ipiyi) ®!,C". By construction we know p; € {?,,,?1}. Let Ry def S’|HQZZ

where T' F y; : p; and md(p;) = P; (i.e. p; is the compensating input type). Then
we have

I‘-A-z:’r-x:()?1 Fo Ro>Co Q@ LEQILF® ? .

By Lemma 24, we know P;|Ry |, iff P;|S {.. By taking R def (v)Ry we are
done.]

I Finite Testability

This section introduces an abstract notion of innocent function (which does not
use the term structure) and show that any finite such function is realisable by a
sequential process.

I.1 Innocent Functions under Type T, A, ¢

Let T' -4 A. Then the transition relation of form I' 4 A LA Fy B (1L #T)
is generated from the following rules (we show the case of branching: the unary
cases are given accordingly).

THi: [&erfi? AFpe md(7)=q (j € I)
Th A9 g7 Ao gy
THI: [@icrn]? Abpz md(7) =4 (j€T)
T ATV 7.7 Ao g

(In)

(OuT)

49

We can check whenever I' -y Aand I' 4 A A Fy B we have I' -y B, so
that the transition is well-defined. We write I' -4 A —+ A k-, B for a transition
sequence. Such s is called sequence under I', ¢, A. Such a sequence is legal (resp.
well-knit, resp. an output-view) when it satisfies the same conditions as Section
4.3 (we call a transition sequence an output-view if it is the output view of
another legal transition sequence: in particular, such a sequence is the output-
view of itself). Two non-empty well-knit sequences s; and sz under I', ¢, A are
coherent if, whenever their initial free subjects differ, their affine output subjects
are disjoint. We can now define innocent function without mentioning concrete
terms.

Definition 25. Let I' -4 A. Then an innocent function under ', ¢, A is a prefix-
closed set f of mutually coherent output views under ', ¢, A satisfying the fol-
lowing conditions (sequences are considered modulo =,):

i) (contingency completeness) If s€ f, 'y A = A+ B 'y and sl is an
@ (gency #

output view, then sl € f.
(ii) (innocence) If sl; € f with I; output (i = 1,2) then I; = 5.

We write f : (T', A, ¢) when f is an innocent function under T', A, ¢. An innocent
function f is finite when its cardinality modulo =, denoted |f|, is finite.

An innocent function in the above sense indeed defines a function by simply
taking as its range a set of sequences ending with output (thus the finiteness in
the above sense corresponds to finiteness in terms of the graph of a function).
For this reason we often confuse such f with the induced function. Since names
with modes | in an action type never induces transition, we can safely stipulate:

Convention 2 From now on whenever we consider an innocent function f :
(T4, A), we assume px € A implies p # L.

I.2 Representability

Our aim in this section is to show that any finite innocent function is repre-
sentable by concrete terms. We use the following two lemmas, one about the
innocent function in the above sense, another about legal sequences.

Lemma 26. Let f : (I, A,1) with A =?7,BQ7,C @ p121 ® .. prZn. Then
f=Wf; with f; : (T, A;, 1) where A; =?,B® ?1C; ® piz; and WC; = C.

PROOF: Since sequences in f are well-knit, f can be partitioned into f;, each
containing all and only sequences in f starting from an action with subject x;.
By coherence and well-knitness, fn(s;) N fn(s;) C fn(B) whenever s; € f; and

s; € fj with ¢ # j. Thus T ;1 A, 2%y for each s; € f;. Clearly f; satisfies
contingency completeness and innocence under this new type, hence done. ®

Lemma 27. LetT b1 A -5 such that (1) ls is an output-view and (2)T F1:!,.
Then no free affine output occurs in s.

50

PROOF: By contradiction. We use [, (,),] for !, 2., !1, 71 for the ease of under-
standing. Suppose s = [1t];u such that | is free. By well-bracketing [; should
be answered by an action in ¢. Let this action be |; (hence i ~y, j), so that
t = to|;t1. Since s is an output view, the initial action of ¢; should be bound by
|;- We show that this cannot be the case. Initially the last action of ¢; can only
be input hence). Since s is an output view this should be bound by the previous
action, hence we know ¢t = t(). Assume we already know ¢ = t"()..(). Since ¢
is well-bracketed and |; is free, again the last action of ¢ should be), hence the
previous action, either in ¢ or]; itself, can only be (, contradiction. []

Theorem 9. (representability) Let f be a finite innocent function underT', ¢, A.
Then there ezxists T' -4 P> A such that inn(T' - P) = f.

PRrROOF: We use induction on the cardinality of finite innocent functions under
all types, cf. [28]. Sequences are always considered modulo =,, and we assume
that in (the sequences in) f : (T', ¢, A) all names in A occur free (for input this is
vacuous; for output this does not lose generality since once we obtain a process
which does interact at A9 C A, then we can simply add an appropriate set of L
to add A\ Ay to the action type). For the base case, we have |f| = 0, in which
case Qﬂﬂp satisfies the condition under an arbitrary type. For the inductive step,
assume that the statement holds for all innocent functions with cardinality no
more than n. Assume in addition that f is an innocent function under T', ¢, A
and |f| = n + 1. We first consider the case when ¢ = 1. By Lemma 26, if we
write A = 7,B ® ?:C ® pt where each p; is !; or !,,, we can write f = Wf; with
fi: T, A;,1 where A; = 7,B ® 71C; ® p;z; where C = WC;. If |fi| C |f| for each
1, then by induction hypothesis there exists I' F1 P; > A; which represents f; for
each 4. Take I" 1 II; P, > A (which is well-typed by the conditions on A;) which
clearly represents f. So suppose |f;| = |f| for some ¢, so that |f;| = 0 for ¢ # j.
We only have to consider the representation of f;. There are two cases.

Case p; = !;. We treat the case when I' I- z : [&;c(7})]"* since this subsumes
the unary case. By contingency completeness, for each j € J, there is a family
of sequences each of form zin;(y};)s;. This family, say g;, defines an innocent
function since the initial output is identical in all of them (by innocence). By
induction hypothesis, g; is represented by a well-typed I'-¢j; : 7j Fo Q;>A; ® Ej,
where E; assigns appropriate modes to ;. We can now take P; & z[&;(¥;)-Q;]-
Clearly we have T -1 P; > A;, which represents f;, hence done.

Case p; = !,. We again only treat the case when I' - z : [&;c;(7)]'>. By
Lemma 27, if s € f; then s does not contain a free affine output, hence neither
does A; by assumption. As before, for each j € J, there is an innocent function
g; which is represented by, say, I' g Q; > A; ® E; for an appropriate E;. Since
each A; does not contain a free affine output, I' F1!z;[&;cs(7;).P;] > A; is well-
typed which has the expected behaviour, hence done.

Finally the case when ¢ = o is obvious since, after the unique initial output, the
remaining sequences define an innocent function of strictly less cardinality with
mode 1.]

51

An important corollary of Theorem 9 follows.

Proposition 24. Let I' g P|R |,. Then for some finite T' -4 Ry C., R we
have T' kg P|Rg 5.

PROOF: Since I' g P|R |, we observe I' g P|R =5 such that sbj(!) = z, which

(s, .
can be written ' kg P|R Q . We then take R, as the process which represents
the minimum innocent function which contains prefixes of ¢ (which is finite). W

Note that if T' g P|R 1} then immediately T' kg P|Ry 1} too (since C,, is a
precongruence).

The proof of Proposition 7 is by evident bisimulations. We move to the proof
of Proposition 8.

1.3 Proof of Proposition 8 (Finite Testability)

By Lemma 25 (Tester Lemma), we can find some R’ such that, for A el

and A -z : ()* g R' > B where B = ®;!,z; ® 71z which differentiates
P; and P, when composed in parallel. By construction we can write R’ =
(v 2)(TIR(z;) | T; R} (z;) | S'(zx&)) where R;(z;) (resp. R}(z;)) is a replicated
term with subject x; (resp. z;), both of which may access z; and z;, while S’ is
a process with mode o and which may access z, ¢, z; and z; (note a replicated
input cannot contain free affine channels so only S’ can access z and z). We
then use Proposition 7 to make a private copy for each replicated process which
a process uses at channels of mode ?,, so that R’ is transformed into:

A-z:()" o R~ ILR(z) | S(zz)

where fn(S) = {zz} and R;(z;) is a replication with subject z; which should be
its only free name. We now apply Proposition 24 to replace each R; and S with
the corresponding finite processes with the same effect, hence as required. []

Remark. The final part uses the order-preserving nature of C., and repre-
sentability of finite innocent functions as processes. This part can also be proved

using the correspondence with strategies. Let 6 % (()7)' and let 7 : pyx- - - X pn,
pi t (p1 X+ X py)—0and s : 7= 0 be innocent strategies corresponding to R, P;
and S, respectively (here by abuse of notation we use channel types to denote the
corresponding arenas). Then sop;or : 0 represents w : 6 1 (v Zu)(R|P;|!w(v).S)
fori =1,2,i.e.

A-u:?-v:()?1 Fo (RIP|S)Vy << sopjor # L:6

where | is the bottom element. By the CPO structure of homsets and continuity
of composition in the category of games, we can take finite so C s and 9 C r
with the same property. These strategies can in turn be considered as transitions,
which are then representable as processes. Note that the pair R and S (with
replication for the latter) precisely corresponds to the pair of testing morphisms
used by [3] and [28] in their PCF games.

52

J Full Abstraction

This section first establishes computational adequacy, then proves definability of
finite processes as PCF-terms. For computational adequacy we show a simplest
proof in outline, using operational correspondence, cf. [34]. For definability we
use the correspondence between finite canonical normal forms of PCF terms, on
the one hand, and “normal forms” of typable processes, on the other.

J.1 Computational Adequacy

We outline the proof of computational adequacy via operational correspondence.
For the purpose it is convenient to use an extension of —, which we write +—,
called extended reduction, first introduced in [45]. The extended reduction is de-
fined as the compatible closure generated from the following rules over processes
modulo =, assuming the standard variable convention for bound names.

2()-Q|C[z(9) P] — C[(v §)(P|Q)] (fn(Q)Nfn(CT]) = 0)
lz(4)-QIC[z(9)P] = Cl(v §)(P|Q)]|'z()-Q (fn(Q) Nfn(C[]) = 0)
(ve)lz(y).P—0

Immediately —C+>. Further we can easily check > is a bisimulation, hence
—C2,,,. We can further verify the following. In (ii) below we write P f}. when
Vn € w. P —™. In (iii) €, appeared in Appendix H.5.

Proposition 25. (i) Let - M : Nat. Then M — M’ implies [M : Nat], —7
[M' : Nat],.

(i) If [M : Nat], —* P’ v/, then P' = [n : Nat],, for some n.

(iii) If [M : Nat],, fte then [M : Nat], = Q.

Proof. (i) is mechanical. For (ii), first P’ =lu(c)R by typability. Since (1) R is
in the output mode (2) c occurs uniquely in R and (3) no other free output
channel is in R either it contains a hidden redex or c is active. By R v/~ only
the latter is possible, hence R = ¢in,R’. By typing rule we can easily check
R’ = 0,hence done. This also proves (iii). [|

Combining Proposition 25 (i) and (ii) we are done.

J.2 Finite Definability (1): Q2-normal Forms

The proof of full abstraction relies on PCF-definability of finite processes (Theo-
rem 2). This can be proved in several ways. We can use the definability result of
games in [3, 28], via the correspondence between composition of strategies and
composition of processes; alternatively, we can work directly with processes, us-
ing induction on the cardinality of (finite) innocent functions under PCF types
(in the sense of Appendix I.1). A more direct method is to can use a syntactic
characterisation of finite processes, extending — (introduced in Appendix J.1)

53

to —q as follows. Below 2, appeared in Appendix G.5. In the second rule {}
is the divergence w.r.t. the extended reduction. In the last rule we assume the
typability.

F|—¢Pl—)P’ I‘I—¢Pﬂe FI—PF—)QQ
[hy Prsg P! THPgQ, A F C[P] —q C[Q]

It is easy to check ¢ stays within the weak bisimilarity introduced in Section
4. We say a typable process P is in 2-normal form if P has no reduction except
within Q7 (in other words if P convergences assuming the undefined processes
are constants for their respective types). The following inductive construction of
-normal forms is notable.

Definition 26. The set of syntactic 2-normal forms is inductively generated by
the following rules. We implicitly assume typability.

— 0 is a Q-normal form.

— Each QE’ ¢ 5 a Q-normal form.

— If P is a Q-normal form, then z(y).P is a Q-normal form. Similarly for
branching.

— If P is a Q-normal form, then !z(y).P is a Q-normal form.

— If P is a Q-normal form such that all of its free active output subjects are
within ¢, then T(§)P is a Q-normal form, similarly for selection.

— If each P; is a Q-normal form such that none share compensating input and
output, then ILP; is a Q-normal form.

Immediately each syntactic {2-normal form is indeed a (2-normal form. Further
we observe the fundamental result.

Proposition 26. Let f be a finite innocent function under T'; A, ¢. Then there
exists a Q-normal form P generated inductively as above such that T 4 P> A
and inn(P) = f.

Proof. By syntactically following the proof of Theorem 9, observing each con-
struction of processes in the proof follow the induction given above. []

In fact, it is easy to check that the innocent function of each syntactic {2-normal
form is always essentially finite in that it is finite except it may be defined for
an infinite number of branches in some branching types (i.e. its depth is always
finite though its width may be infinite), even though we do not use this property
below.

J.3 Finite Definability (2) Finite Canonical Forms

The following set of terms is the restriction of the preceding inductive construc-
tion of Q-normal forms to those typable under the (translation of) PCF-types,
which we call PCF Q-normal forms. We again implicitly assume typability.

54

(a) Q, and !u(c)¢in,, are PCF-Q-normal forms.

(b) If each of {P;} (i € I) and {!u(c).Q;} (j € w) is a PCF-Q-normal form,
then lu(c).z(ye)(TIP;(y;) | e[&jcwQ;] is @ PCF Q-normal form.

(c) If lu(yc).P is a PCF Q-normal form then lu(zgc).P is a PCF Q-normal form.

A PCF Q-normal form is finite if it is constructed by the same rules except, in
(b), we set that 'u(c)Q; = Q, for co-finitely many j. It is easy to check all PCF
Q-normal forms are indeed 2-normal forms.

The syntactic form introduced thus closely corresponds to finite canonical
forms (FCFs), introduced in [3,28], which are given as follows.

F := Q|n|)z:aF |case zF of {n;: Fi}Yjes

where, in the last line, we assume I to be a finite non-empty subset of N and

that each of zF and F] has type Nat. Finite PCF Q-normal forms are translated

into FCF's as follows.

(@) (‘u(c).zin,)* & n and (lu(c).Q)* < Q.

(b’) If Pr ' F; (i € I) and ('u(c).Q;)* = F (j € w) with lu(c).Q; = 9, for
cofinitely many j, then

(tu(c)-Z(§e) (TP (y:) | el&cjew@s])* & case zF of {n; : Fi}jes

&) If (lu(jc).P)* & F then (lu zyc).P)° 4 \z.F.

Y
Observe that P* is bijective, so that its inverse gives a translation of FCFs into
(PCF) Q-normal forms. Writing this translation as F°, immediately we have:

Proposition 27. Let P be an Q-normal form. Then (P*)° ~ P.

The finite PCF -normal forms can also be mapped into typable processes by
first translating them into (geneuine) PCF terms and then using the map [- .
For simplicity we use the syntax if M; = M, then N else L, which is easily
translatable into the syntax given in Section 5.1, for which we assume the stan-
dard operational semantics and the translation into 7-terms (the subsequent
arguments do not essentially differ if we directly translate the case construct
into the original syntax).
(Q:a)° def UT : O.T

Az : a.F)° \e: . F°

(case TF)..Fy, of {n; : Fl}icr)° < if N = ny then F else

if N = ny then Fj else

if N = n,, then F,, else(}

where, in the third line, we set I = {1,..,m} and N def zFY..F? . We now observe:

55

Proposition 28. Let F be a FCF. Then F° =, [F°],.

Proof. By induction on the construction of FCFs. The only non-trivial case is
the translation of the case construct, which we treat below. For simplicity we
assume the body of the case construct is defined only for j = 0,1. We write
€e[Qo, Q1; R] for e[&Q;] such that Q; 'R for i ¢ {0,1}. Then we have to show,
with Q3 = Q,

S Lvu(c).z(ge) (TIPi(y;) | e[Qo, Q1; Q2
and
T Evu(c).z(7e) (TLP: (y:) | €] Qo, (Z(Fe') (TP {(y:) | €'[Q2, Q15 Q2])); Qo)

are equal up to =,,,. But by Lemma 25, we have only to take their observables in
the context in which all free ?,,-names are compensated by some processes. Note
that, given such a context (say C|[-]), the value e receives in S and the values
e and €' receive in T always coincide. Thus we have (assuming compensating
names are restricted in the context):

C[T] »*lu(c)@; iff C[S] —=*u(c)Q;i|R
by which we conclude T" =, S, as required. |
We can now establish Theorem 2. For reference we restate the theorem below.

Theorem 10. (finite definability) Let E°-u:a° k1 P> !,u be finite. Then
E°-u:a® b [M:a]y = P for some M.

Proof. If E°-u:a° k1 P> !,u is finite, then its innocent function can be rep-

resented by a (syntactic) Q-normal form, say Py. Since their innocent functions

are identical, we have Py ~ P. Take M def (Pg)°. Then by Proposition 27 and

28, we have [M], ., Po =~ P, as required. [|

56

