
Asynchronous Sessions with Implicit Functions
and Messages†

Alex Jeffery
University of Sussex

Email: A.P.Jeffery@sussex.ac.uk

Martin Berger
University of Sussex

Email: M.F.Berger@sussex.ac.uk

Abstract—Session types are a well-established approach
to ensuring protocol conformance and the absence of
communication errors such as deadlocks in message passing
systems. Haskell introduced implicit parameters, Scala
popularised this feature and recently gave implicit types
first-class status, yielding an expressive tool for handling
context dependencies in a type-safe yet terse way. We ask:
can type-safe implicit functions be generalised from Scala’s
sequential setting to message passing computation? We
answer this question in the affirmative by presenting the
first concurrent functional language with implicit message
passing. The key idea is to generalise the concept of an
implicit function to an implicit message, its concurrent
analogue. Our language extends Gay and Vasconcelos’s cal-
culus of linear types for asynchronous sessions (LAST) with
implicit functions and messages. We prove the resulting
system sound by translation into LAST.

I. INTRODUCTION

Session types. Types classify programs, distinguishing
between programs that are guaranteed to exhibit seman-
tic properties of interest, and those that are not. Types
for sequential computation are well-established and a
core part of industrial software engineering. Behavioural
type systems extend types to concurrent, parallel and
distributed computation, and are a core activity of con-
temporary type theoretical research.

Session types, first introduced in [3], [10] are an
important example of a behavioural type system for mes-
sage passing concurrency. Session types classify message
passing behaviour at given channels: e.g. if process P
first receives an integer and then a boolean on channel
x, and finally sends a boolean on x, then this behaviour
could be expressed by the session type

!Int.?Bool.!Bool.end

Here ?T represents input of a value of type T, !T means
sending a value that has type T, while end denotes the
end of the interaction.

A key notion in session types is that of duality,
originating in linear logic: processes P and Q can be

†Extended abstract. We thank S. Gay, A. Scalas and V. Vasconcelos
for valuable feedback on the present work.

composed in parallel only when throughout the course
of the computation each output of P ’s is matched by
a suitable input of Q’s, and vice versa. Session types
allow only dual processes to interact. Hence typability
guarantees the absence of communication errors such as
mismatched communication and deadlocks. A process
Q, dual to P above, would have the session type

?Int.!Bool.?Bool.end

Notice that for each action in P ’s type, we have the dual
action in Q’s type, e.g. an output of type !Int can be
received by an input of type ?Int.

Implicit functions. Modularity, a core concept in soft-
ware engineering, is greatly aided by parameterisation
of programs. Parameterisation has dual facets: supplying
and consuming a parameter. A key tension in large-
scale software engineering is between explicit (e.g. pure
functional programming), and implicit parameterisation
(e.g. global state). The former enables local reasoning
but can lead to repetitive supply of parameters. Here
is a simple example of the problem (where <= is the
function λxy.x ≤ y, and α a type):
let f x compare : α = ... in

f 3 (<=)
...
f 17 (<=)
...

Repeatedly passing functions like <= which are unlikely
to change frequently, is tedious, and impedes readability
of large code bases. Default parameters are an early
proposal for mediating this tension in a type-safe way.
The key idea is to annotate function arguments with their
default value, to be used whenever an invocation does
not supply an argument:
let f x (compare = (<=)) : α = ... in

f 2
...
f 5
...

The compiler synthesises f 2 (<=) from f 2, and
f 5 (<=) from f 5. Default parameters have a key
disadvantage: the default value is hard-coded at the

978-1-5386-5541-2/18/$31.00 c©2018 IEEE

callee, and cannot be context dependent. Implicit ar-
guments, a strict generalisation of default parameters,
were pioneered in Haskell [6], and popularised as well
as refined in Scala [7]: they separate the callee’s decla-
ration that an argument can be elided, from the caller’s
choice of elided values, allowing the latter to be context
dependent.

let f x (implicit compare) : α = ... in
let g = ... in

let implicit cmp = (<=)
f 2

...
let h = ... in

let implicit cmp = (>)
f 5

...

In this example f 2 is rewritten as above, but f 5
becomes f 5 (>), i.e. a different implicit argument
is synthesised. The disambiguation between several
providers of implicit arguments happens at compile-
time using type and scope information. Programs where
elided arguments cannot be disambiguated at compile-
time are rejected as ill-formed. Hence type-safety is not
compromised.

One might ask: can type-safe implicit functions be
generalised from Scala’s sequential setting to message
passing computation? We answer this question in the
affirmative by generalising the concept of implicit func-
tions to implicit messages. We elaborate on this idea by
presenting the first concurrent functional language with
implicit message passing: we extend Gay and Vasconce-
los’s calculus of linear types for asynchronous sessions
(LAST) [2] with implicit message passing and implicit
functions. We argue with several examples that implicit
messages provide useful abstractions for programming
languages with session types. In particular, repeated
rebinding of session names can be omitted.

Implicit messages. The concept of implicit messages has
two dual parts:
• Input can be declared implicit, and not be explicitly

matched by an output in the dual process.
• At compile time, a suitable output is synthesised,

based on type and scope information.
In the following example, we have two processes p and
q running in parallel (we write ‖ for parallel compo-
sition). They initiate a session (denoted by accept
and request) on fresh and dual channels c (for
messages from p to q) and d (for messages from q to
p), whereafter p performs an (implicit) receive and q
apparently does nothing.

〈 let p =
let c = accept x in
let n, c = implicit receive c in c

in p 〉 ‖ 〈 let q =
let o = 10 in

let d = request x in d
in q 〉

The type system sees the implicit receive in p and is
able to figure out that a corresponding send must be
inserted into q. It knows that the channel that the send
occurs on is d since it is the dual channel to c which the
implicit receive uses. The chosen message is a
variable of appropriate type from the implicit scope. The
implicit scope can be thought of as a store of variables
that are designated as implicit - we make this notion
more precise in Section IV. Following [7], we do not
give names to implicit variables until after translation,
but use o (pronounced ‘query’) as a placeholder name
for all implicit variables. The translation becomes:

〈 let p =
let c = accept x in
let n, c = receive c in c

in p 〉 ‖ 〈 let q =
let y = 10 in
let d = request x in d
send y d

in q 〉

Here y is a fresh variable. This insertion corresponds to
adding an implicit variable as an additional argument to
an implicit function.

Elimination of repeated rebinding. A well-known prob-
lem with the integration of session types and sequential
languages is the seeming necessity of repeated rebinding
of channel names. The problem is that send takes a
channel of type !T.S as its second argument, and returns
a linear channel of type S. In order for linearity to be
respected that channel must be rebound. Consider the
process below, typical of LAST programs.

miscService :: 〈S〉a → end
miscService ap =

let c = accept ap in
let m, c = receive c in
let n, c = receive c in
if pred(m) then

let c = select l1 c in
let c = send f(m, n) c in
let c = send g(m, n, n) c in c

else
let c = select l2 c in
let o, c = receive c in
let c = send f(n, m) c in
let c = send g(m, n, o) c in c

This redundancy makes programs hard to read. The issue
can be addressed in other ways, for example using pa-
rameterised monads [1], see also [2, Chapter 7]. Implicit
functions and message passing enable a principled and
canonical solution: make the channel argument implicit
and let the compiler synthesise the missing channel name
for rebinding.

The send primitive has type T →!T.S → S. We
can use implicit function types to define a new output
primitive sendo, with type T →!T.S o→ S, explained

in detail below. The annotation o in !T.S o→ S makes
the channel argument implicit, and the returned channel
is rebound to the implicit scope by the body of sendo

and is not required elsewhere.

sendo :: T → !T.S o→ S → U → U
sendo m u = let o = send m o in u

We can do something similar for select and
receive.

selecto :: Label → ⊕〈...l:S, ...〉 o→ S → U → U
selecto l u = let o = select l o in u

receiveo :: ?T.S o→ T
receiveo = let m, o = receive o in m

We can rewrite miscService above with our new
primitives. The resulting code is less repetitive and more
terse, hence readable.

miscService :: 〈S〉a o→ end
miscService =

let o = accept o in
let m = receiveo in
let n = receiveo in
if pred(m) then

selecto l1
sendo f(m, n)
sendo g(m, n, n)

else
selecto l2
let o = receiveo in
sendo f(n, m)
sendo g(m, n, o)

Session type classes. Type classes [5], [11] provide type-
safe ad-hoc polymorphism. They allow the programmer
to define a fixed set of functions over multiple datatypes,
where each datatype has a bespoke implementation of
each function in the set. We call these sets of functions
type classes. They are usually implemented by dictio-
nary passing [11]. That means that at compile time an
additional argument (the dictionary) and suitable access
to this argument are synthesised for all code depending
on type classes. With implicit arguments we can make
dictionary passing implicit, and type classes become a
special case of implicit arguments. This is a common
Scala idiom [8].

Implicit messages suggest a natural generalisation of
type classes: pass access to dictionaries by implicit
messages! We illustrate this with an example. In Haskell,
Show is a type class that converts values to string
representations. We generalise this to message-passing
concurrency: instead of a conversion function, we have
a conversion server. We show example implementations
intShow and boolShow (with some details omitted).
Additional function servers can be written against this
code over types that define a Show type class server.

type Show = ?a. ?o〈?a. !String.
end〉a. !String. end

show :: 〈Show〉a → end
show c =

let c = accept c in
let a , c = receive c in
let aShow , c = implicit receive c in
let d = request aShow in
let d = send a d in
let as , d = receive d in
send as c

implicit boolShow :: 〈?Bool. !String.
end〉a → end

boolShow c =
let c = accept c in
let b , c = receive c in
send (if b then "true" else "false") c

implicit intShow :: 〈?Int. !String.
end〉a → end

intShow = ...

showUser :: 〈Show〉r → end
showUser ap =

let c = request ap in
let c = send 10 c in
let s, c = receive c in
printf(s) ;
c

Clients communicating with the show server such as
showUser do not need explicitly to send their show
implementation, but send one implicitly.

It would be possible to make this example even more
terse by eliminating repeated rebinding with implicit
functions, however for clarity we show just one applica-
tion at a time.

II. THE LANGUAGE IM

This section presents our language IM of implicit mes-
sage passing. IM is an extension of Gay and Vas-
concelos’s calculus of linear types for asynchronous
sessions (LAST) [2]. (Familiarity to LAST will be
essential for understanding the rest of the paper.) LAST
is a λ-calculus with primitives for spawning threads
that exchange messages. LAST was the first coherent
integration of session types with λ-calculus and uses
linear types at the λ-level to mediate between session
types and functions. LAST is a suitable foundation for
implicit message passing because its smooth integration
of functions and processes enables us to provide both:
implicit functions and implicit messages.

As the compiler synthesises the missing arguments at
compile-time from type information, calculi for implicit
arguments might be best understood not as programming
languages, but as meta-programming systems that gen-
erate code in a base language L from input programs in
L with implicits. Indeed, SI [7], an extension of System
F, Scala’s foundations for implicits, does not have a self-
contained operational semantics, and is instead compiled
to System F. We use the same approach, and translate
IM to LAST.

Syntax. In the presentation of IM’s syntax, let v range
over values and e over expressions. We assume that x
ranges over a countable set of term variables, c over a
countable set of channel endpoints, n over N ∪ {∞}, l
over labels and I over finite subsets of N. In order to
make the presentation easily accessible, we highlight the
extensions IM adds to LAST.

v ::= λx.e || (v, v) || unit || fix || fork
|| request n || accept n || send
|| receive || implicit receive

e ::= v || e e || (e, e) || let x, x = e in e
|| select l e || case e of {li : ei}i∈I
|| o || let x, o = e in e

Here implicit receive is the implicit analog of
receive. Unlike receive, it is not matched by a
corresponding send, but a corresponding send is in-
serted during translation, while implicit receive
is translated into a normal receive. o denotes a query
to the implicit scope. o is removed at translation time, and
is replaced by a nondeterministically chosen name in the
implicit scope. The construct let x, o = ... allows
us to add variables to the implicit scope, and as with the
lone o, we also replace o within let by a variable name
during translation. Note that we often write let o =
e in e’. This is a convenience and can be thought of
as syntactic sugar for let _, o = (_, e) in e’
where _ is an unused variable or expression.

The parameter n following accept n and
request n gives a bound for session communication.
This will be explained in later sections. Note that we
omit the bound parameter for brevity where not relevant.

An IM program is a configuration of expressions
in parallel, running as separate threads and typed in
a suitable environment. We now define configurations,
ranged over by C.

b ::= v || l

C ::= C ‖ C || c 7→ (c, n,~b) || (νcc)C || 〈e〉

III. TYPES FOR IM

Just as SI is given meaning by type-guided translation
to System F in [7], we give such a translation of IM into
LAST. This section prepares the translation by extending
LAST’s typing system with types for implicit message
passing and implicit functions. Types for IM are given
by the following grammar. Here T ranges over types for
the λ-calculus part of IM, S over session types, and B
over buffer types.

T ::= Unit || S || T ⊗ T || T → T || T (T
|| 〈S〉r || 〈S〉a || 〈S, S′〉 || T o→ T
|| T o(T

S ::= end || ?T.S || !T.S || &〈li : Si〉i∈I
|| ⊕〈li : Si〉i∈I || X || µX.S || ?oT.S
|| !oT.S

B ::= T || l

The type T o→ T is the type of implicit functions. It
is written ?→ in [7] but we replace ? by o to avoid
confusion with the input session type ?T.S. The type
T o(T is the linear equivalent of T o→ T . As with
[7], we do not have syntax for implicit abstraction and
application - these are inferred during implicit resolution
in Section IV.

The types !oT.S and ?oT.S are the types of implicit
message input and output respectively. They are the
dual of one another as with explicit output and input.
Implicit output types cannot be deduced from a process’s
syntax (since they are implicit) and must be inferred by
inspecting the process that contains the corresponding
implicit input. This happens during implicit resolution.

Buffer content types ~B are composed of vectors of
entries B. Each entry is either a type T , representing the
type of a value that is to be sent and stored in the buffer,
or a label l representing the selection of such an option
l by a process communicating using the buffer. Buffer
content types ~B are assigned to buffers ~b such that for
each v in ~b there exists a type T in the corresponding
buffer content type ~B such that v : T . This notion is
made precise in Section IV.

Given below are the type schemas for the constants k.
They are the same as LAST’s, and can be instantiated
for any appropriate type.

fix : (T → T)→ T
send : T →!T.S (S
send : T →!T.S → S if un(T)
fork : T → Unit if un(T)
receive : ?T.S → T ⊗ S
request n : 〈S〉r → S if bound(S) ≤ n
accept n : 〈S〉a → S if bound(S) ≤ n
unit : Unit

Note that we omit a type schema for
implicit receive. This is because it cannot
be translated by the rule [T-CONST] in Figure 1, but
needs a bespoke typing rule as unlike the other constants
its translation is not identity.

We now give the session type duality function for our
calculus. If a session type S and S′ are dual, written

S = S′, then a pair of terms of types S and S′ can
interact without communication errors. Such processes
match in the sense that every action that one takes is
matched by the other - if one outputs, the other inputs.
If one offers a choice, the other makes a choice. We
extend the duality function of LAST to include the two
forms of implicit communication:

?T.S = !T.S !T.S = ?T.S

?oT.S = !oT.S !oT.S = ?oT.S

µX.S = µX.S X = X

⊕〈li : Si〉i∈I = &〈li : Si〉i∈I end = end

&〈li : Si〉i∈I = ⊕〈li : Si〉i∈I

We now define the subtyping relation coinductively by
extension of the definitions for LAST.

DEFINITION 1. A type T is contractive if it does not
have subexpressions of the form µX1...µXn.Xi where
0 < i ≤ n.

Let S denote the set of contractive, closed session
types, and let T denote the set of types in which all
session types are contractive and closed. We now define
the function F (·) on binary relations over T . We omit
all cases not involving the new type constructs. The
remaining clauses are formally identical with LAST’s.

F (R) = ...

∪ {(?oT.S, ?oT ′.S′)|(T, T ′), (S, S′) ∈ R}
∪ {(!oT.S, !oT ′.S′)|(T ′, T), (S, S′) ∈ R}
∪ {(T1 o→ T ′1, T2 o→ T ′2)|(T2, T1), (T ′1, T

′
2) ∈ R}

∪ {(T1 o(T ′1, T2 o(T ′2)|(T2, T1), (T ′1, T
′
2) ∈ R}

∪ {(T o→ T ′, T o(T ′)|T, T ′ ∈ T }
∪ {(T → T ′, T o→ T ′)|T, T ′ ∈ T }
∪ {(T (T ′, T o(T ′)|T, T ′ ∈ T }

Contractivity ensures that F is monotone. We write T <:
U if the pair (T,U) is in the greatest fixpoint of F . The
last two lines in the definition of F (·) allow us to type
sending explicit messages to implicit input.

The matches relation determines whether a given
buffer type ~B agrees with a session type S. We write
~B mat S when the types in ~B match a prefix of those
in S. We formalise this notion with the rules below:

~B mat S U <: T
U ~B mat ?oT.S

M-OUTI
~B mat S U <: T
U ~B mat?T.S

M-OUT

−
ε mat S M-EMPTY

~B mat S
l ~B mat &〈..., l : S, ...〉

M-CASE

For some S and ~B such that ~B mat S, S/ ~B gives
the session behaviours remaining as a postfix of S after

performing those behaviours that correspond with ~B. We
define the postfix operator below:

S/ε = S ?T.S/U ~B = S/ ~B

?oT.S/U ~B = S/ ~B &〈..., l : S, ...〉/l ~B = S/ ~B

Next, we define bound(S), which gives the bound of
a session type, an upper bound on the runtime size of the
buffer required to hold the values received on a channel
with session type S. We start with the auxiliary operator
bds ∈ (S → N∞)→ S → N∞.

bds(f)(S) =

1 + f(S′) S ∈ {?T.S′, ?oT.S′}
1 +max{f(Si)}i∈I S = &〈li : Si〉i∈I
f(S[µX.S

′
/X]) S = µX.S′

0 otherwise

We now define the relation S 7→ S′, which computes
an advanced session type S′ given a session type S.

?T.S 7→ S !T.S 7→ S

?oT.S 7→ S !oT.S 7→ S

&〈..., l : S, ...〉 7→ S ⊕ 〈..., l : S, ...〉 7→ S

µX.S 7→ S′ if S{µX.S/X} 7→ S′

We can now define bound(S) = max{µ(S′)|S 7→∗ S′}
where µ is the least fixed point of bds.

IV. TRANSLATION FROM IM TO LAST

This section presents implicit resolution, the type-
directed translation of IM programs to LAST. We pro-
ceed in three steps, translation of expressions, translation
of buffers and translation of configurations. Following
[7], the translation is type-directed in that we give typing
rules for IM, instrumented with translations to LAST. By
forgetting the instrumentation, we obtain a typing system
for IM.

Typing environments and implicit scope. Implicit reso-
lution removes queries o and inserts explicit functions
and messages in place of implicit ones. This happens by
choosing arguments from the implicit scope. We define
the implicit scope thusly: The typing environment Γ is
divided into two parts: the implicit and explicit scopes.
That is to say, some of the bindings in Γ refer to implicit
variables and some to explicit variables. In our typing
rules we range over implicit variables with y and explicit
variables with x. Variables enter the implicit scope in
several ways: (1) when received as an implicit message;
(2) when given as an argument to an implicit function;
and (3) when bound by a let construct with o on the
left-hand side of the =.

Typing and translation of expressions. Typing judge-
ments for expressions are of the form Γ ` e : T ; ê.

Γ ` e : T ; ê T <: U
Γ ` e : U ; ê

T-SUB
Γ1 ` e1 : T ⊗ U ; ê1 Γ2, x1 : T, x2 : U ` e2 : V ; ê2

Γ1 + Γ2 ` let x1, x2 = e1 in e2 : V ; let x1, x2 = ê1 in ê2
T-SPLIT

Γ1 ` e1 : T ; ê1 Γ2 ` e2 : U ; ê2
Γ1 + Γ2 ` (e1, e2) : T ⊗ U ; (ê1, ê2)

T-PAIR
Γ, x : T ` e : U ; ê un(Γ)
Γ ` λx.e : T → U ; λx.ê

T-ABS
un(Γ) k : T
Γ ` k : T ; k

T-CONST

Γ1 ` e1 : T (U ; ê1 Γ2 ` e2 : T ; ê2
Γ1 + Γ2 ` e1 e2 : U ; ê1 ê2

T-APP
Γ, x : T ` e : U ; ê

Γ ` λx.e : T (U ; λx.ê
T-ABSL

un(Γ)
Γ, α : T ` α : T ; α

T-ID

Γ1 ` e : &〈li : Ti〉i∈I ; ê ∀i∈I(Γ2 ` ei : Ti (T ; êi)
Γ1 + Γ2 ` case e of {li : ei}i∈I : T ; case ê of {li : êi}i∈I T-CASE

Γ ` e : ⊕〈li : Ti〉i∈I ; ê j ∈ I
Γ ` select lj e : Tj ; select lj ê

T-SELECT
Γ, y : T ` e : U ; ê y fresh

Γ ` e : T o(U ; λy.ê
T-ABSLI

Γ1 ` e : T o(U ; ê Γ2 ` o : T ; y
Γ1 + Γ2 ` e : U ; ê y

T-APPI
Γ, y : T ` e : U ; ê y fresh un(Γ)

Γ ` e : T o→ U ; λy.ê
T-ABSI

Γ1 ` e1 : T ⊗ U ; ê1 Γ2, x : T, y : U ` e2 : V ; ê2 y fresh
Γ1 + Γ2 ` let x, o = e1 in e2 : V ; let x, y = ê1 in ê2

T-SPLITI
un(Γ)

Γ, y : T ` o : T ; y
T-QUERY

un(Γ)

Γ ` implicit receive : ?oT.S → T ⊗ S ; receive
T-INI

Γ1 ` o : T ; y Γ2 ` e : !oT.S ; ê
Γ1 + Γ2 ` e : S ; send y ê

T-OUTI

Fig. 1. Type guided translation of expressions.

This can be read as “under assumptions Γ, the expression
e has type T and is translated to the LAST expression ê”.
Our typing and translation rules can be found in Figure
1. With the exception of the new syntactic forms of
expressions, the translations are homomorphic, yielding
rules similar in structure to those found in [2]. The rules
for our new syntactic forms are more interesting. The
rules [T-SPLITI], [T-APPI], [T-ABSI] and [T-QUERY]
follow a similar structure to those in [7]. Note that
with [T-QUERY], the variable chosen to replace o must
satisfy linearity constraints, a restriction not present
in [7]. [T-ABSLI] is a linear version of the rule for
implicit functions and is effectively a combination of
the rules [T-ABSI] and [T-ABSL]. The rule [T-INI]
translates implicit receive into receive and
otherwise behaves in the same way as [T-CONST]. [T-
OUTI] translates implicit outputs by inserting a send
action into the process. The argument for the send is
a variable from the implicit scope, which we get from
the first premise by translating o with (a subset of) the
input environment. This yields an implicit variable with
the appropriate type whilst also satisfying any linearity
constraints. Note that [T-OUTI] is the only rule adding
outputs directly.

Typing and translation of buffer contents. Typing judge-
ments for buffers follow the same form as typing judge-
ments for expressions. We write Γ ` ~b : ~B ; ~̂b. The
translation of buffers can be found in Figure 2.

Typing and translation of configurations. Typing judge-
ments for configurations (Figure 3) follow a slightly
different form to those for buffer contents and expres-
sions. We write Γ ` C � ∆ ; Ĉ. This can be read as

“under assumptions Γ, the configuration C yields buffer
types ∆ and is translated as Ĉ”. We define buffer type
maps ∆ below in Definition 2. The rules [T-THREAD],
[T-BUFFER] and [T-NEW] are as in [2], augmented
with homomorphic translations. The rule [T-PAR] is also
similar to its equivalent rule in [2], but also contains two
new premises. The first computes the buffer types in
the configuration C1 ‖ C2, which are used in the second
premise to perform implicit resolution. The judgements
used in these premises are explained below.

We introduce a derivation of the form S1 � S2 �
S′1, S

′
2. This judgement can be understood as saying that

session types S1 and S2 are compatible if we rewrite
them as S′1 and S′2. The rule [C-SUB] captures the LAST
notion of compatibility. In this case no augmentation
of the compared types is required. The rule [C-IMP]
accounts for implicit behaviour. Intuitively this rule says
that if two session types are compatible except that one
has an implicit input unmatched by the other, we can
augment the other with a corresponding implicit output
and judge them compatible. The [C-REV] rule captures
the symmetry enjoyed by the compatibility relation of
LAST.

S1 <: S2
S1 � S2 � S1, S2

C-SUB
S1 � S2 � S′1, S

′
2

S2 � S1 � S′2, S
′
1

C-REV

S1 � S2 � S′1, S
′
2

?oT.S1 � S2 � ?oT.S1, !
oT.S2

C-IMP

DEFINITION 2. Buffer types are triples of the form
(d, n, ~B). We let ∆ range over partial finite maps from
channel names to buffer types in C. ∆ + ∆′ means that
the domains of ∆ and ∆′ are disjoint.

Γ ` ~b : ~B ; ~̂b

Γ ` l~b : l ~B ; l̂~b
T-SEQL

un(Γ)
Γ ` ε : ε; ε

T-EMPTY

Γ1 ` v : T ; v̂ Γ2 ` ~b : ~B ; ~̂b

Γ1 + Γ2 ` v~b : T ~B ; v̂~̂b
T-SEQV

Fig. 2. Type guided translation of buffers contents.

DEFINITION 3. We define a partial operation of addition
on environments:

Γ + x : T =

Γ, x : T x /∈ dom(Γ)

Γ Γ(x) = T, un(Γ)

undefined otherwise

We extend this to Γ + Γ′ inductively from the base case.

DEFINITION 4. We say that Γ and ∆ resolve to Γ′,
written Γ,∆ resolveΓ′ provided there are environments
Γp and Γs with disjoint domains such that:
• Γ′ = Γp + Γs.
• Γp has the property that ∀c, d ∈ dom(Γ)∩dom(∆):

assuming that
– ∆(c) = (d, n, ~B).
– ∆(d) = (c, n′, ~B′).

then Γ(c)/ ~B � Γ(d)/ ~B′ � S, S′ implies that
Γp(c) = S and Γp(d) = S′.

• Γs is Γ restricted to dom(Γ) \ dom(Γp).

The buf relation Γ ` C buf ∆ computes the buffer
types present in a configuration C. In order to de-
termine where output actions must be inserted during
implicit resolution, we first determine those channels
over which session communication occurs. The buf
relation determines this by inspecting the structure of the
configuration C and collecting the names of channels
used for session communication, and their associated
buffer types, into the map ∆. The rule [B-NEW] removes
from the map ∆ those channels that are restricted by a
(νcd) construct. [B-BUFFER] extracts a channel name
and associated buffer type using the environment Γ. [B-
PAR] combines results across parallel composition. [B-
THREAD] is an empty base case. The buf rules can be
found in Figure 4.

Sources of nondeterminism. There are two sources of
nondeterminism in implicit resolution. The first is in
the selection of the implicit variable chosen by the rule
[T-QUERY]. We do not specify which variable in the
implicit scope should replace a o. A possible way to
resolve this is to use nesting. Such a solution would
select the innermost implicit variable of the appropriate
type as the translation for o. The Scala compiler uses a

Γ ` C buf ∆
Γ \ cd ` (νcd)C buf ∆ \ cd B-NEW

−
Γ ` 〈e〉 buf ø

B-THREAD

Γ ` ~b : ~B ;

Γ ` c 7→ (d, n,~b) buf c : (d, n, ~B)
B-BUFFER

Γ1 ` C1 buf ∆1 Γ2 ` C2 buf ∆2

Γ1 + Γ2 ` C1 ‖ C2 buf ∆1 + ∆2
B-PAR

Fig. 4. The buf relation. Γ \ cd is Γ restricted to variables /∈ {c, d}.

more complex version of this strategy, augmented with
other selection criteria [7].

The second source of nondeterminism results from the
insertion of output actions when resolving implicit mes-
sages. When a pair of composed processes are resolved,
we do not specify which is resolved first. As a result,
adjacent implicit inputs can be resolved in multiple ways.
Consider the processes:

〈 let p =
let o = ...
let c = accept x in
let n, o = implicit receive in c

in p 〉 ‖ 〈 let q =
let o = ...
let d = request x in
let n, o = implicit receive in d

in q 〉

Implicit resolution should insert two output actions here,
one in p and the other in q. If we resolve p before q,
we obtain the processes:

〈 let p =
let y = ...
let c = accept x in
send y c
let n, c = receive in c

in p 〉 ‖ 〈 let q =
let y = ...
let d = request x in
let n, d = receive in d
send y d

in q 〉

We could also resolve q first and obtain the processes:
〈 let p =

let y = ...
let c = accept x in
let n, c = receive in c
send y c

in p 〉 ‖ 〈 let q =
let y = ...
let d = request x in
send y d
let n, d = receive in d

in q 〉

As with nondeterminism caused by resolution of o, an
implementation could use a simple heuristic such as
to resolve the accepting partner before the requesting
partner. We leave this question for future work.

Γ ` e : T ; ê un(T)
Γ ` 〈e〉� ∅; 〈ê〉 T-THREAD

Γ ` ~b : ~B ; ~̂b |~b| ≤ n
Γ ` c 7→ (d, n,~b) � c : (d, n, ~B) ; c 7→ (d, n,~̂b)

T-BUFFER

Γ ` C1 ‖ C2 buf ∆ Γ,∆ resolve Γ′ Γ′ = Γ′
1 + Γ′

2 Γ′
1 ` C1 � ∆1 ; Ĉ1 Γ′

2 ` C2 � ∆2 ; Ĉ2 ∆′ = ∆1 + ∆2

∀c ∈ dom(Γ′) ∩ dom(∆′).(∆′(c) = (d, n, ~B)⇒ (~B mat Γ′(c) and bound(Γ′(c)) ≤ n))

∀c, d ∈ dom(Γ′) ∩ dom(∆′).(∆′(c) = (d, n, ~B) and ∆′(d) = (c, n′, ~B′)⇒ Γ′(c)/ ~B <: Γ′(d)/ ~B′)

Γ ` C1 ‖ C2 � ∆′
; Ĉ1 ‖ Ĉ2

T-PAR

Γ + c1 : S1 + c2 : S2 ` C � ∆ + c1 : (c2, n1, ~B1) + c2 : (c1, n2, ~B2) ; Ĉ

Γ ` (νc1c2)C � ∆ ; (νc1c2)Ĉ
T-NEW

Fig. 3. Type guided translation of configurations.

V. RUNTIME SAFETY OF IM

We prove safety of IM’s translation into LAST: we show
that if we can derive Γ ` C � ∆ ; Ĉ in IM, then Ĉ
can be typed suitably in LAST. In order to make this
precise, we define a function (·)∗, that translates IM’s
types to standard LAST types. This translation simply
erases occurrences of o, yielding non-implicit analogues
of implicit types.

DEFINITION 5 (Translation of types).

(T o→ T ′)∗ = T ∗ → T ′∗ Unit∗ = Unit

(T o(T ′)∗ = T ∗ (T ′∗ end∗ = end

(T → T ′)∗ = T ∗ → T ′∗ (?T.S)∗ = ?T ∗.S∗

(T (T ′)∗ = T ∗ (T ′∗ (!T.S)∗ = !T ∗.S∗

&〈li : Si〉∗i∈I = &〈li : S∗i 〉i∈I (〈S〉r)∗ = 〈S∗〉r

⊕〈li : Si〉∗i∈I = ⊕〈li : S∗i 〉i∈I (〈S〉a)∗ = 〈S∗〉a

〈S, S′〉∗ = 〈S∗, S′∗〉 (?oT.S)∗ = ?T ∗.S∗

(T ⊗ T ′)∗ = T ∗ ⊗ T ′∗ (!oT.S)∗ = !T ∗.S∗

(µX.S)∗ = µX.S∗ X∗ = X

We extend the definition of (·)∗ to buffer types:

DEFINITION 6 (Translation of buffer types and environ-
ments).

ε∗ = ε (T ~B)∗ = T ∗ ~B∗

(l ~B)∗ = l ~B∗ (c, n, ~B)∗ = (c, n, ~B∗)

This is lifted pointwise to environments (i.e. (Γ, x :
T)∗ = Γ∗, x : T ∗).

We call a configuration fully buffered if whenever it con-
tains c 7→ (c′, n,~b) then it also contains c′ 7→ (c, n′,~b′).
We recall the following theorem from [2], defining and
proving LAST’s runtime safety.

THEOREM. Let Γ `LAST C � ∆ be a fully buffered
LAST configuration, and assume that C −→∗ C ′. If

C ′′ is a blocked thread in C ′, then one if the following
applies: (1) C ′′ is 〈v〉 or 〈send v〉 or 〈request n v〉
or 〈accept n v〉; (2) C ′′ is 〈E[receive c]〉 and c 7→
(, , ε) ∈ C ′; (3) C ′′ is 〈E[case c of {li : ei}i∈I]〉
and c 7→ (, , ε) ∈ C ′.

We state our main result.

THEOREM 1 (Runtime safety of IM). If Γ ` C�∆ ; Ĉ
is a fully buffered IM configuration, then Γ∗ `LAST Ĉ�∆∗

is a runtime-safe LAST configuration.

Proof. By induction on Γ ` C � ∆ ; Ĉ.

VI. FURTHER WORK

Implicits are useful in sequential programming not just
for type classes, but also e.g. for generic programming
[9]. With implicits at hand, it is possible to investigate
generic programming in message passing systems. Such
technology transfer from the sequential to concurrent
computation would be aided by a better understanding of
the relationship between implicit functions and implicit
messages. Finally, we conjecture that implicits are not
tied to binary sessions, and can be adapted to multi-party
session types [4].

REFERENCES

[1] R. Atkey. Parameterised notions of computation. JFP, 19(3-
4):335–376, 2009.

[2] S. J. Gay and V. T. Vasconcelos. Linear type theory for
asynchronous session types. JFP, 20(1):1950, 2010.

[3] K. Honda. Types for dyadic interaction. In Proc. CONCUR,
1993.

[4] K. Honda, N. Yoshida, and M. Carbone. Multiparty Asyn-
chronous Session Types. In Proc. POPL, pages 273–284, 2008.

[5] S. Kaes. Parametric Overloading in Polymorphic Programming
Languages. In Proc. ESOP, pages 131–144, 1988.

[6] J. R. Lewis, J. Launchbury, E. Meijer, and M. B. Shields. Implicit
parameters: Dynamic scoping with static types. In Proc. POPL,
2000.

[7] M. Odersky, O. Blanvillain, F. Liu, A. Biboudis, H. Miller, and
S. Stucki. Simplicitly: Foundations and Applications of Implicit
Function Types. Proc. POPL, 2018.

[8] B. C. Oliveira, A. Moors, and M. Odersky. Type classes as objects
and implicits. In Proc. OOPSLA, pages 341–360, 2010.

[9] B. C. Oliveira, T. Schrijvers, W. Choi, W. Lee, and K. Yi. The
implicit calculus: A new foundation for generic programming. In
Proc. PLDI, pages 35–44, 2012.

[10] K. Takeuchi, K. Honda, and M. Kubo. An Interaction-based
Language and its Typing System. In Proc. PARLE, 1994.

[11] P. Wadler and S. Blott. How to Make Ad-hoc Polymorphism
Less Ad Hoc. In Proc. POPL, pages 60–76, 1989.

