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Abstract

We propose a simple compositional program logic for
an imperative extension of call-by-value PCF, built on
Hoare logic and our preceding work on program log-
ics for pure higher-order functions. A central feature of
the logic is its systematic use of names and operations
on them. This allows precise and general description
of complex higher-order imperative behaviour in asser-
tions. The proof rules of the logic exactly follow the syn-
tax of the language and can cleanly embed, justify and
extend the standard proof rules for total correctness of
Hoare logic. The logic offers a foundation for general
treatment of aliasing and local state on its basis, with
minimal and clean extensions. After establishing sound-
ness, we prove that valid assertions for programs com-
pletely characterise their behaviour up to observational
congruence, which is established using a variant of fi-
nite canonical forms. The use of the logic is illustrated
through reasoning examples which have been hard to as-
sert and infer using existing program logics.

1. Introduction

Imperative higher-order functions, syntactically embod-
ied by imperative extensions of the λ-calculus, have been
one of the major topics in the study of semantics and
types of programming languages for decades. They are
a cornerstone of richly typed functional programming
languages such as ML [36] and Haskell [3] and are
central to the semantic analysis of procedural, object-
oriented and even low-level languages [1, 15, 30, 37, 41,
46]. The significance of combining imperative features
and higher-order functions lies in their distilled presen-
tation of key elements of sequential program behaviour,
amenable for theoretical inquiry. This analytical nature
makes it possible to develop rigorous operational seman-
tics for their dynamics [29, 36, 43], a rich class of type
disciplines [36, 41] and powerful operational reasoning
techniques [32, 42].

Given these achievements, a natural question is if we
can carry out a similar development for logical meth-
ods for compositional reasoning in the tradition of Hoare

logic [12, 19, 38]. In Hoare logic, assertions on programs
offer a method for precisely describing properties of pro-
grams independent from the latter’s textual details, with
proof rules enabling verification of valid assertions fol-
lowing the syntactic structure of target programs. Hoare
logic has however been mainly developed for first-order
imperative programs: its extension to accommodate gen-
eral higher-order procedures has been known to be a sub-
tle problem [7, 11, 14, 34, 35].

The present paper introduces a simple compositional
program logic for an imperative extension of call-by-
value PCF, built on Hoare logic [19] and our preceding
work on logics for pure higher-order functions [21, 25].
The assertions in the logic precisely describe behaviour
of imperative higher-order procedures up to the obser-
vational equivalence, while proof rules enable composi-
tional derivation of valid assertions. As far as we know,
this is the first time a compositional program logic for
imperative higher-order functions in full type hierarchy
has been developed. The logical articulation of higher-
order behaviour is rigorously stratified, starting from
pure functions [21, 25] and treating each significant im-
perative element, including state change, aliasing and lo-
cal state, with an incremental enrichment of the assertion
language and proof rules. The logic enjoys clean seman-
tic status in the sense that valid assertions for a program
precisely characterise its observational behaviour up to
the contextual congruence [18, 34].

A syntactically simple extension of the Floyd-Hoare
tradition for treating higher-order behaviour is that as-
sertions in our logic not only talk about first-order data
stored in imperative variables, as in Hoare’s logic and
its standard extensions, but also about arbitrary higher-
order imperative behaviours, which may be fed as ar-
guments to procedures, denoted by functional variables
and stored in imperative variables. Having programs’
behaviour as part of the universe of discourse is essential
for reasoning about practical programs since functional-
ities of a higher-order program often crucially depend on
the combined behaviour of the programs it uses. As an
example, consider twice def

= λ f α⇒α.λxα.( f ( f x)), with α
being a higher-order type. The behaviour of this pro-
gram depends on the potentially complex interplay be-
tween f and x, all the more so if they have side effects.
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Thus our logical language fully embraces higher-order
behaviours and data structures as target of description,
which is done by naming behaviours by variables and
asserting on them, rather than having their textual repre-
sentation (programs) in assertions.

Let us present three simple, but non-trivial program-
ming examples, a clean and rigorous behavioural de-
scription by a logical means is set to be one of the chal-
lenges in our present inquiry (we use notations from
standard textbooks [16, 41]).

closureFact
def
=

µ f Nat⇒Unit.λxNat. if x = 0
then y := λ().1
else y := λ().( f (x−1) ; x× (!y)() )

Above () is the unique constant of type Unit and λ().N
denotes λzUnit.N with z fresh. When invoked as e.g.
closureFact 3, the program stores a procedure in the
imperative variable y. If we further invoke this stored
procedure as (!y)(), then closureFact is called again
with the argument 3 − 1 = 2, after which a program
stored in y at that time is invoked, so that the multiple
of x and the value returned by that program is calculated
and is given as the final return value. The intension is
that this final value should be the factorial of 3. The ob-
servable behaviour of closureFact can be informally
described as: When the program is fed with a number
n, it stores in y a closure which, when invoked with (),
will return the factorial of n. Note that inside the body
of closureFact, a free variable f and the content of an
imperative variable y are used non-trivially. In particu-
lar, the correctness of this program crucially depends on
how y is updated sequentially in an orderly manner.

Next we consider another nonstandard, but terser, fac-
torial program, using Landin’s idea [29] to realise a re-
cursion by circular references.

circFact
def
= x := λz.if z = 0 then 1 else z× (!x)(z−1)

It is easy to see that, after executing circFact, (!x)n
returns the factorial of n. In more detail, the state after
executing circFact may be informally described thus:
x stores a procedure which computes the factorial of its
argument using a procedure stored in x: that procedure
should calculate the factorial, and x does store that pro-
cedure. Note an inherent circularity of this description
— How can we logically describe such a behaviour, and
how can we derive it compositionally?

As the third example, let us consider the following
program.

scheduler
def
= map (λy(α⇒Unit)×α.(π1(y)(π2(y))))

where map is the standard higher-order map function:

map
def
= λ f X⇒Y.µmList(X)⇒List(Y ).λlList(X).

case(l) of Nil ⇒ Nil [] x :: y ⇒ ( f x) :: (my)

Above x :: y is the list whose head is x and whose tail is
y. The program scheduler receives a list of jobs, where
each job is a pair of a function and its argument, and
executes these functions with corresponding arguments
sequentially. Assuming each function may have side
effects, what would be the specification of the sched-
uler, parameterised by properties of stored programs,
and how can we derive it from the program text? A
possible informal description would be: Given a list of
jobs 〈 f1,x1〉,〈 f2,x2〉, ..,〈 fn−1,xn−1〉, if applying f1 to x1
changes the state σ1 to the state σ2, applying f2 to x2
changes the state σ2 to the state σ3, and so on, and fi-
nally applying fn−1 to xn−1 changes σn−1 to σn, then
feeding the scheduler with this job list starting from σ1
will eventually reach the state σn. Compositional rea-
soning about such a program should treat higher-order
functions, recursion, closures and products to derive an
intended assertion from a program text. The proposed
logic offers a simple language to specify such complex
behaviour with precision, combined with syntax directed
proof rules for deriving judgements compositionally.

Summary of Technical Results In the following we
summarise the main technical results of the paper.

1. Introduction of a compositional program logic for
higher-order functions with global state, extending
the logic for pure higher-order functions studied in
[21, 22], allowing natural descriptions of complex
imperative higher-order behaviours and their com-
positional verification.

2. Study of the semantic foundations of the logic with
respect to a naturally defined model. After estab-
lishing soundness of the proof rules, sound and
complete characterisation of observational equiva-
lence by validity is proved, using a proof method in-
spired by game semantics [6, 24, 26]. Basic obser-
vations on relative completeness of the proof sys-
tem are also presented at the end.

3. Exploration of the proposed assertional method and
its proof rules through reasoning examples, includ-
ing a sound embedding and extension of Hoare’s
proof rules for total correctness, as well as an illus-
tration of verifications for three programming ex-
amples presented above.

Outline Section 2 illustrates central ideas of the logic
informally. Section 3 introduces the target language and
the logic. Section 4 illustrates compositional proof rules
for the logic. Section 5 establishes soundness of proof
rules and logical characterisation of the contextual con-
gruence. Section 6 presents reasoning examples. Section
7 discusses related work, extensions and further topics.
The full version [2] presents detailed definitions, more
examples and all missing proofs.
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2. Preview

This section illustrates the key ideas of assertions for im-
perative higher-order functions, starting from a brief re-
view of the logic for pure functions presented in [21, 25].

Pure Higher-Order Functions. In the present ap-
proach to program logics, behaviour is asserted by nam-
ing them. Consider a simple program which computes
a doubling function, N

def
= λxNat.x + x, where Nat is the

type of natural numbers. If we apply 5 to N, 10 is re-
turned. More generally, the result of applying any natu-
ral number to N is always even. To represent these be-
havioural properties using logical formulae, we do not
mention N itself, but rather describe its properties by
naming it as, say, f . Thus we can write f • 5 = 10 as
a property of N, named as f . Similarly we can write

∀xNat.Even( f • x) (2.1)

where Even(n) is the predicate saying n is even
(e.g. Even(x)

def
= ∃n.(x = 2×n)). The operator • is left as-

sociative and non-commutative, and may be understood
as an analogue of application in applicative structures.
Formulae may be combined using all the standard logi-
cal connectives and quantifiers, just as in Hoare logic.

Using these formulae (ranged over C,C′,D, . . .), the
judgement of the logic has the following shape.

{C}M : f {C′}

which can be read as: if M, named as f , can rely on C
as the behaviour of an environment, then the program
combined with the environment can guarantee C′. The
name f is called anchor. It can be any fresh name not
occurring in M and C. An anchor is used to represent
M’s point of operation, hence of specification. As an
example, the specification for N is:

{T}N : f {∀xNat.Even( f • x)} (2.2)

which says that the program N named f , under the triv-
ial assumption T, satisfies ∀xNat.Even( f • x). By hav-
ing names in assertions, we can compositionally derive
a specification which involves a non-trivial assumption
on higher-order variables based on a simple operation:
when the function f is applied to an argument, the result
f •x is peeled-off and replaced by a new anchor name u.
For example, we can derive

{∀xNat.Even( f • x)} f 3 :u {Even(u)}

from two smaller specifications (1) {∀xNat.Even( f •
x)} f :m {∀xNat.Even(m • x)} (an instance of the axiom
for variable: f named as m satisfies the same predicate
as the one assumed for f ); and (2) {T}3 :m {m = 3} (“3”

named as m satisfies a predicate m = 3) and by com-
bining them together as (∀xNat.Even( f • x)∧m = 3) ⊃
Even( f •m) (which is a simple instance of (A(x,x)∧x =
y) ⊃ A(x,y), the standard axiom in predicate logic [33,
§2.8]). The same framework works for higher-order pro-
grams where multiple variables share assumptions.

{∀xNat.Even( f • x)} f 3+ f ( f 5)+1 :u {Odd(u)} (2.3)

where Odd(n) says n is odd. Now by combining two
specifications for N in (2.2) and L

def
= f 3 + f ( f 5)+ 1 in

(2.3), we arrive at:

{T}let f = N in L :u {Odd(u)} (2.4)

where let f = N in L is encoded as (λ f .L)N. The
property which is guaranteed by N is simply plugged
into the assumption for L. This derivation is similar
to a composition rule of Hoare logic, where we infer
{C}P1;P2{C′} from {C}P1{C1} and {C1}P2{C}.

Mutable Higher-Order Functions. The idea of nam-
ing behaviours is naturally extended to stateful computa-
tion. A typical example is the following specification of
a program that reads the number 7 from a global storage
cell x and then returns 9.

{!x = 7} 2+!x :u {u = 9∧!x = 7}

where the logical term !x represents dereferencing x [36].
The resulting behaviour is located at the anchor name u.
The assertion says: the program 2+ !x returns 9 when-
ever x initially stores 7, and it does not change this con-
tent of x. As another example, this time with side-effects:

{!x = 3} x := (2+!x) ; !x :u {u = 5∧!x = 5}

where “;” is sequential composition (encodable into call-
by-value application).

We now move to assertions describing more com-
plex behaviour where functions cause side-effects during
evaluation. Let W

def
= λx.(w := (1+!w) ; x + x), slightly

modified from λx.x + x in the previous paragraph. Re-
calling L from (2.3), we further let M

def
= let f =

W in L. Now this function not only satisfies Odd(u),
but also changes a memory cell w when invoked. Hence
we would expect the following:

{!w = 0} let f = W in L :u {Odd(u)∧!w = 3} (2.5)

How can we specify the behaviour of W to reach (2.5)?
A simple method is to attach pre and post-conditions to
invocations of functions by an argument, and assert them
as a single predicate. Thus we write:

{C} f • x ↘ u {C′}

This assertion reads: if the state of memory and the envi-
ronment satisfy C, the invocation of f with an argument
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x yields a value named u and a final state, together satis-
fying C′. “↘” indicates the evaluation of f • x resulting
in u, which is asymmetric unlike the equality e = e′. This
is due to the non-reversibility of state change. Based on
this idea, W named as f has the following specification:

EvenS(w, f )
def
= ∀x.∀i.{!w = i} f •x ↘ u {Even(u)∧ !w = i+1}

EvenS(w, f ) specifies a procedure which, when invoked,
would not only increment w but also return an even num-
ber: if f is called when !w=0, then f ’s return value is
even and !w=1. In fact from EvenS(w, f ) we can derive:

∀x.{!w = 0} f • x ↘ u {Even(u)∧ !w = 1}

using standard axioms for universal quantification. Now
assume f satisfies the above specification. Then we can
derive the following judgement.

{EvenS(w, f )∧!w = 0} f 5 :v {Even(v)∧!w = 1}

The key idea here is that when the function (named f )
is applied to the argument 3, not only is the result u
replaced by a new anchor v, but we also split the as-
sumption (EvenS(w, f )) in two pieces, its pre-condition
C added to the pre-condition of the judgement and its
post-condition C′ in the post-condition of the judgement.
Repeating this, we can derive (2.5) in a compositional
way, using essentially the same let-rule as for stateless
functions.

When working with higher-order functions, asser-
tions with pre/post-conditions can be nested repeatedly
and may appear in the pre/post-conditions of other as-
sertions. For example, let V

def
= λy.(!x)y. If x stores a

function with side effects, like W above, then calling V
may involve writing to memory. Thus we may assert:

{T}λy.(!x)y :u { {EvenS(w, !x)∧!w = 0}
u•n ↘ z{Even(z)∧EvenS(w, !x)∧!w = 1} }

which says: if V is applied to a natural number n un-
der the condition that x stores a function which satisfies
EvenS(w,u), and w initially stores 0, then resulting term
evaluates to an even number, with w’s final state being 1.

A merit of the present approach in comparison with
existing methods is that it can directly assert on the com-
bined behaviour of two or more (possibly higher-order)
procedures. For example, consider the following pro-
gram:

M
def
= λxNat. (y := x ; g( f ) ; g( f ) ; !y+1) (2.6)

where f and g are of types Unit⇒Unit and (Unit⇒
Unit)⇒Unit, respectively. Assume we only know the
abstract property of f and g which says: if we apply
f to g, then the content of y changes its parity, i.e. if
it is initially even then it becomes odd and vice versa.
The proposed logic formally describes this property as
follows, omitting return values:

{Odd(!y)} f •g{Even(!y)} ∧ {Even(!y)} f •g{Odd(!y)}.

Let us denote the above assertion by A( f g). Then a
property of M may be asserted as:

{A( f g)}M :u{∀xNat.{Even(x)}u•x↘z{Odd(z)∧Even(!y)}}
(2.7)

which says: under the assumption about f and g
as given, if the argument is even, then the result is
odd and the content of y is even. Let the above
post-condition be Even then Odd(u,y). From the
same pre-condition, we can also infer the dual prop-
erty Odd then Even(u,y)

def
= ∀xNat.{Odd(x)}u • x ↘

z{Even(z)∧Odd(!y)} or even a conjunction of the two,
Even then Odd(u,y)∧Odd then Even(u,y), as its post-
condition. This specification relies on the property of the
combined behaviour of f and g and demonstrates a prac-
tical benefit of having named higher-order procedures
and specifications of their behaviour as an integral part
of assertions: we can transparently specify and reason
about the complex interplay among two or more proce-
dures which may call each other and which as a whole
demonstrate a specific behaviour of interest. Further ex-
amples will be treated in § 6, after formally introducing
the logic and proof rules.

3. Logic for Imperative Call-by-Value PCF

3.1. Imperative PCF

This subsection briefly reviews the programming lan-
guage we use, call-by-value PCF with unit, sums and
products, augmented with imperative variables (hence-
forth often called references). The grammar of programs
is standard [41], given below. We assume an infinite set
of variables, also called names, ranged over by x,y,z, . . ..

(value)
V,W ::= c | x | λxα.M | µ f α⇒β.λyα.M

| 〈V,W 〉 | ini(V )

(program)
M,N ::= V | MN | x := N | !x

| op(~M) | πi(M) | 〈M,N〉 | ini(M)
| if M then M1 else M2
| case M of {ini(x

αi
i ).Mi}i∈{1,2}

The grammar uses types (α,β, ...), which are given later.
Constants are ranged over by c. Examples include the
unit (), natural numbers n and booleans b (either f or t).
op(~M) (where ~M is a vector of programs) is a standard
n-ary arithmetic or boolean operation, such as +, −, ×,
= (equality of two numbers/booleans), ¬ (negation), ∧
and ∨. !x dereferences x while x := N is assignment. All
these constructs are standard, cf. [16, 41].

The dynamics of programs is given by the call-by-
value reduction relation, using store [16, 41]. A store
(σ,σ′, ...) is a finite map from imperative variables to val-
ues. We write σ[x 7→V ] for the store which maps x to V
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and otherwise agrees with σ. The call-by-value reduc-
tion, written (M,σ) −→ (M′,σ′), is standard [16, 41].
We only list the rules for assignment and dereference.
Below σ(x) and σ[x 7→V ] indicate x ∈ dom(σ).

(!x, σ) → (σ(x), σ) (x := V, σ) → ((), σ[x 7→V ])

We also write (M,σ) ⇓ (V,σ′) for (M,σ) →∗ (V,σ′), and
M ⇓V for (M, /0) →∗ (V, /0).

The grammar of types is also standard [16, 41].

α,β ::= Unit | Bool | Nat | α⇒β | α×β | α+β
ρ ::= α | Ref (α)

We call α,β, . . . value types, and Ref (α), . . . reference
types. Reference types are restricted to carrying only
non-reference types (called Reduced ML in [42]). Lift-
ing this restriction leads to a distinct class of behaviour
which deserves a logical treatment in its own right, see
§ 7 for further discussions on these extensions. Note
a reference can still carry arbitrary higher-order proce-
dures. A basis is a finite map from names to types.
Γ,Γ′. . . . range over bases whose codomains are value
types, while ∆,∆′, . . . range over bases whose codomains
are reference types. dom(Γ) (resp. dom(∆)) denotes the
domain of Γ (resp. of ∆). The typing rules are standard
[41] and omitted. We write Γ;∆ ` M : α when M has
type α under Γ and ∆, with dom(Γ)∩dom(∆) = /0.

3.2. Terms, Formulae and Judgement

Terms and Formulae. The logical language is that of
first-order logic with equality [33, § 2.8] augmented with
an assertion for the evaluation of stateful expressions.
The grammar of terms and formulae follows.

e ::= xα | () | c | op(~e)

| 〈e,e′〉 | πi(e) | inj
α+β
i (e) | !(xref (α))

C ::= e = e′ | ¬C | C∧C′ | C∨C′ | C ⊃C′

| ∀xα.C | ∃xα.C | {C} e• e′ ↘ x {C′}

The first set of expressions (e,e′, . . .) are terms while the
second set are formulae (A,B,C, . . .). Terms, which are
from [21, 25] except !x, include all the constants (c,c′, ..)
and first-order operations of the target programming lan-
guage. We also have a paring, projection and injection
operation. !x denotes the dereference of x.

The predicate {C} e•e′ ↘ x {C′} is called evaluation
formula, where the name x binds its free occurrences in
C′. Intuitively, {C} e • e′ ↘ x {C′} asserts that an invo-
cation of e with an argument e′ under the (hypothetical)
initial state C terminates with a final state and a result-
ing value, named as u, both described by C′. • is non-
commutative. fv(e) denotes the free variables occurring
in e. We define two kinds of capture-avoiding substitu-
tions C[e/x] and C[e/!x], see [2, § 3.3].

Terms and formulae are typed starting from type-
annotated variables. Two names in a formula should
have the same type, similarly for a pair of equated
terms. !(xρ) is typed as α iff ρ = Ref(α). If e1, e2
and z are typed as α ⇒ β, α and β, respectively, then
{C} e1 • e2 ↘ z {C′} is well-typed. The remaining well-
typedness conditions are naturally given [2]. A boolean
typed term is also used as a formula. Hereafter we only
consider well-typed terms and formulae and often omit
type annotations. We shall write Θ`C if C is well-typed
with its free names typed following Θ, where Θ,Θ′, . . .
combine two kinds of bases.

Convention 1 C1 ≡ C2 stands for (C1 ⊃ C2) ∧ (C2 ⊃
C1) (the logical equivalence of C1 and C2). We use
truth T (definable as 1 = 1) and falsity F (which is
¬T). The standard binding convention is always as-
sumed. fv(C) denotes the set of free variables in C.
{C} e1 • e2 ↘ e′ {C′} with e′ not a variable, stands
for {C} e1 • e2 ↘ x {x = e′ ∧C′} with x fresh; and
{C} e1 • e2 {C′} for {C} e1 • e2 ↘ () {C′}. Formulae
are often called assertions.

Some small examples: y = 6 is an assertion which says y
is equal to 6; !y = 6 says the content of a memory cell y is
equal to 6. C

def
= ∀i,n. {!w = n} !x• i ↘ 2×i{!w = n+1}

says x stores a function which, when invoked, increments
w and returns the double of the argument. This is satis-
fied when, for example, f (w)

def
= λz.(w := !w + 1;z× 2)

is stored in x. D
def
= {C∧!w=0}u•3 ↘ 6{C∧!w=1} says

that, if u is invoked with 3 in a state satisfying !w=0 as
well as C, then the returned value is 6 and the final state
is !w =1. This is satisfied by λy.(!x)y named u, with x
storing f (w) above.

Judgement. Following Hoare [19], a judgement in the
present program logic consists of a pair of formulae and
a program, which takes the following shape.

{C} MΓ;∆;α :u {C′}

This sequent is used for both validity and provability. If
we wish to be specific, we prefix it with either ` (for
provability) or |= (for validity). In {C} MΓ;∆;α :u {C′},
we assume Γ;∆ ` M : α. u is called the anchor of
the judgement and should not be in dom(Γ,∆)∪ fv(C).
The formula C is the pre-condition; and C′ is the post-
condition. We say |={C}MΓ;∆;α :u {C′} is well-typed if
(1) Γ;∆ ` M : α; and (2) Γ,∆,Θ `C and u :α,Γ,∆,Θ`C′

for some Θ such that dom(Θ)∩ (dom(Γ,∆)∪{u}) = /0.
The same condition applies to judgements on provability.
Then the primary names in this well-formed judgement
are dom(Γ,∆)∪{u}. The auxiliary names in this judge-
ment are those free names in C and C′ which are not
primary (for example, in “{x = i}2×x :u {u = 2× i}”, x
and u are primary while i is auxiliary; u is in addition its
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anchor). We often omit the typing of a program from a
judgement, writing {C} M :u {C′}.

Intuitively, {C} MΓ;∆;α :u {C′} says that: if M is
closed by values satisfying C (for functional variables),
and is evaluated starting from a store satisfying C (for
imperative variables), then it terminates with a value
named u and final state, satisfying C′. This informal
reading will be made precise in § 5.1.

3.3. Axioms and Rules for Validity

When using the proof rules presented in the next
section, one often needs to calculate validity of as-
sertions. Formally, a formula C is valid if it is true
under arbitrary models (the class of models we consider
will be discussed in § 5). Practically, we can often
calculate validity syntactically. As is standard [19],
we shall freely use axioms, rules and theorems from
propositional calculus, first-order logic with equality
[33, §2.8], and formal number theory. There are also
natural axioms for data types, such as C[()/xUnit] ≡ C,
ini(e) = in j(e′) ⊃ i = j ∧ e = e′ etc. Further, the
following axioms for evaluation formulae are often
useful (see [2] for more axioms). Below and henceforth
A,B, . . . denote stateless formulae, where a formula is
stateless if a name of a reference type occurs only inside
the pre/post conditions of evaluation formulae. C-~x is C
in which no name from~x freely occurs.

(e1) {C1}e1 • e2 ↘z{C} ∧ {C2}e1 • e2 ↘z{C}
≡ {C1 ∨C2} e1 • e2 ↘ z {C}

(e2) {C}e1 • e2 ↘z{C1} ∧ {C}e1 • e2 ↘z{C2}
≡ {C} e1 • e2 ↘ z {C1 ∧C2}

(e3) {∃xα.C} e1 • e2 ↘ z {C′-x} ≡ ∀xα.{C} e1 • e2 ↘ z {C′}
(e4) {C-x} e1 • e2 ↘ z {∀xα.C′} ≡ ∀xα.{C} e1 • e2 ↘ z {C′}
(e5) {A∧C} e1 • e2 ↘ z {C′} ≡ A ⊃ {C}e1 • e2 ↘ z{C′}
(e6) {C}e1 • e2 ↘z{C′} ⊃ {C∧A}e1 • e2 ↘z{C′∧A}
(e7) {C0}e1 • e2 ↘z{C′

0} ⊃ {C} e1 • e2 ↘ z {C′}
when C ⊃C0 and C′

0 ⊃C

4. Proof Rules

The proof rules are given in Figure 1. In each rule, we
use the notational conventions from the preceding sec-
tions. We assume all occurring judgements are well-
typed, and no primary names in the premise(s) occur as
auxiliary names in the conclusion. Below we illustrate
key aspects of these rules.
[Var, Const] say that, if we wish to assert C about a da-
tum named u, we should assume the same property, with
the datum substituted for u.
[Add] is the rule for the addition operator, which as-
sumes the left-to-right evaluation order, indicating both
the state change induced by evaluation and the resulting
values. Similarly for other first-order operators.
[Abs] says: if we know, under the assumptions A (which

Figure 1 Proof Rules

[Var] −
{C[x/u]} x :u {C}

[Const] −
{C[c/u]} c :u {C}

[Add]
{C}M1 :m1 {C0} {C0}M2 :m2 {C′[m1 +m2/u]}

{C}M1 +M2 :u {C′}

[Abs]
{C∧A-x} M :m {C′}

{A} λx.M :u {∀x.{C}u• x↘ m{C′}}

[App]
{C} M :m {C0} {C0} N :n { C1 ∧ {C1} m•n ↘ u {C′}}

{C} MN :u {C′}

[If ]
{C} M :b {C0} {C0[t/b]} M1 :u {C′} {C0[f/b]} M2 :u {C′}

{C} if M then M1 else M2 :u {C′}

[In1]
{C} M :v {C′[in1(v)/u]}
{C} in1(M) :u {C′}

[Case]
{C-~x} M :m {C-~x

0 } {C0[ini(xi)/m]} Mi :u {C′ -~x}
{C} case M of {ini(xi).Mi}i∈{1,2} :u {C′}

[Pair]
{C} M1 :m1 {C0} {C0} M2 :m2 {C′[〈m1,m2〉/u]}

{C} 〈M1,M2〉 :u {C′}

[Proj1]
{C} M :m {C′[π1(m)/u]}

{C} π1(M) :u {C′}

[Deref ] −
{C[!x/u]} !x :u {C}

[Assign]
{C} M :m {C′[m/ !x][()/u]}

{C} x := M :u {C′}

[Rec]
{A-x ∧∀ j � i.B( j)[x/u]} λy.M :u {B(i)}

{A} µx.λy.M :u {∀i.B(i)}

[Promote]
{A}V :u {B}

{A∧C}V :u {B∧C}

[Consequence]
C ⊃C0 {C0} M :u {C′

0} C′
0 ⊃C′

{C} M :u {C′}

does not talk about x) and starting from C, evaluation of
M always terminates with a result m and a state which
together satisfy C′, then we can guarantee λx.M named
u satisfies the same property under the same assumption
A, now presented as an evaluation formula replacing M
with a call to u by x, u• x, with the result m.
[App] says: if we know M reaches C0 starting from C,
and N reaches C1 starting from C0, and, moreover, we
know putting them together and applying them reaches
C′ starting from C1, then MN reaches C′ starting from u.
[If, In1, Case, Pair, Proj1] are natural rules for standard
data types, similar to [Add].
[Deref ] is understood as [Var, Const]. If we wish to have
C for a program !x named u, then we should assume the
same thing for the content of x, substituting !x for u.
[Assign] uses two substitutions C′[m/!x][()/u]. The no-
tation [m/!x] stands for replacing all occurrences of !x
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by m, while [()/u] is the standard substitution of () for
u. The first substitution C′[m/!x] says the result of the
assignment x := M is turning what is stated about m in
C′[m/!x] into the property of !x. The second substitution
[()/u] says, in effect, the assignment command termi-
nates (because () is the unique value of type Unit).
[Rec] is for the total correctness of recursion [21, 25]. It
is based on mathematical induction, though by choosing
an appropriate domain and a well-ordering, we can ex-
tend the rule to well-founded induction. We later show
how this rule can cleanly and precisely encode (and ex-
tend) known proof rules for total correctness of the while
loop and recursive procedures.
[Promote] extends the stateless pre/post-conditions to
general ones by conjunction. The rule is sound because
a value does not (immediately) cause state change.
[Consequence] The rule follows the standard conse-
quence rule in Hoare logic. Checking the validity of en-
tailments is in general intractable, though in practice one
can often appeal to syntactic reasoning, cf. §3.3. Other
structural rules are discussed in [2, §4].

5. Soundness and Observational Complete-
ness

5.1 Models and Soundness

We first introduce models for assertions and judgements.
Their operational nature has the merit of faithfulness to
programs’ behaviours (e.g. a predicate claiming the exis-
tence of unrealisable functions is unsatisfiable); extensi-
bility (e.g. polymorphisms); and conciseness. Different
models are possible: [23] constructs a uniform universe
of models from typed processes.

The semantics centres on programs which do not own
free non-reference variables.

Definition 1 (semi-closed programs [35]) Γ;∆ ` M :
α is semi-closed (resp. closed) when dom(Γ) = /0
(resp. dom(Γ) = dom(∆) = /0), often written ∆ ` M : α
(resp. ` M : α).

Let ∼= be the standard observational congruence for the
imperative PCFv [16], based on convergence to semi-
closed values. An abstract value of type ∆;α is a ∼=-
congruence class of semi-closed values typed α under
∆. We write [V ]∆;α for an abstract value represented by
∆ `V : α. A model is defined using abstract values.

Definition 2 (models) A model of type Γ;∆ is a pair
(ξ,σ) such that ξ is a finite map from dom(Γ) to abstract
values such that each x ∈ dom(Γ) is mapped to an ab-
stract value typed as [V ]∆;Γ(x); and σ is a finite map from
dom(∆) to abstract values such that each x ∈ dom(∆)

is mapped to an abstract value typed as [V ]∆;α with
∆(x) = Ref(α). We let M , . . . range over models.

We write Γ;∆ ` M when M is a model of type Γ;∆. In-
tuitively, ξ and σ in (ξ,σ) respectively denote a standard
functional environment and a store, taken modulo ∼=.

Assume given a formula C and a model M , both
typed under Γ;∆. Then each term in C is inductively
interpreted under M as an abstract value in the obvious
way, except each name of a reference type is interpreted
as that name itself (so that, in effect, we treat reference-
typed names as constants). As examples, given M =
(ξ,σ), a functional variable xα is interpreted as ξ(x);
dereferencing !y is interpreted as σ(y); and a pair 〈e,e′〉
is interpreted as a pair of abstract values interpreting e
and e′ (the full definition is found in [2, 25, §4.3]). We
write [[e]]M for the interpretation of e under M .

The satisfaction relation is defined using two dis-
joint models, one interpreting primary names and an-
other auxiliary names. Writing I ,I ′, . . . for models used
for interpreting auxiliary names, the satisfaction relation
is written:

M Γ;∆ |=I C

which reads: under I , C is satisfied by M . The satisfac-
tion relation is defined following the standard first-order
logic with equality [33, §2.8] with the equality predi-
cate interpreted as the identity relation, adding the fol-
lowing clause for evaluation formulae. Let M = (ξ,σ0).
⇓ is defined from that of concrete programs. We define:
M Γ;∆ |=I{C}e1 • e2 ↘ x{C′} if

∀σ. ( ∆ ` σ ∧ (ξ,σ) |=I C
⊃ ∃V,σ′. ([[e1]]M · I[[e2]]M · I, σ) ⇓ ([V ]∆;β,σ′)

such that (ξ∪ x : [V ]∆;β,σ′) |=I C′ )

The left-hand side says: if the interpretation of e1 is in-
voked with that of e2 as an argument, then for any state σ
satisfying C, the invocation starting from σ will converge
with a value named x and a state σ′, together satisfying
C′. As the first result, we formally justify axioms in § 3.3
as the basis of reasoning. For the proof, see [2, §5.2].

Proposition 1 (soundness of axioms) All axioms in
§ 3.3 are valid under arbitrary (well-typed) models.

We are now ready to formalise the semantics of judge-
ments. Below Mξ denotes the substitution of values fol-
lowing ξ, confusing abstract values and concrete values.

Definition 3 (semantics of judgement) |={C}MΓ;∆;α :u
{C′} iff, for each I, ξ and σ, whenever (ξ,σ) |=I C, we
have (Mξ,σ) ⇓ (V,σ′) such that (ξ ·u : [V ]∆;α,σ′) |=I C′.

We conclude this subsection with the main theorem of
the paper, proved in [2, §5.3].

Theorem 1 (soundness of proof rules) If `{C}MΓ;∆;α :u
{C′} then |={C}MΓ;∆;α :u {C′}.
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5.2 Observational Completeness

Compositional semantics dictates that programs with the
same contextual behaviour are in principle interchange-
able without affecting the observable behaviour of whole
software, thus offering foundations for modular software
engineering. Compositional program logics extend this
idea by further allowing programs with the same speci-
fications to be interchangeable without affecting the ob-
servable behaviour of the whole, up to a required spec-
ification. For this to be materialised, it is essential that
valid assertions for programs capture precisely the con-
textual behaviour of programs [18, 34, 35]. This criterion
may be stated with different degrees of exactness:

1. Are two programs contextually equivalent if and
only if they satisfy the same set of assertions?
That is, are M1 ∼= M2 if and only if, for each A,
u : M1 |= A implies u : M2 |= A and vice versa?

2. For each program, is there an assertion (character-
istic formula) which fully describes its behaviour?
That is, for each M, can we find A such that
u : M |= A and u : N |= A implies M ∼= N?

Clearly (2) entails (1). Further, these questions can also
be asked at the level of provability. (1) may be regarded
as an essential property of any program logic which aims
to capture observable behaviour of programs. The fol-
lowing establishes (1) for our logic. For (2) (including
its provability version), see § 7.

For establishing (1), we proceed as follows.

Step 1: We introduce a variant of finite canonical forms
(FCFs) [6, 24, 26] which represent a limited class
of behaviours and whose properties are, therefore,
more readily extracted.

Step 2: We show characteristic formulae of FCFs w.r.t.
total correctness are derivable using our proof rules.

Step 3: By reducing a differentiating context of two
terms to FCFs and further to their characteristic
formulae, we show any semantically distinct
programs can be differentiated by an assertion,
leading to the characterisation of ∼= by validity.

For our present purpose, it suffices to focus on the fol-
lowing class of assertions. Below v is the standard con-
textual ordering.

Definition 4 An assertion C is a total correctness asser-
tion (TCA) at u if whenever (ξ ·u : κ,σ) |=I C and κv κ′,
we have (ξ ·u : κ′,σ) |=I C.

Intuitively, total correctness is a property which is closed
upwards — if a program M satisfies one and there is a
more defined program N then N also satisfies it, see [2,
§6]. The notion of characteristic formulae needs be re-
fined for total correctness:

Definition 5 (characteristic formulae) Given a semi-
closed V , a TCA C characterises V iff: (1) |= {T}V ∆;α :u
{C} and (2) |= {T}W∆;α :u {C} implies V vW .

We now introduce FCFs. Henceforth we only consider
Nat and arrow types for simplicity. This does not in-
fluence the arguments. Finite canonical forms (FCFs),
ranged over by F,F ′, . . ., are a subset of typable terms
given by the following grammar (with obvious transla-
tions). U,U ′, . . . range over FCFs which are values.

F ::= n | ωα | λx.F | casexof〈ni :Fi〉ni∈X | x := U ;F

| let x= yU inF | let x = !y in F

where in the case construct, X is a finite non-empty sub-
set of natural numbers (it diverges for others); and ωα

stands for a diverging closed term of type α. We also
set Ωα⇒β def

= λxα.ωβ. We omit the obvious induced typ-
ing rules. In the functional sublanguage, FCFs represent
essentially finite behaviour. Here we use FCFs for their
tractability to derive characteristic formulae.

Proposition 2 For each semi-closed ∆ `U : α, we have
` {T}U∆;α :u {C} such that C characterises U.

The proof uses derived proof rules tailored for extract-
ing strongest postconditions from FCFs, for which we
inductively prove the property in Definition 5. Then a
strongest postcondition of T w.r.t. U gives the desired
formula, see [2, §6]. Note Proposition 2 implies (rela-
tive) completeness of ` for FCFs w.r.t. total correctness.

Write Γ;∆ ` M1 ∼=L M2 : α when |= {C}MΓ;∆;α
1 :u

{C′} iff |= {C}MΓ;∆;α
2 :u {C′}. The main result follows.

Theorem 2 (observational completeness) Γ;∆ ` M1 ∼=
M2 : α if and only if Γ;∆ ` M1 ∼=L M2 : α.

PROOF: The “only if” direction is by Definition 3. For
the “if” direction, we prove the contrapositive. For
brevity we present the reasoning for purely functional
sublanguage (the only change for the full language is a
slightly more complex context). Suppose M1 6∼= M2. It
suffices [6, 24, 26] to take closed FCFs ~F such that, e.g.
V~F ⇓ n but W~F 6⇓ n (it may either diverge or converge to
a different numeral). For simplicity we consider a single
such F, and let [[F ]] f be its characteristic formula at f
via Proposition 2. We now infer, using Definition 5:

u : [V ], f : [F ] |= u• f ↘n
⊃ ∀κ w [F ]. (u : [V ], f :κ |= u• f ↘n)
⊃ ∀κ. ( f : κ |= [[F]] f ⊃ u : [V ], f :κ |= u• f ↘n)
⊃ u : [V ] |= ∀ f .([[F ]] f ⊃ u• f ↘n) .

But u : [W ] 6|= ∀ f .([[F ]] f ⊃ u• f ↘n), hence done. �

One of the significant consequences of Theorem 2 is that
a strongest post condition for total correctness of T w.r.t.
each semi-closed value (if any), not restricted to FCFs,
is its characteristic formula.
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Figure 2 Hoare Logic with Recursive Procedure

[Skip] −
Σ `{C}skip{C}

[AsH] −
Σ `{C[e/u]}x := e{C}

[Seq]
Σ `{C}P{C0} Σ `{C0}Q{C′}

Σ `{C}P;Q{C′}

[IfH]
Σ `{C∧ e}P1 {C′} Σ `{C∧¬e}P2 {C′}

Σ `{C}if e then P1 else P2{C′}

[While]

C∧ e ⊃ e′  0
Σ `{C∧ e∧ e′ = n}P{C∧ e′ � n}

Σ `{C}while e do P{C∧¬e}

[Call]
{C}p{C′} ∈ Σ

Σ `{C}call p {C′}

[RecProc]

Σ,{∃ j � i.C( j)}p{C0} `{C(i)}P{C0}
Σ,{∃i.C(i)}p{C0} `{C}Q{C′}

Σ `{C}proc p = P in Q{C′}

6. Reasoning Examples

6.1. Deriving and Extending Hoare Logic

We first embed the standard proof rules of Hoare logic
for total correctness with recursive procedures [27] in
the present logic, establishing a precise connection be-
tween the proposed logic and traditional program logics.
The syntax of programs (P,Q, ..) is the standard while
language augmented with argument-free procedures, see
Figure 6.1. p,q, . . . range over procedure labels and e
is given as: e ::= x | c | !x | op(e1, ...,en). In
proc p = P inQ, a procedure body P is named p, where
we allow calls to p to occur in P.

We consider a logic for total correctness. Formu-
lae, ranged over by C,C′, . . ., are a proper subset of the
logic for imperative PCF, having only natural numbers
as data types and missing evaluation formulae. We also
use e as terms in formulae. The judgement takes the
shape Σ ` {C}P{C′}, where {C}P{C′} is the standard
Hoare triple and Σ is a finite map from procedural labels
to triples, each taking the form {C}p{C′}. Figure 6.1
presents the standard proof rules [27]. We also use the
standard consequence rule. The encoding of programs
into PCF-terms is standard (procedure labels are simply
taken to be names).

[[skip]]
def
= () [[x := e]]

def
= x := e [[P;Q]]

def
= [[P]]; [[Q]]

[[if e then P else Q]]
def
= if e then [[P]] else [[Q]]

[[while e do P]]
def
= (µw.λ().if e then [[P]];(w()) else ())()

[[call p]]
def
= p()

[[proc p = P in Q]]
def
= (λp.[[Q]])(µp.λ().[[P]])

All commands have unit type. When M has unit type
in {C}M :u {C′}, we can safely omit the anchor because
C[()/u]≡C. Hence, just like a Hoare triple, hereafter we
often write {C}M{C′}. The judgement Σ ` {C}P{C′}

is translated as {[[Σ]]∧C}[[P]]{C′} with [[ /0]]
def
= T and

[[Σ,{C}p{C′}]]
def
= [[Σ]]∧ {C}p • (){C′}. For the stan-

dard assignment rule [AsH], we use the following rule
derivable from the rules in Figure 1.

[Simple] −

{C[e/u]}e :u {C}

Then [AsH] is decomposed into [Simple] and [Assign]
of Figure 1. For [RecProc], the recursion rule in the
present logic, [Rec], gives a precise account of the in-
duction principle for recursive procedures. Below (e3)
etc. are axioms from §3.3, indicating their use in the
consequence rule and (Asm) stands for “assumption”.

1. { [[Σ]] ∧ {∃ j � i.C( j)}p• (){C′} ∧ C(i)} [[P]] {C0 } (Asm)

2. { [[Σ]] ∧ ∀ jNat.{ j � i ∧ C( j)} p• (){C′} ∧ C(i)} [[P]] {C0 } (e3)

3. { [[Σ]] ∧ ∀ jNat � i.{C( j)}p• (){C′} ∧ C(i)} [[P]] {C0 } (e5)

4. { [[Σ]] ∧ ∀ jNat � i.{C( j)}p• (){C′}} λ().[[P]] :m
{{C(i)}m• (){C0}} (Abs)

5. { [[Σ]]} µp.λ().[[P]] :m {∀i.{C(i)}m• (){C0}} (Rec)

6. { [[Σ]]} µp.λ().[[P]] :m {{∃i.C(i)}m• (){C0}} (e3)

7. { [[Σ]] ∧ {∃i.C(i)} p• (){C0} ∧ C} [[Q]] {C′ } (Asm)

8. { [[Σ]]} λp.[[Q]] :n
{∀p.{∃i.C(i)} p• (){C0} ⊃ {C}n• p{C′}} (Abs)

9. { [[Σ]] ∧ C} (λp.[[Q]])(µp.λ().[[P]]) {C′ } (6, 8, App)

In Lines 2 and 3, we use ∃ j � i.C
def
= ∃ j.( j � i∧C) and

∀ j � i.C
def
= ∀ j.( j � i ⊃C).

For other rules, [Skip] and [Call] are immediate; [Seq]
is from [App] and [Abs], using C[()/u] ≡ C, cf. §3.3;
[IfH] is by [Simple] and [If]; [While] uses [Rec]. See [2]
for derivations. Thus, assuming the standard model [33,
§3.1] for assertions in Hoare logic:

Theorem 3 (embedding of Hoare logic for total correct-
ness) Σ ` {C}P{C′} implies {[[Σ]]∧{C}}[[P]]{C′}.

We end this subsection with the extension of the while
rule for its use in the imperative PCFv.

[While’]

{C}M :b {Bb ∧C} C∧B[t/b] ⊃ e′  0
{C∧B[t/b]∧ e′ = n}N {C∧ e′ � n}

{C}while M do N {C∧B[f/b]}

This and other rules are useful for imperative PCFv, as
we shall see in the next subsections.

6.2. Simple Imperative Higher-Order Functions

We further illustrate the use of proof rules with programs
which correspond to the assertions in § 2 and § 3.2. Let
Double(u)

def
= ∀i.(u• i = i×2). Then we infer a function

with dereference.
1. {Double(!x)} !x :m {Double(m)} (Deref)

2. {y = 3}y :n {n = 3} (Var)

3. {Double(!x)∧ y = 3} (!x)y :u {Double(!x)∧u = 6} (App)

4. {T}λy.(!x)y :u {{Double(!x)}u•3 ↘ 6{Double(!x)}} (Abs)

5. {Double(!x)} (λy.(!x)y)3 :u {u = 6∧Double(!x)} (App)
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Next we use the following variant of [Seq] in § 6.1.

[Seq’]
{C}M{C0} {C0}N :u {C′}

{C}M;N :u {C′}

Using [Seq’], we can plug-in the post and pre-
conditions of the conclusions of (λy.(!x)y)3 and
{T}x := λz.(z×2){Double(!x)} as:

{T} x := λz.(z×2) ; (λy.(!x)y)3 :u {u = 6∧Double(!x)}

By a similar reasoning, we obtain the following which
corresponds to C in § 3.2.

{T} x := λz.(w :=!w+1;z×2)
{∀i,n.{!w = n} !x• i ↘ 2×i{!w = n+1}}

Then similarly, we can derive D in § 3.2.

{T}λy.(!x)y :u {{C∧ !w=0}u•3 ↘ 6{C∧ !w=1}}

Combining these by [Seq’] gives us:

{C∧ !w = 0} x := λz.(w :=!w+1;z×2) ; (λy.(!x)y)3 :u
{u = 6∧C∧ !w=1}

Finally we reason for M in (2.6), § 2, page 4, using
A( f g) given there.

1. {A( f g)∧Even(x)} y := x {A( f g)∧Even(!y)}(AsH, Conseq)

2. {A( f g)∧Even(!y)} g( f ) {A( f g)∧Odd(!y)} (Var×2, App)

3. {A( f g)∧Odd(!y)} g( f ) {A( f g)∧Even(!y)} (Var×2, App)

4. {A( f g)∧Even(!y)} !y+1 :z {Odd(z)∧Even(!y)} (Simple)

5. {A( f g)} M :u {Even then Odd(u,x)} (Seq’×3, Abs)

6.3. Three Programming Examples Revisited

This subsection revisits the examples from the introduc-
tion. First, the specification for closureFact can be
made precise, for example with the following judgement.

{T} closureFact :u {∀iNat.{T}u•i{{T} !y•()↘z{z = i!}}}

Next we consider circFact, whose specification can
be written down as, under x : Ref (Nat⇒Nat):

{T} circFact {∃g.(∀i.{!x = g}(!x)•i↘ i!{!x = g} ∧ !x = g)}

The specification says: after executing circFact, x
stores a procedure which would calculate a factorial if
x indeed stores that behaviour itself, and that x does
store that behaviour, tersely describing all we need to
know about circFact including its circularity. For the
derivations of these specifications for closureFact and
circFact, see [2].

The following assertion describes scheduler’s be-
haviour (C(i) represents a sequence of states; we assume
list operations :: and Nil in the assertion language).

Sched(u)
def
= {C(0)}u•Nil{C(0)} ∧

∀gα⇒Unit,aα,yList((α⇒Unit)×α)

({C(i+1)}g•a{C(i)} ∧ {C(i)}u• y{C(0)}
⊃ {C(i+1)}u• (〈g,a〉 :: y){C(0)})

The assertion says: given for example a list l
def
=

[( f ,a),(g,b)], if we can prove {C(0)} f a{C(1)} and
{C(1)}gb{C(2)}, then {C(0)}scheduler l {C(2)} can
be derived. Below we outline how the main judgement

{T} scheduler :u {Sched(u)}, (6.1)

can be inferred. Setting scheduler
def
= map app where

app
def
= λz(α⇒Unit)×α.(π1(z)(π2(z))), we derive:

{T}map :m {∀ f β⇒Unit Map′(m, f )} (6.2)
{T}app :n {∀z(α⇒Unit)×α. App(n,z)} (6.3)

where:

Map′(m, f )
def
= {T}m• f ↘u{Map(u, f )}

Map(u, f )
def
= {C(0)}u•Nil{C(0)} ∧

∀xβ,yList(β).({C(i+1)} f • x{C(i)} ∧ {C(i)}u• y{C(0)}

⊃ {C(i+1)}u• (x :: y){C(0)})

App(n,z)
def
= ({C(i+1)}π1(z)•π2(z){C(i)}

⊃ {C(i+1)}n• z{C(i)})

The derivation for map in (6.2) follows [25, § 5]. (6.4)
is straightforward. We derive (6.1) from (6.2) and (6.4).

1. {T} map :m {∀ f .Map′(m, f )} (6.2)

2. {T} app :n {∀z.App(n,z)} (6.2)

3. {∀ f .Map′(m, f )} app :n {∀ f .Map′(m, f ) ∧ ∀z.App(n,z)} (Inv)

4. {∀ f .Map′(m, f )} app :n {{T}m•n↘u{Sched(u)}} (Conseq)

5. {T} (map app) :u {Sched(u)} (1, 4, App)

Line 3 uses the structure rule in [2]. Line 4 uses the
following inferences on validity.

∀ f .Map′(m, f ) ∧ ∀z.App(n,z)
⊃ Map′(m,n) ∧ App(n,z) (∀-inst)
⊃ {T}m•n↘u{Map(u,n) ∧ App(n,z)} (e6)
⊃ {T}m•n↘u{Map(u,〈g,a〉)∧App(n,〈g,a〉)} (∀-inst, (e7))
⊃ {T}m•n↘u{Sched(u)} (modus ponens, (e7))

7. Further Topics and Related Works

Inferential Completeness As observed in §5.2, our
proof system is (relatively) complete for semi-closed
FCFs w.r.t. total correctness. Does this extend to the
whole language? We believe so in the following sense.

Conjecture. (1) For each semi-closed V , {T}V :u {C}
s.t. C characterises V in the sense of Def. 5. (2) For
each TCA C′, |= {T}V :u {C′} implies ` {T}V :u {C′}.

The statement says that the assertion language can pin-
point, and the proof rules can relatively justify, any
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upwards-closed set which has a semi-closed value as its
least element.

For partial correctness, the following rule (from [23,
§5]) is known to be complete.

[Rec-Partial]

{A ∧ B[x/u]}λy.M :u {B}
B admissible at u A ⊃ ∃x.B

{A}µx.λy.M :u {B}

where “admissibility” intuitively says that B is about par-
tial correctness [23, §5.3]. The rule can embed and jus-
tify known proof rules of loops and recursion for partial
correctness, such as the while rule in Hoare logic. Our
coming paper will discuss completeness results in detail.

Aliasing and Local State In § 3, it is observed that
allowing reference types to be carried by other types
(including arrow and reference types) leads to a dis-
tinct class of behaviour. Indeed, this generalisation in-
duces a strong notion of aliasing, in the sense that a ref-
erence name returned from a procedural call (as well
as from e.g. reading references) can textually coalesce
reference names in a program text. This significantly
increases complexity in behaviour, hence in its logical
treatment. A clean and tractable logical treatment of this
phenomenon is possible on the basis of the logic studied
here using ideas from the π-calculus. Details are found
in our coming report [8]. On the basis of the preceding
stratification, local state is also incorporated cleanly by a
simple logical enrichment, reminiscent of the ν-operator
in π-calculi. The full exploration of local state will be re-
ported elsewhere. For simplicity, we have omitted poly-
morphism and recursive types in the present paper. Their
integration is entirely straightforward following [25].

Related Work In the following we focus on directly
related work, leaving more extensive comparisons to [2,
22, 23, 25].

Compositional program logics for imperative lan-
guages have been studied extensively since Hoare’s sem-
inal work. In late 1970s and early 1980s, many at-
tempted to extend Hoare logic to higher-order languages,
mostly focussing on Algol and its derivatives. Clarke
[10] shows that a sound and (relatively) complete Hoare
logic cannot exist for programming languages with a cer-
tain set of features, in particular arbitrary higher-order
procedures. Clarke’s argument relies on a given logical
language being first-order and allowing models to have
a finite universe (which makes validity in assertions re-
cursive). As Halpern pointed out [17], a sound and com-
plete logic may exist for higher-order programming lan-
guages if we consider other classes of models, as we do
here. Olderog [39, 40], Trakhtenbrot et al. [47], German
et al. [13] and Halpern [17] study Algol-like languages
with procedures as parameters, obtaining various infer-
ential relative completeness results. Unlike ours, none

of these works can describe higher-order behaviour di-
rectly in assertions which we do with evaluation formu-
lae. This restriction partly reflects the nature of their tar-
get languages, which strictly separate commands from
(first-order and higher-order) expressions. Using logical
languages in these works, it would be hard to capture the
behaviour of examples in §2 and §6 as assertions.

Specification logic by Reynolds [44] is a program
logic for Idealised Algol in the tradition of LCF, allow-
ing higher-order programs to appear textually in asser-
tions. For reasoning about side effects, assertions also
include Hoare-triple-like formulae for command types,
though their pre/post conditions only assert on first-order
state, unlike our evaluation formulae. Specification logic
does not have assertions on higher-order expressions in
its logical language and does not allow compositional
reasoning for these expressions.

Reynolds, O’Hearn and others [45] study extensions
of Hoare logic in which new logical connectives are used
for reasoning about low-level operations such as garbage
collection in the first-order setting. A clean logical treat-
ment of low-level features and higher-order constructs
would be an interesting topic for further study.

The use of side-effect-free expressions when reason-
ing about assignment is a staple in compositional pro-
gram logics. Freedom from side effects is however hard
to maintain in the higher-order setting because of com-
plex interplay between higher-order procedures. The
clean embedding of Hoare’s assignment rule in §6 sug-
gests that the presented framework effectively refines the
standard approach while retaining its virtues in the orig-
inal setting. Experiment of the possible extensions in the
context of an integrated verification framework such as
JML [4] would be an interesting subject for further study.

Names have been used in Hoare logic since an early
work by Kowaltowski [28], and are found in the work by
von Oheimb [48], Leavens and Baker [31], Abadi and
Leino [5] and Bierman and Parkinson [9], for treating
parameter passing and return values. These works do
not treat higher-order procedures and data types, which
are uniformly captured in the present logic along with
parameters and return values through the use of names.

None of the related works discussed above have es-
tablished observational completeness in the sense of
Theorem 2. The precise correspondence between con-
textual behaviours and logical descriptions becomes es-
sential when we take assertions on higher-order be-
haviours in earnest, including in practical applications.

The origin of the assertions and judgements intro-
duced in the present work is the logic for typed π-calculi
[21, 23] where linear types lead to a compositional pro-
cess logic. The known precise embeddings of high-level
languages into these typed π-calculi can be used to de-
termine the shape of name-based logics like the one pre-
sented here for the embedded languages. Once found,
they can be embedded back with precision into the origi-
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nating process logics. [20, 21, 23] discuss process logics
and their relationship to the program logics in detail.
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