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Abstract. We study an extension of Hennessy-Milner logic for the mt-calculus
which gives a sound and complete characterisation of representative behavioural
preorders and equivalences over typed processes. New connectives are introduced
representing actual and hypothetical typed parallel composition and hiding. We
study three compositional proof systems, characterising the May/Must testing
preorders and bisimilarity. The proof systems are uniformly applicable to differ-
ent type disciplines. Logical axioms distill proof rules for parallel composition
studied by Amadio and Dam. We demonstrate the expressiveness of our logic
through verification of state transfer in multiparty interactions and fully abstract
embeddings of program logics for higher-order functions.

1 Introduction

Communication is becoming a foremost element of computing, from web services to
sensor networks to multicore programming. The diversity of behaviour these commu-
nicating systems exhibit is staggering, including functional and stateful, sequential and
concurrent, and deterministic and non-deterministic. A useful way of understanding
this diversity is to classify behaviour into fypes. A compositional universe of types has
fundamental merit in engineering, helping distilled understanding of the semantics of
behaviour and guaranteeing basic safety such as the absence of communication errors.

The m-calculus [17] is an expressive formalism for concurrency, representing a vast
array of communication behaviours with its small syntax. Starting from Milner’s sorting
[16], many different notions of types have been studied to classify different universes of
interactions. For example, one linear type discipline turns the ®-calculus into a semantic
universe which exactly captures call-by-name and call-by-value higher-order sequential
computation [4].

Built on the preceding studies of modal logics for the untyped ®-calculus [2, 8, 18]
and CCS [20, 21], as well as on our own works on program logics [3, 10, 25], the present
work introduces a sound and complete modal logic for typed mt-calculi which is uni-
formly applicable to diverse type disciplines. Its adaptability comes from three logical
operators, representing actual and hypothetical parallel composition and hiding. The
introduction of these operators is less about sheer expressiveness than about the organi-
sation of proof rules. Compositional reasoning is now confined to the proof rules of the
logic, which precisely follow the syntactic structures of processes; whereas extracting
the modal content of composition is relegated to the axioms of the assertion language.
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This organisation helps us uniformly treat multiple type disciplines and their mixture in
logic: different type disciplines induce different axioms for these operators, reflecting
their distinct semantic effects, while keeping the identical proof rules.

Typed composition in the t-calculus often yields locally deterministic interactions,
which allows us to abstract away silent actions semantically. This is often essential for
reasoning about embeddings of data structures and programming languages. To capture
this effect, the present study considers modal assertions and proof systems for weak
typed transitions. Suggested by our study on logics for higher-order functions [10], we
construct three proof systems, the first one based on the May modality, the second one
on Must, and the third one which mixes these modalities. By deriving characteristic
formulae, we prove completeness of these proof systems with respect to the May/Must
testing preorders and bisimilarity. These results are established for the integration of
three channel type disciplines widely found in the literature, non-deterministic, linear
and replicated. These results extend to other linear and non-linear disciplines.

The combination of types and logics offers a powerful reasoning framework. We
show two case studies. First we reason about a practical business protocol, using a new
axiom for fixed point formulae for merging states in synchronised interactions. Second
we show our logic can fully abstractly embed the total and partial program logics for
call-by-value higher-order functions studied in [10]. The result extends to other program
logics, offering a unifying view on logics for sequential and concurrent programs.

Related Work Hennessy-Milner logic of the untyped m-calculus is first studied in
[18] where early and late bisimilarities are characterised. Amadio and Dam [2] study
model checking and proof systems of Hennessy-Milner logic of the untyped ®t-calculus
with minimal and maximal fixed points. Dam [8] presents a proof system with ordinal-
indexed fixed point formulae with a powerful discharge rule and presents specifications
on Milner’s encoding of data structures. Our logic is built on these works. One of the
key contributions of the present work is the introduction of axioms for parallel compo-
sition based on typed synchronisation algebra, through which we can logically capture
the semantics of typed processes. As far as we know, ours is the first modal logic for
mobile processes which fully characterises typed semantics.

Other process logics for the untyped m-calculus include [15, 23], which study effi-
cient proof search using a freshness quantifier V; [6], which presents a logic for spatial
properties using a hiding operator and a freshness operator; and [5], which extends
Abramsky’s logical characterisation of a class of CPOs to obtain a negation-less logic
which corresponds to a power domain constructed by Fiore and others and which char-
acterises a strong late bisimilarity.

The logical operators for actual and hypothetical parallel composition appeared in
Stirling’s early work [20, 21]. Their usage in the present work originates in [3]. The op-
erator for hypothetical composition allows rely-guarantee-based reasoning [12], whose
analogue in the sequent format is studied by Simpson [19] as well as in [2, 7, 8]. Logi-
cal full abstraction of PCF is studied in [14] in the context of CPOs. A derivation of a
program logic from a typed process logic is studied in [9]. A fully abstract embedding
of a program logic in a modal process logic may not be found in the literature.

The full version of the present paper [1] lists detailed proofs and further examples.
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2 Processes and Types

Processes. We use a typed m-calculus with three kinds of channel types: linear, non-
deterministic and replicated. Linear types are based on session types [11,22] which
allow legible description of structured communication. For simplicity, we omit the del-
egation primitive. The grammar of processes (P, Q,...) is given by:

P =0 | alk).P | 'a(k).P | ak).P | k(x).P | k{e).P | k<l.P | k>[l; : Pic
| if ethenPelseQ | P|Q | (Vu)P | (recX(X).P)(é) | X(é)

kK ,.. are linear channels; a,b,c,.. shared channels; u,u’,.. their union; v,w,.. val-
ues, which are constants (numbers and booleans) and channels; x,y, .. variables; X, Y ..
process variables; and /,1;, .. labels for branching. Expressions (e,¢’,..) are variables,
constants, arithmetic/boolean operations (such as e + ¢’) and linear/shared channels.

The process a(k).P receives a request to establish a session from a(k).Q. la(k).P is
the replicated version of a(k).P. In all of these three prefixes, k is bound in the body.
k(x).P receives a value from k(e).Q via k; and ki [I; : P]ic; (with I finite) waits with
{li}ici-1abelled branches from which k<l.P selects one. P | Q is a parallel composi-
tion and (vu)P is a hiding. A recursive process (recX (%).P)(é) consists of a recursive
definition (recX (¥).P) and actual parameters é. In rec X (X).P, a process variable X and
formal parameters ¥ are binders. fn(P) denotes the free channels in P. We often omit 0
and the empty vector. For example we write k for k().0 and recX.P for (recX().P)().

The structural congruence = is standard [11,22], in which we include the unfold-
ing rule for recursion: (recX (X).P)(é) = P[V/x][recX (X).P/X] with ¢; | v;, where e | v
means e evaluates to v. The reduction rules are generated by:

a(k).P | a(k).Q — (Vk)(P | Q) la(k).P | a(k).Q —!a(k).P|(vk)(P|Q)
k(x).P | k{e).Q — P[v/x] | Q (elV) ko li: Plier | k<l;.Q — P | Q (j€l)

with the standard if-then-else rules, closing under the evaluation contexts and structure
rules. The first rule carries out session initiation via bound name passing. The second
rule is for value passing and the third for branching.

As an example, a simple ATM process with an initial value 300 is given below.

recX (x).(a(k).(recY (yk).ki>[ balance : k(y).Y (yk),
deposit : k(w).k(y+w).Y {y +wk),
quit : X(y)] ) {xk) )(300)

This ATM first establishes a session identified by k; and offers three options, balance,
deposit and quit. If balance is selected, then it shows the balance of the account, and
recurs with the same amount (y). If deposit is selected, then it receives a deposited
amount w, and recurs with the new state (y 4+ w). If quit is chosen, it exits the loop and
terminates the conversation. The actual parameter 300 indicates the initial balance.

Types and Typing. The grammar of types follows [11], augmented with replicated
types, (1)" and (t)’, from [4].

o =

nat | bool | (1) | (1)} | (1)’ | rect.a |t
T o= lout|Tost | &{li:titier | ®{li:Titier |rect.t|end || L
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We call o a shared type, which consists of non-deterministic type (t); server type (t)"
and client types (1)’ together called replicated types; atomic type nat and bool; re-
cursive type rect.T; and a type variable. We take an equi-recursive view of types, not
distinguishing between a type rect.o and its unfolding orecr.o./z]. T is a linear type.
Type | o; T represents first inputting a value of type o, then performing the actions typed
by T; type Tou; T is its dual. Type &{/; : T; }iecs represents waiting with n options, and be-
haves as 1T; if the i-th action is selected; type ®{/; : T; }ie; is its dual. Type end represents
inaction and is often omitted. | indicates that no further connection is possible at a
given channel. The dual type of a is defined by exchanging ! and ?, T and |, and & and
@®. (1), end, atomic types and ¢ are self-dual.

The partial commutative and associative operator ® [4, 22], which controls a paral-
lel composition, is defined by: (1) T®T= 1; (2) a@o=oaif &= o; and (3) (1)'© (7)’ =
(1)" and (1)’ ® (1)” = (1)”. (1) says that once we compose two processes at a linear
channel, the channel is no longer composable. (3) says a server should be unique,
while an arbitrary number of clients can request interactions. Ag and A are compat-
ible, written Ag < Ay, if Ag(u) ® A (u) is defined for each u € dom(Ag) Ndom(A;);
Ai(u) = a, then u € dom(A;); and process variables are disjoint. If Ag < A;, we set
A ©OA] = {(Ag @A) (u) | u € dom(Ag) Ndom(A;)} UAg\ dom(A;) UA; \ dom(Ap).

Typing environments I', A, ... are given by ' ::=0 |[,a: o | T, X : 4% | T,k : T. The
typing judgement for process P is given as I' - P. The typing rules are identical with
[11,22] for linear/non-deterministic types, augmented with the typing for replicated
types from [4] (allowing only client typed channels to be free under a replicated prefix).
We only list the following rule for parallel composition.

[FEPwithi=1,2andT) <, then 1 O F P | P

As an example, session channel k in ATM is typed by:
© = rect.&{balance: nat;7, deposit : |nat;Tnat;s, quit: end}

The same session from the user’s viewpoint is typed dually as T = rect. ® {balance :
Inat;z, deposit : Tnat; |nat;?, quit : end}, composable with T by ©.

Bisimilarity and Testing. Transition labels (£,¢',..) are given by the grammar:
¢ = 1| alk) |ak) | kv | kv | k(a) | k(a) | kel | k<l

where k and a in (k) and (a) introduce binding. ¢ is shared if it has shape a(k) or a(k);
linear if it is neither shared nor 1. We write ¢ for the dual of ¢, defined by exchanging
the input and output (for example a(k) = a(k)). T is undefined. We use the standard

lol;
early transition relation augmented with k</.P 4 poand ki [l; : Picr it P (jel).

The typed early transition is defined by setting I' - P R \(-Qif P LN Q and if
the operation I'\ £ is defined, where I"\ ¢ is defined if ¢ conforms to T, in which case
'\ ¢ denotes the resulting environment. For example, assuming I' = Ak : &{l; : Ti}iey,
ifl=1;(jeDthenT'\k>l=A,k:1j; otherwise I'\ k>/; is undefined. We often leave
I" and A implicit. = stands for a reflexive and transitive closure of . We define the
early weak bisimilarity, the weak May preorder and the (divergence-insensitive) weak
Must preorder in the standard way, written =2, &4y and 5, Tespectively.
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3 Assertions

A Logical Language. Our logical language is Hennessy-Milner logic with equality,
value/name passing modality and fixed point formulae [2, 8], augmented with new op-
erators. The grammar of assertions (A, B, C,...) follows.

A= e1=e; | AANB | A | VAP A | (DA | (DA | (uX(%).A)(&) | X(&)
| vx*PA| AoB | A>B

Above ¢ ranges over a(k), a(k), k(e), k{e), k>>1; and k<l;. p stands for either o or T. We
define AV B, A D B, 3xP A, [{]A, []|A, and (VX (X).A)(&), by dualisation.

(€)A says that the process has some immediate, or strong, ¢ action, satisfying A as
the result. {( )A says that after some sequence of zero or more silent actions, the process
will satisfy A (dually, in [[]A, after whatever zero or more silent actions, the process will
satisfy A). We write (¢)A for () (¢){)A, saying that some weak ¢-transition leads to A.
Dually [[¢]]A says that any weak ¢-transition ends up satisfying A. The combination of
strong and weak modalities is important for proof systems and axioms.

The minimal and maximal fixed points use parameters following [2, 8], which are
essential for describing state-changing loops, as in the ATM example. We assume that
X (€) never occurs in A negatively (the assumption part of > is contravariant) [8].

Ao B (read as “A par B”) is understood as A, B in [21]. Informally, a process I' - P
satisfies A o B when I' - P has the same observable behaviour as Q|R, together typed
under I', such that Q satisfies A and R satisfies B. This puts typing constraints on A and
B: if A and B have minimal typings A and A/, we demand A < A’ and AOA' CT.

A D> B (read as “rely A then B”) is a typed version of the consequence relation studied
in [20]. A process I' - P satisfies A > B if, for each appropriately typed Q satisfying
A, P|Q satisfies B. Again this constrains the typing of A and B: if A has the minimal
typing A, we demand I" < A and that B is typed under I' ® A. For example, for I" - P
with I'(k) = 7 to satisfy B > C, k can be typed as T in B, and, if so, k is typed L in C.

vxP A is the quantifier for name hiding. A process, say P, satisfies vxP A if there is a
fresh name u of type p and P’ such that (vu)P’ ~ P and P’ satisfies A. Its logical nature
differs substantially from 3, as studied in [25].

We often omit type annotations for quantifiers. T denotes 1 = 1, F its negation. The
standard association of operators is assumed, e.g. Vx.AAB D C is parsed as ((Vx.A) A
B) D C (o, 1>, vx.A associate as A, D, Jx.A). We use the following notation:

Definition 1 (mixed modality). (¢)A = [J({(¢)T A [(]A).

The modal formula (¢)A (read: “surely ¢ then A”) says that now or after any silent
actions the process may have, it can do a strong ¢-action, and then it satisfies A.

Examples of Assertions. We illustrate o and > using a simple example.

P = b(k).k(x).k(x+1).0 0 = b(k).k(2).k(y).h(y).0
P accepts a session request, receives a number and returns its increment: Q requests
a session, sends 2 and receives and forwards the result to 4. P and Q are typed under
b:(|nat;Tnat;end)' and b : (Tnat; |nat;end)’, /i : Tnat;end, respectively.



6 Martin Berger,Kohei Honda, and Nobuko Yoshida

We now assert for P and Q and their composition. First for P and Q individually:

A = " (b(k)) (k) (kx + 1)T B = Wy (b(k)) (k2) {ky) (ry) T

From this we assert A o B for P|Q. Since AoB O (h3) T (by the axioms in Section 4
later), we know P|Q can emit 3 via h. From this entailment we also know Q satisfies
A > (h3) T, i.e. when composed with any behaviour satisfying A, it can emit 3 via h.

Above we only used the May modality. In fact, we can strengthen A and B using the
mixed modality (cf. Definition 1) as follows.

A" = V™ (b(k)) (kx) (kx + 1) T B = W™ (b(k)) (k2) (ky) (hy) T

We can then show that A’ o B’ entails (h3) T, hence P|Q surely emits 3 via 4. This entail-
ment depends on the type of b: if b’s type is non-deterministic, e.g. b: (|nat; Tnat;end),
then this assertion cannot be derived (as discussed in Proposition 4 later).

Next we consider a specification of the simple ATM, given as:

(a(k)) (VY (yk). (k> balance) (ky)Y (yk)) (300k) 3.1)

The assertion says the process is ready to receive a session request via a: then it enters

a loop, and, if asked to show a balance, it shows y, and recurs. The initial balance is
300. Now a user of ATM may satisfy: Vx.(@(k)) (k < balance) (kx) (2x) T. which, when
combined with (3.1) by o, gives us (A300) T. In contrast to the previous example, we
cannot derive (h300) T since another user may interfere at the shared channel a before
this user. This distinction will be formally underpinned in Proposition 4 later.

Semantics of Assertions. The interpretation of assertions follows [8], extended to the
typed setting. We list the key points. First, a property (written p,q,..) is a set of typed
processes under an identical typing which are without free value/process variables and
which are closed under ~=. We define operators on properties as:

P14 = Upep,0eqlPIQ)~ (vu)p = Upepl(vu)Pl~

(p = {P|P=Pep} (9 = {P|PR P ep)
A parametrised property of type p (written f,g,...) is a function which maps a vector
of values typed p to a property. An interpretation of variables (§,&',..) follows [8],
mapping a variable to a value and an assertion variable to a parametrised property.
Given I' - A where I types the free channels in A, the interpretation of I' - A under
€, written (T A)E, or {A)E if T is known from the context, is given by the standard

clauses for equality, conjunction, universal quantifier, negation and assertion variable,
augmented with the following clauses. For modality, we set:

(TEOAE= (I AN, (THOAYE = (O(T\LHA)G

where I'\ ¢ adds a mapping w.r.t. £. For o, > and v we set:

(T A0B)E = Usoor(AFAE(OF B)E (DHvaP AYE = (vu)(T,u: pA) (E-x— )
(CA B B)E=max pr. ((p] (AFA)E) C (AGTFB)E)

Above max p'.P denotes the maximum property (by set inclusion) typed under I" which
satisfies . The following clause for y-recursion is from [8].

(TH (uX(%)-A) (@) = (fix Af A7 ((A)(§- X — f-2—17)))(§(2))

where fix is the least fixed point and &(e) is the interpretation of e under &.
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Fig. 1 Proof System (the May Modality)

EFP» A EEP» A EEP» A EFP» A
Eta(k).Pw» (a(k))A EFa(k).P » (a(k))A E Fla(k).P » {a(k))A E+a(k).P » {a(k))A
Acc,Req,Ser,CReq
EEP» A E-Pr» A EFP» A, i=1,2 EFPw» A xfresh
EFk(x).P » Vx.(kx)A Ek(e).P » (keY)A EFPi|Py» AjoAy E - (Vu)P » vx.Alx/u]
Rcv,Send,Conc, Res

E-P» A Viel EFPw» A

_ Bra,Sel,Inact
Et ko[l Plics » Nk l)A;  EFkal;Pw (kalj)A; EFOw T ¢
- E,X:(%)(Yj < iA())F P » A() ,
= Var,Rec-ind
E,X:(DAFX(e) » Ale/7] EF (recX.(%).P)(e) » ViA()2/3] arnecn
EFPi» ¢DA EFP» —eDA EFPrA AOB
If, Conseq

Et if ethen Pielse P, » A E-P» B

4 Proof Rules, Axioms and Completeness

Rules for the May Modality Write I'; E = P » A for the provability judgement where
I" types P and A (except auxiliary variables in A) and E contains assignments of the
form X : (X)A, mapping a process variable to a parametrised formula (¥ are binders). We
often write E - P » A, leaving I" implicit. We consider three systems, one for the May
modality, one for Must, and one for their combination. They soundly and completely
characterise the May/Must preorders and bisimilarity, respectively.

The proof rules for the May modality are given in Figure 1. There is a single rule
for each typing rule, except that Conseq has no corresponding rules. The typing is
not mentioned, assuming it follows the typing rules. The first eight rules are standard
(Ser does not use a fixed point, which suffices due to the semantics of replication,
cf. Proposition 4 (6) later). Conc and Res hide complexity of process composition under
o and v, which is to be unfolded by the axioms for these operators.

Inact and Var are standard. In Rec-ind, we assume i, j are in some well-ordered
set [10]. We make this rule applicable to fixed point operators by introducing the no-
tation (u/vX*(%).A)(é) from [8], with Kk ranging over ordinals. The notation stands
for the standard approximant to the least fixed point, given as: (uX°(%).A)(é) = F,
(X1 (2).4)(6) = A[(uX "(£).4) /X] 2/, and (uX*(%).A) (&) = T, (uX'(£).4) (&) with
A a limit ordinal. Dually for v-recursion. For example, via this notation, an inference
for (ree X (k).k1.X (k))(k) is given as follows, setting A(i) = vY’(k).{(k1)Y (k).

X : (k)Vj < iA(j) FkLXE) » A(i)
F (recX (k).k1.X (k) (k) » (VY (k).{(k1)Y (k))(k)

Using higher ordinals becomes necessary when we have a lexicographic ordering, as
with the behaviour with nested recursions.

The conditional rule is standard. The final proof rule is the consequence rule as
found in Hoare logic.
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Rules for the Must and Mixed Modalities The May proof rules ensure that a pro-
cess can reach a certain state: in contrast, the Must rules ensure that a process cannot
reach a certain state. We first define the abbreviation noact(I"), which says: “no ac-
tions at dom(I") are possible”. Let noact(k: |o;t) = Vx*.[[kx]|F, noact(k: &{l; : t;}) =
Aillk> 1] F, noact(k:end) = noact(x:nat) = noact(x:bool) = T and similarly for out-
puts and shared names. Set noact(ii : p) = A;noact(u; : p;). We then write [¢,T]A for
[ 1([€]A Anoact(T")) with £ # <, which says: “/ is the only action possible and if it ever
happens then A follows”. Using this predicate, the proof system for the Must modality
is given by replacing (£} in each prefix rule in Figure 1 with [¢,A]], where A is the
typing of a process minus that of ¢; and for Inact, replacing T with noact(T"), assuming
I' is the implicit typing. Other rules stay unchanged, except for adding:

E,X:(X)AFPw» A A admissible
E + (recX(%).P)(é) » Alé/%]

where admissibility is defined via syntactic unfoldings [10]. Given R = (rec X (%).P){(é),
let P° = 0 and P"*! = P[(%)P"/X] (where we set ((¥)Q)(¢) = Q[é¢/#]). Then a closed
formula A is admissible if: (1) P° satisfies A; and (2) If P; satisfies A for each i > 0,
then (recX (¥).P)(X) also satisfies A. This is extended to open formulae closing under
admissible properties. In practice, we may use a tractable variant of admissibility: for
example, if we restrict P to be sequential (i.e. without parallel composition), there is a
simple syntactic characterisation of admissibility.

To capture both modalities in a single proof system, we strengthen the Must pre-
fix rules through the use of the combined modality (¢,A)A, which stands for (¢)A A
noact(A) (cf. Definition 1). The proof system is given by replacing {¢)) in each prefix
rule in Figure 1 with (¢,A), fully capturing the semantics of prefix. Other rules remain
identical except for adding the following recursion rule, due to Larsen [13].

EX:(®X'(X)-Pw» A
E - (recX (%).P)(&) » (vX'(%).A)(é)

Rec-adm

Rec-mix

Soundness and Relative Completeness Let us write I'; E b0, P> A, I E Byt P A
and I'; E b, P » A, for provability in the May/Must/Mixed proof systems, respectively.
We also write I'; E =P » A (read: T FP satisfies A under E), when we have P€ (T F
AN (&- (ENE) for each &, where (E)& is the obvious interpretation of process variables
under E and &. We first observe:

Theorem 2 (soundness). ', E b4, P » A implies T'; E |= P » A, similarly for T; E =y
Py AandT;E &, P » A.

Thus the three proof systems are all sound under the same satisfaction relation, allowing
the mixed use of their proof rules in reasoning. Further each system precisely captures a
distinct process semantics, as shown by the following completeness result. The proof is
by syntactically deriving characteristic formulae, which also entails observational and
descriptive completeness in the sense of [10].

Theorem 3 (completeness). Let I' - P and A be closed. Then = P » A with A being
an upper-closed property w.rt.C,,q, (resp. a downward-closed property w.rt. Epys)
implies Fyay P » A (resp. Fpuse P W A). Further for any A, if = P » A then i P » A.
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Basic Axioms The operators o and v, used in the proof rules, do not directly describe
the communication behaviour of a process: It is through the axioms of the assertion
language that modal behaviours are extracted. Some of the basic axioms follow.

Proposition 4. Below we assume well-typedness of formulae.
BD(A> (AoB)), A (B>C)=(AoB)>C andAo(A>B)) DB.

QA B~

AoB=AABiffn(A)Nin(B) = 0 and all free channels are server typed.
((€)A)oB = (€)(AoB) and (()Ao (¢)B =~vbn({).(AoB), with { linear.

(Ao (B S ((E) (Ao (DB) A{)(AoB)A(L)((DACB))

(a(k))A o (a(k))B = (a(k))A ovk.(AoB), with a server typed.

(VX (%).A)(€) o (VY (3).B){g) D (VZ(%¥).C[Z(ég)];)(ég) where (AoB D C[X(é)o
Y (2)):) is valid and C[X(€); oY {(g)i]ic1 denotes a formula with multiple holes in-
dexed by I, assuming all occurrences of X and Y are thus exhausted.

The three axioms in (1) relate &> and o. In (2), fn(A) is the set of names and variables
of channel types. In (3), the second axiom eliminates dual actions. In (4) the prefixing
() cannot be removed due to state change, unlike (2). In (5), the axiom relies on a
having a server type, corresponding to the replication law in [16,24]. In the Server-
Client example in Section 3, if we type b with a non-deterministic type, we cannot
apply this axiom, hence cannot derive (h3)T. In (6), A and B indicate well-synchronised
recursive interactions, in which case we can merge their states under recursions.

Elimination of o and v Through these and other axioms, we can transform formulae
into those without o and v. We discuss a basic result for such elimination, using deter-
ministic type disciplines from [4, 24] (the typing in [4] ensures determinacy, to which
[24] adds a causality constraint to ensure strong normalisation: essentially the same re-
sult holds for processes in Section 2 without non-deterministic types). We extend (a(k))
to (ab(k)) (dually for output) since, in [4,24], a server channel (a) carries not only a
linear channel (k) but client-typed channels (b). We also replace the use of bisimilarity
in Section 3 with the standard reduction-based congruence [4,24], denoted =2, which
adds semantic precision. In correspondence, we refine the interpretation of equality and
quantification over server-typed names. Below let o be server-typed.

(Ckef =eg)€ = {T-P| PE(e1)5(e2)/E(e2)8(er)] = P}
(TE F Vx* ANE = maxpré.(Vq“:a.p| g C{Tx:ak-AYE x—u))

The first clause says that two replicated channels are equal if the corresponding be-
haviours are. Together these clauses treat replicated channels as the behaviours they
represent, while maintaining the standard axioms for equality and quantifiers. Their sig-
nificance will become clear when we discuss logical full abstraction in Section 5. The
same proof systems satisfy completeness for = and the corresponding precongruences.

Now let us say A is o-free (resp. v-free) if o (resp. v) does not occur in A. A is
approximately o-free if o occurs only in fixed point formulae whose finite unfoldings
are o-free up to logical equivalence. We also say A characterises P when ' =P » A
and, moreover, whenever I' = Q0 » A we have P = Q.

Theorem 5 (elimination of o and v under determinism). Let P be typable by the
type discipline in [4] (vesp. [24]). Then there is an algorithm to find a v-free and ap-
proximately o-free formula (resp. a v-free and o-free formula) which characterises P.
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5 Applications

State Transfer: Synchronising Stateful Interactions As the first reasoning exam-
ple, we extend the previous ATM in Sections 2 and 3 to three-party interactions among
User, ATM and Bank. Our purpose is to demonstrate how we can reason about the trans-
fer of state induced by synchronised actions among multiple parties. ATM is extended
with withdraw option, in which ATM asks Bank each time it receives a request from
User, and forwards the answer to User. The mt-calculus term representing this behaviour,
which we call ATM, is given as:

a(k).b(k').recY.(k>[balance: k' <balance.k’(z).k(z).Y,
withdraw : k(n).k’awithdraw.k/(n).k'> [ok: k<ok.Y, no: k<ino.Y ],
quit: K/ <quit] )
The new ATM no longer has its own state, dispensing with parameters in its recursion.
At the same time, the state change in Bank is reflected onto ATM through interactions,
so that ATM will behave to User as if it were stateful. In turn, User would demand the
following invariance: if User withdraws money several times within a single session, the
withdrawal of an amount » succeeds if n is within the immediately preceding balance,
say z, with the resulting balance z — n. Below we give a specification of ATM, as seen
from User, asserting this invariance. The specification ATMSpec(a,x), where x is an
initial balance, is given as the formula (a(k)) { ) (vZ(z).A){x) where we set A to be:

(k> withdraw)) Vn.(kn) (z>n D (k<ok)Z{z—n) A z<n D (k<no)Z(z))
Let BankSpec(b,x) be a specification for Bank given as (b(k'))(VZ(z).B)(x) where
B = A[k' /k] with k' fresh in A. We now show:
ATM |= BankSpec(b,300) > ATMSpec(a,300)

To reach this judgement, we start from a formula directly derived by the proof rules,

which we call ATMSpec(a,b), defined as (a(k)) (b(k'))vY.Ao where we set Ay to be:
(k>withdraw) (K’ <withdraw) Va. (kn) (k' n) ( (k' > ok) (k <iok).Y A (k' no) (k<ino).Y )

It thus suffices to show ATMSpecy(a,b) o BankSpec(b,300) D ATMSpec(a,300). We
first calculate Ag o B D A by compensating all dual strong linear actions by Axiom (2)
in Proposition 4. This and Axiom (6) of the same proposition give us:

(VY.Ag) o (VZ(z).B){(x) D (vZ(z).A){x)
Thus we have successfully transferred Bank’s state to the specification for ATM. Finally
by Axiom (4) in Proposition 4 we calculate:

(b(K))-(vZ(2)-B)(300) o (a(k)) (b(K')) (v¥.Ao)

D (a(k))((b(K))(VZ(z)-B){300) o (b(K)) (VY.Ag))

2 (a(k)D()(vZ(z)-A)(300)
Above the logical calculation of interaction at b induces ( )) in the final line, indicating
a shared, hence possibly nondeterministic, interaction: in contrast, all actions within a

session have strong modality. In this way the present framework allows specifications
and reasoning about the fine-grained mixture of determinism and non-determinism.
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Logical Full Abstraction of PCFv One of the notable effects of types in the ®-calculus
is to enhance the semantic precision of the embedding of diverse calculi and program-
ming languages in this calculus. When a type discipline is sufficiently strong, the em-
bedding even enjoys full abstraction [4]. In the following we demonstrate that the pro-
posed logic inherits this feature at a logical level. We use the complete program logic
for call-by-value PCF (henceforth PCFv) from [10] and the process logic under the type
discipline of [4] based on the reduction-based equality =, discussed in Section 4.

We first review PCFv and its logic. PCFv-types are either atomic types (nat and
bool) or arrow types (a.=-f3). PCFv-terms (M, N,...) and formulae (A, B, ...) are given
by the following grammar.

M = x|op(M)| MM | MN | vx*®Ay*.M | if M then N| else N,
Ai=¢e =e|ANB|Vx*A|-A|xey\ z

In the first line (terms), op(M) denotes the standard first-order operations (including
constants). In the second line (formulae), xey \, z, called evaluation formula, specifies
that a function x, when applied to an argument y, converges and results in a value z.
The semantics of these formulae exactly follows [10]. The judgement = [A]M :, [B]
intuitively says that if the free variables in M satisfy A, the program M terminates and
whose result, named u, satisfies B. For its formal definition, see [10].

We use Milner’s encoding of call-by-value A-calculus [16]. Below we only show
primary ones.

(ohe = k(x) (AeM)i = (va)(k(@)|'a(K'). (M)
(MN) i = (Vi) (M, i (m). (v R2) ((N ), [ K2 () (1K) ))

The last line uses free name passing unlike [4], following [24, §6]. The embedding
of types is given accordingly [4]. For formulae, the standard constructs are mapped
directly: (e;j=ex) = e1= ez, (AAB) = (AYA(B)), {(—A) = —(A) and (Vx*.A) =
Vx.{A). In the first map, equality of two names in the PCFv-logic denotes equality of
their denotations: to embed this notion in the process logic, we need the refinement of
semantics of equality in Section 4. For evaluation formulae we set:

(xoyN\z) = (xy(k)) (k) T,

which decomposes an evaluation formula to a modal formula with the May modality
(which corresponds to total correctness under determinism).

Below we say a formula A of PCFv-logic with fv(A) = {u} is upper-closed with
respect to u [10] if, whenever V named u satisfies A, and if W is greater than V in the
standard observational precongruence of PCFv, then W named u also satisfies A.

Theorem 6 (logical full abstraction of PCFv). Let V be a well-typed closed PCFv-
term and A be upper-closed with respect to u and, moreover, 'v(A) = {u}. Then we have
=TIV = [A] if and only if (V)i = Fu.({kx) T A (A) [x/ul).

The proof uses the correspondence of characteristic formulae on both sides, observing
that the May preorder and the contextual preorder coincide via the encoding of terms,
and that validity in upper-closed formulae is preserved and reflected via the encoding
of assertions. By translating partial correctness formulae using the Must modality, we
obtain logical full abstraction for the PCFv-logic for partial correctness in [10].
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