
Descriptive and Relative Completeness of
Logics for Higher-Order Functions

Kohei Honda1, Martin Berger1, and Nobuko Yoshida2

1 Department of Computer Science, Queen Mary, University of London
2 Department of Computing, Imperial College London

Abstract. This paper establishes a strong completeness property of composi-
tional program logics for pure and imperative higher-order functions introduced
in [2, 15–18]. This property, calleddescriptive completeness, says that for each
program there is an assertion fully describing the former’s behaviour up to the
standard observational semantics. This formula is inductively calculable from the
program text alone. As a consequence we obtain the first relative completeness
result for compositional logics of pure and imperative call-by-value higher-order
functions in the full type hierarchy.

1 Introduction

Program logics such as Hoare logic offer a means todescribeabstract behaviours of
programs as logical assertions; toverify that a given program satisfies a specified prop-
erty; and todefineaxiomatic semantics in the sense that the assertions assign meaning to
a program with respect to its observable properties. Because of this strong match with
observable semantics of programs in a simple and intuitive manner, many engineer-
ing activities ranging from static analyses to program testing increasingly use program
logics as their theoretical foundation.

For describing properties of first-order imperative programs, Hoare logic uses a
pair of assertions in number theory. For example, in the partial correctness judgement
{x = i}x := x+ 1{x = i + 1}, the pair of assertionsx = i and x = i + 1 describes a
property of the programx := x+1 by saying:whatever the initial content of x would be,
if this program terminates, then the final content of x is the increment of its initial one.
Here aproperty is a subset of programs taken modulo an observational congruence:
for example, inwhile programs, we consider programs up to partial functions on store
they represent. Since the collection of all properties is uncountable, no standard logical
language can represent all properties of any non-trivial programming language. Then
what classes of properties should a program logic represent and prove?

In this paper, we focus on a strong completeness result,descriptive completeness,
which is about representability of behaviouras a canonical formula: given a programP,
we can always find a unique assertion pair which represents (pinpoints)P’s behaviour.
For partial correctness, the best assertion pair forP describes all partial functions equal
to or less defined thanP. For example, the pair “x = i” and “x = i + 1” are also sat-
isfied by a diverging program. Dually for total correctness. A related concept are the
characteristic formulaeof Hennessy-Milner logics, which precisely characterise a CCS
process up to bisimilarity [12, 31, 32]. We shift this notion from a process logic to a
program logic, establishing descriptive completeness of Hoare logics for pure and im-
perative higher-order functions introduced in [2, 15, 17, 18].

1

In first-order Hoare logic, a program defines a partial function from states to states,
so that the existence of characteristic formulae is not hard to establish. When we move
to higher-order programs, a logic needs to describe how a programtransforms be-
haviour. For exampleλxNat⇒(α⇒β).x1 is a function which receives a function and returns
another function. The logics for higher-order functions and their imperative extensions
[2, 15, 17, 18] involve direct description of such applicative behaviour. Due to complex-
ity of the underlying semantic universe, it is not immediately obvious if a single pair of
formulae can fully describe the behaviour of an arbitrary higher-order program. In the
present paper weconstructa characteristic formula of a program compositionally and
algorithmically, following its syntactic structure, and inductively verify that the derived
formula has the required properties. The induced algorithm is implemented as a pro-
totype (1,250 LOC in Ocaml) [1]. The size of the resulting formula is asymptotically
almost linear to the size of a program under a certain condition.

The generated characteristic assertions clarify the relationship between total and
partial correctness for higher-order objects, following early observations [28, 29], but
in the context of concrete assertion methods and proof systems. We use the duality be-
tween total and partial correctness [28] to derive descriptive completeness for partial
correctness from its total counterpart. A total correctness property denotes an upward
closed set of semantic points, representing liveness restricted to sequentiality, while a
partial correctness formula stands for a downward closed set of semantic points, rep-
resenting safety [22, 25, 28]. This duality not only subsumes the original Hoare logic’s
notions of total and partial correctness, but also offers a key insight into the nature of as-
sertions for higher-order partial objects and their derivation. Finally, relative complete-
ness [5] of our proof system is an immediate consequence of descriptive completeness.
To our knowledge this work is the first to obtain descriptive and relative completeness
for total and partial correctness in Hoare logic for (imperative) higher-order functions
in full type hierarchy.

In the remainder, Section 2 establishes descriptive and relative completeness w.r.t. the
logic of call-by-value PCF (PCFv) for total correctness. The same property for partial
correctness is obtained via duality. Section 3 discusses the corresponding results for
the imperative extension of the logic. Section 4 is devoted to comparisons with related
work. Finally Section 5 discusses further topics, including practical implications of the
presented results.

2 Descriptive Completeness for PCFv

Call-by-value PCF. The syntax and types of PCFv is standard [26], and briefly re-
viewed below (we can easily treat, but omit, other standard types such as sums and
products [17]).

α,β, ... ::= Bool | Nat | α⇒β V,W, ... ::= xα | c | λxα.M | µ fα⇒β.λxα.M
M,N, ... ::= V | op(M̃) | MN | if M then N1 else N2

We use numerals (0,1,2,..) and booleans (t andf) as constants (c above) and standard
first-order operations (op(M̃) whereM̃ denotes a vector).V,V ′, . . . denote values. The
typing is standard; henceforth we only consider well-typed programs. Abasis(Γ,∆, . . .)
is a finite map from variables to types. IfM has typeα with its free variables typed
following Γ, we writeΓ ` M : α. A program isclosedif it has no free variables. The

2

call-by-value evaluation relation is writtenM ⇓V. If M diverges, we writeM ⇑. We use
the standard contextual congruence∼= and the precongruence. [13, 26]: givenM and
N of the same type, we setM . N iff, for each typed closing contextC[·], C[M] ⇓
impliesC[N] ⇓: ∼= is the symmetric closure of..

We list three simple programs. First, the standard recursive factorial program is

written Fact
def= µ fNat⇒Nat.λxNat.if x = 0 then 1 else x× f (x−1). Second, in each

arrow type we findΩα⇒β def= µ fα⇒β.λxα. f x, which diverges whenever invoked. Third,

ωα def= ΩNat⇒α0 gives an immediately diverging program (noteΩα⇒β ∼= λxα.ωβ).

Assertions and their Semantics.We use the following assertion language from [2, 17,
18], common to both total correctness and partial correctness.

e::= c | xα | op(ẽ) A ::= e1 = e2 | e1•e2=e3 |A∧B |A∨B |A⊃B | ¬A | ∀xα.A | ∃xα.A

The left definition is for terms, that on the right for formulae.c denotes a constant, ei-
ther numerals (0,1,2, ...) or booleans (t andf). Terms are typed as in PCFv.Henceforth
we only consider well-typed terms. eα indicatese has typeα. Constants and first-order
operations are from PCFv. We assume the standard bound name convention for formu-
lae. If types of free variables inA follow Γ, we writeΓ ` A. We setT as 1= 1 andF as
its negation.≡ denotes logical equivalence. The assertion language is first-order, with a
ternary predicatee1•e2=e3, calledevaluation formula. Intuitively e1•e2=e3 means:

If a function denoted by e1 is applied to an argument denoted by e2 then it
converges to a value denoted by e3.

Notee1•e2=e3 indicates termination. “=” in e1•e2=e3 is asymmetric and• is a non-
commutative operation like application in an applicative structure. For example, assume
f denotes a function which doubles the numbern: then the assertion “f •5=10” means
if we apply that function to 5, then the evaluation terminates and its result is 10.

Meaning of assertions is given by a simple term model. Amodel(ξ,ξ′, . . .) is a finite
map from typed variables to closed PCFv-values of the same types. Interpretation of
terms is standard, denotedξ[[e]]. The satisfaction relation is writtenξ |= A, and follows
the standard clauses [23, Section 2.2] except that equality is interpreted by∼= (i.e. ξ |=
e1 = e2 iff ξ[[e1]]∼= ξ[[e2]]). In addition, for an evaluation formula, we define:

ξ |= e1•e2=e3 if ∃V.(ξ[[e1]]ξ[[e2]] ⇓V ∧V ∼= ξ[[e3]]). (2.1)

We writeΓ ` ξ if dom(Γ) = dom(ξ) and the typing ofξ follows Γ.

Judgements. The judgement for total correctness is written[A]M :u [B], prefixed with
|= for validity, and` for provability. It is the standard Hoare triple augmented with an
anchor [2, 15, 17, 18]. An anchor is a fresh name denoting the result of evaluation.u
may only occur inB. The judgement[A]M :u [B] intuitively says:

If a modelξ satisfies A, then Mξ converges andξ together with the result,
named u, satisfy B.

In [A]M :u [B], we assume for someΓ andα we haveΓ `M : α, Γ ` A andΓ ·u:α ` B.

3

Provability` [A]M :u [B] is defined by the proof rules [17] listed in Appendix A.1,
which precisely follow the syntax of programs. Validity|= [A]M :u [B] is defined by the
following clause (letΓ be the minimum basis under whichM, A andB are typable).

∀ξ.((Γ ` ξ ∧ ξ |= A) ⊃ (Mξ ⇓V ∧ ξ ·u : V |= B)). (2.2)

The proof of soundness,̀ [A]M :u [B] implies |= [A]M :u [B], is mechanical. Later we
demonstrate the converse. Simple examples of judgements follow.

1. We havè [T]Fact :u[∀xNat. f •x= x!], sayingFact computes a factorial whenever
invoked. We also havè [T]Fact :u [∀xNat.(Even(x) ⊃ ∃i.(f • x = i ∧Even(i))]
whereEven(n) saysn is even.

2. We havè [F]ω :u [F], which is the best formulae we can get forω. Note this judge-
ment holds for arbitrary programs of the same type.

3. From 2 above, we derivè [T]λx.ω :u [T]. The judgement contains no information
for values, in the sense that all values satisfy it: as it should be, since we had to start
from the trivial judgement forω. Similarly` [T]Ω :u [T] is the best we can get.

Characteristic Formulae. In the last examples of judgements, we have seen the no-
tion of total correctness and compositional verificationdemandthat an assertion pair in
the present logic cannot directly describe divergence. For this reason the notion of an
assertion pair representing a given program pinpoints its behaviour as theleastelement
of the described property. We call such a formula a total characteristic assertion pair.

Definition 1. (TCAP) A pair (A,B) is a total characteristic assertion pair, or TCAP,
of M at u, if the following conditions hold (in each clause we assume well-typedness).

1. (soundness)|= [A]M :u [B].
2. (MTC, minimal terminating condition)Mξ ⇓ if and only if ξ |= A.
3. (closure) Suppose|= [E]N :u [B] such thatE ⊃ A. Thenξ |= E impliesMξ . Nξ.

Proposition 2. 1. If (A,B) is a TCAP of M at u and if|= [A]N :u [B], then M. N.
2. (A,B) is a TCAP of M at u iff (soundness), (MTC) and the following condition hold:

(closure-2):if ξ |= A andξ ·u:V |= B then Mξ . V.

Proof. For (1), assume|= [A]N :u[B]. If ξ |= A then by definitionNξ⇓V s.t.ξ ·u:V |= B,
henceMξ . Nξ by (closure); if else,Mξ ⇑ by (MTC), that isMξ is the least element.

For (2), for the “if” direction, suppose[E]N :u [B] such thatE ⊃ A. Supposeξ |= E.
By E ⊃ A we haveξ |= A. By [E]N :u [B] we haveNξ ⇓ V andξ · u :V |= B. Hence
Mξ v V ∼= Nξ, as required. For the “then” direction, suppose(A,B) is a TCAP ofM
at u. We show (closure-2) holds. Supposeξ |= A andξ ·u:V |= B. TakeE = A∧∃u.B.
Then (sinceV is a value) we have[E]V :u [B]. By (closure) this means for eachξ′ such

thatξ′ |= E we haveMξ′ . Vξ′ def= V. Takingξ asξ′ we are done. ut

By Proposition 2-1, a TCAP ofM denotes a collection of behaviours whose minimum
element isM, and in that sense characterises that behaviour uniquely. Note upwardly
closing the property represented by a TCAP results in another TCAP characterising the
same behaviour. We shall make use of such closure later.

4

Fig. 1 Derivation Rules for Total CAPs

[var] −
`? [T]x :u [u = x] [const] −

`? [T]c :u [u = c]

[op] `? [Ai]Mi :mi [Bi]
`? [

^
i
Ai]op(M1..Mn) :u [∃m̃.(u=op(m1..mn)∧

^
i
Bi)]

[abs] `? [A]M :m [B]
`? [T]λx.M :u [∀x.(A⊃ ∃m.(u•x=m ∧ B))] [rec] `? [T]λx.M :u [A]

`? [T]µ f.λx.M :u [A[u/ f]]

[app] `? [A1]M :m [B1] `? [A2]N :n [B2]
`? [A1∧A2∧∀mn.(B1∧B2 ⊃ ∃z.m•n=z)]MN :u [∃mn.(m•n=u∧B1∧B2)]

[if] `? [A]M :m [B] `? [Ai]Ni :u [Bi] b1 = t, b2 = f

`? [A ∧
^

i=1,2
(B[bi/m]⊃ Ai)]if M then N1 else N2 :u [

_
i=1,2

(B[bi/m]∧Bi)]

Descriptive Completeness.In the following we show that all PCFv-terms have TCAPs.
The idea is to generate pre/post conditions inductively following the syntax of PCFv-
terms. Figure 1 presents the generation rules, which are illustrated below.

– All rules are close to the corresponding proof rules in Appendix A.1.[var], [const]
and[op] are easily understood.[abs] is direct from the semantics of evaluation for-
mulae. In[app], the premise saysA1 guaranteesM1’s termination,A2 that of M2.
Hence the conclusion’s precondition ought to stipulateA1,2, as well as termination
of the application of the results (described byB1 andB2).

– A crucial rule is[rec], which represents recursion by simply renaming the recurring
f to the anchoru. The rule intuitively says the program now uses itself for the
environmentf . Note that the size of the formula does not change by applying this
rule.

Examples of derived assertions follow (which are, as we shall soon see, indeed TCAPs).

Example 3. 1. For the identity function, we get̀? [T]λx.x :u [∀x.u• x= x] (simpli-
fied using logical axioms) saying:whatever value the program receives, it always
(converges and) returns the same value.

2. For λx. f x, we get̀ ? [T]λx. f x :u [∀xi.(f •x= i ⊃ u•x= i)] (simplification uses ax-
ioms for evaluation formulae [18]) which says:if the application of f to x converges
to some value, then the application of u to x converges to the same value.

3. From 1, we obtaiǹ ? [T]µ f.λx.x :u[∀x.u•x=x] via vacuous renaming, as expected.
4. From 2, we obtain a TCAP forΩ as`? [T]Ω :u [T] by ∀xi.(u•x= i ⊃ u•x= i)≡ T.

SinceΩ is the least defined total behaviour, we cannot say anything better thanT
for this agent (noteT is indeed a TCA ofΩ).

5. The factorial programFact is given the following assertion.

`? [T]Fact :u [u•0=1 ∧ ∀xi.(u•x= i ⊃ u• (x+1)=x× i)] (2.3)

Note the assertion closely follows the recursive behaviour of the program. Through
mathematical induction we obtaiǹ? [T]Fact :u [∀x.(u•x=x!)], as expected.

The main result of this section follows.

5

Theorem 4. (descriptive completeness for total correctness)AssumeΓ ` M : α. Then
`? [A]M :u [B] implies(A,B) is a TCAP of M at u.

Proof. We establish the three conditions of TCAP of Def. 1 simultaneously by rule
induction, using (closure-2) in Prop.2-2 for (closure). In this main section we only show
the most non-trivial case[rec], leaving other cases to Appendix C.1. First, (MTC) is
vacuous. For (soundness), lettingξ′ = ξ · f :µ f.λx.Mξ, we obtain:

ξ′ ·u:(λx.M)ξ′ |= A∧ f =u ⇒ ξ ·u:(µ f.λx.M)ξ |= ∃ f .(A∧ f = u) (≡ A[u/ f]).

hence done. For (closure-2), assumeξ · u : V |= A[u/ f], which is equivalent toξ · u :
V · f : V |= A. We showµ f.λx.Mξ . V using the standard unfolding [27] ofµ f.λx.M,

given by:W0
def= Ω andWn+1

def= λx.M[Wn/ f] (for eachn≥ 0), and show, by induction on
n, thatWnξ . V for eachn. The base case,n = 0, is immediate. For the inductive step
let Wnξ . V. Now

Wn+1ξ def= λx.Mξ[Wnξ/ f] . λx.Mξ[V/ f] def= λx.M(ξ · f :V) . V

The left inequality holds because[·/x] is a monotonic operation (i.e.V . W implies
M[V/x] . M[W/x]), while the right inequality is direct from the induction hypothesis.
Thus we haveWnξ . V for eachn. Since ifµ f.λx.Mξ 6. V thenWn 6. V for somen by
syntactic continuity of. (cf. [27]), we concludeµ f.λx.Mξ . V. ut

Proposition 5. If `? [A]M :u [B] then the sum of the size of A and B is O(m×2n) where
m is the size of M and n is the number of applications/conditionals in M.

Proof. By mechanical rule induction, see Appendix C.3. ut

Definition 6. Let x be fresh in 2 and 3.

1. We definev inductively as follows: (1) xα v yα iff x = y for α ∈ {Bool,Nat}; and
(2) xα⇒β v yα⇒β iff ∀zα,vβ.(x•z= v⊃ ∃w.(y•z= w∧vv w)).

2. U(A,u)
def
= ∀x.(A[x/u]⊃ xv u) and↑(A,u)

def
= ∃x.(A[x/u]∧xv u). Dually we set

L(A,u)
def
= ∀x.(A[x/u]⊃ uv x) and↓(A,u)

def
= ∃x.(A[x/u]∧uv x).

3. Write |= M :u {A}when Mξ⇓V impliesξ ·u :V |= A for eachξ. We say A is aPCAP
of M atu when the following two conditions hold: (partial sound)|= M :u {A}; and
(partial closure) whenever|= N :u {A} we have N. M.

Remark. The predicatev internalises the relation. logically. Note that:

ξ |= xv y ≡ ξ(x) . ξ(y) (2.4)

Correspondingly,U(A,u) etc. are logical counterparts of the basic order-theoretic op-
erations [6]. Indeed, from (2.4), we immediately observe:

ξ ·u : V |= U(A,u) ⇔ ∀V0.(ξ ·u : V0 |= A⊃V0 . V) (2.5)

ξ ·u : V |=↑(A,u) ⇔ ∃V0.(ξ ·u : V0 |= A ∧ V0 . V), (2.6)

dually for L(A,u) and↓(A,u). Finally a PCAP is the partial counterpart of a TCAP. In
partial correctness we do not need a precondition since a(n obviously defined) partial
correctness judgement{A}M :u {B} is equivalent to{T}M :u {A⊃B}, due to stateless-
ness of PCFv.

6

Corollary 7. 1. (observational completeness)M ∼= N if and only if, for each A and B,
we have|= [A]M :u [B] iff |= [A]N :u [B].

2. (relative completeness)We say B isupward-closed atu when↑ (B,u) ≡ B. Then
|= [A]M :u [B] such that B is upward-closed at u implies` [A]M :u [B].

3. (derivability of partial characteristic assertion)If `? [A]M :u [B] then A∧L(B,u) is
a PCAP of M at u.

Remark. The restriction to upward-closed formulae in (2) is not unduly constrain-
ing since upward closure corresponds to total correctness [22, 28] (intuitively, upwards
closed formulae never talk about non-termination). For Corollary 7 (3), note ifM is a
value,A becomesT, in which case the induced formulaL(B,u) simply represents the
downward-closed set of behaviours with the maximum elementM, as expected. A proof
system that can derive PCAPs is discussed in Appendix B.

Proof. For (1), for simplicity and without loss of generality we restrict our attention
to values (notingM ∼= N iff λx.M ∼= λx.N for fresh x). If V ∼= W then by definition
|= [T]V :u [B] iff |= [T]W :u [B] for eachB. Conversely assume|= [T]V :u [B] iff |=
[T]W :u [B] for eachB. Let (T,A) be a TCAP ofV at u and(T,A′) be a TCAP ofW
at u. By assumption this means|= [T]V :u [A′] and|= [T]W :u [A]. By the definition of
TCAP this meansV ∼= W, as required. For (2), relative completeness, we first show:

Claim. For eachM, there is a TCAP(A,B) atu s.t.B≡↑(B,u) and` [A]M :u [B].

(where` [A]M :u [B] is the provability by the proof rules in Appendix A). The proof
is elementary by Theorem 4, see Appendix C.2, page 23. Now suppose|= [A]M :u [B]
such thatB is upward-closed atu, i.e. B≡↑ (B,u). Further let` [A0]M :u [B0] be s.t.
(A0,B0) is a TCAP andB0 is upward-closed atu, by Claim above. We showA⊃ (A0∧
(B0 ⊃ B)), then apply the consequence rule [Consequence-Kleymann] in Appendix A.
First,A⊃ A0 is valid sinceA0 satisfies (MTC). Second we show(A∧B0)⊃ B. Assume
ξ ·u:V |= A∧B0, then, for someW, Mξ ⇓W andξ ·u:W |= B. By Theorem 4, (closure)
holds forB0, soW . V. SinceB is upper-closed,ξ ·u:V |= B.

For (3), supposè ? [A]M :u [B]. We first show the condition (partial-sound), i.e.
|= M :u {A∧L(B,u)}. SupposeMξ ⇓. By (MTC) we haveξ |= A. Note:

ξ ·u : Mξ |= L(B,u) ⇔ ∀V0.(ξ ·u : V0 |= B⊃Mξ . V0) (2.7)

By Proposition 2 (1) we are done. For (partial-closure), assumeN :u {A∧L(B,u)}. It
suffices to show for eachξ we haveNξ . Mξ. This is trvial whenNξ ⇑. SupposeNξ ⇓.
Thenξ ·u : Nξ |= A∧L(B,u), that isξ |= A andξ ·u : Nξ |= L(B,u). As in (2.7) the
latter means:

Nξ . Vfor eachξ ·u : V |= B. (2.8)

By (closure-2) we haveξ ·u : Mξ |= B for eachξ |= A. That isNξvMξ. ut

3 Descriptive Completeness for Imperative PCFv

Logic for Imperative PCFv, Below we discuss how the method for deriving TCAPs
studied in the previous section generalises to the imperative extension of the logic [18].
We consider the programming language (and the corresponding logic) without aliasing

7

[18]. To the grammar of types, we add the unit typeUnit and a reference typeRef (α)
whereα itself does not include a reference type (thus reference types are never carried
inside other types, which corresponds to the lack of aliasing [18]). For programs, we
add assignmentx := M, dereferencing !x and () of Unit type. Typing is of the form
Γ;∆ ` M : α, where∆ is for free references andΓ for free variables of non-reference
types.∼= (resp..) is a typed congruence (resp. precongruence), relating two programs
of a common basis, by convergence under all typed contexts which never extend nor
abstract the common reference basis.1 Formally we writeΓ;∆ `M ∼= N : α whenM and
N are typed congruent, though we often leave the basis implicit, writingM ∼= N.

For the assertion language, we add !x and() to terms, and replace evaluation formu-
lae for pure functions with their imperative refinement[C] e1 •e2 = x [C′] (thex binds
its free occurrences inC′), which says:

In any state satisfying C, if e1 is applied to e2, it converges to a value named x
and the resulting state, together satisfying C′.

Above we demand, for someα andβ, e1 has typeα⇒β, e2 α, andx β. We also write
[C]e1•e2[C′] for [C]e1•e2 = z[C′] with z being of unit type.

A judgement for total correctness is written[C]M :u [C′], which formally has, but
usually leaves implicit, a fixed basis (in detail: we assume a basisΓ;∆ such that (1)C
andM can be typed under the basis, withM’s type sayα and (2)Γ,u : α;∆ `C′). Some
examples of judgements follow.

Example 8. 1. The assertion[!x = i]M :u [u = i +1] says thatM reads the content of
x and returns the successor of that content. It does not make any guarantee about
what is stored in memory after execution ofM.

2. Under ∆ with domain{x,y}, the assertion[!x = i∧!y = j]M :u [u = i + 1∧!x =
i∧!y = j] is like (1), but in addition ensuresM does not modify any storage cells.

3. Let A(f) def= ∀i.[!y = i] f • () = z [z=!y = i +1]. It characterises a proceduref that
increments a referencey and returns the increment.

4. [T]λ().(!x)() :u [∀i.[A(!x)∧!y= i] u•() = c [!y= c= i +1]] with A above, describes
a procedure which, upon invocation, invokes the procedure stored inx, which, as-
sumingA(!x), increments the content ofy and returns that increment.

5. Finally, just like in the pure functional case,[F]ω :u [F] is the strongest total speci-
fication we can derive aboutω.

As before, we write|= [C]M :u [C′] for validity and` [C]M :u [C′] for provability. The
latter is defined by the proof rules studied in [18], which are listed in Appendix A.2.
For validity we first define models.

A programM is semi-closedif its all free names are references. Amodel(M , . . .) is
a pair(ξ,σ) whereξ maps non-reference names to semi-closed values andσ is a store,
mapping reference names to semi-closed values. A storeσ mapsx of typeRef (α) in its
domain to a semi-closed value of typeα whose free names are exhausted in the domain
of σ. We write∆ ` σ if the typing is correct in this sense w.r.t.∆ anddom(∆) = dom(σ),
similarly we writeΓ ` ξ. The interpretation of terms is standard, written[[e]]M (note
interpretation of dereference !x needs the store part of a model).

1 Reference bases affect equality: for example, withf typed asUnit⇒Unit, two programsf ()
and f (); f () are observationally congruent under the empty reference basis, but are not under
sayx : Ref (Nat). Change in non-reference basis has no such effects.

8

For satisfaction, the equality is modelled by∼= while the logical connectives and
quantifiers are interpreted classically. For evaluation formulae, we set, lettingM =
(ξ,σ0), M Γ;∆ |=[C]e1•e2 ↘ x[C′] when, for eachσ such that∆ ` σ and(ξ,σ) |= C:

([[e1]]M [[e2]]M , σ) ⇓ (V,σ′) such that(ξ ·x:V, σ′) |= C′)

Note that the preconditionC above is about a hypothetical state: for example an asser-
tion !x = 1∧ [!x = 0] f • ()[!x = 2] (omitting the return value when it is of unit type)
says: (1) the current content ofx is 1; and (2) if in some state the content ofx is 0 then
invoking f terminates with the new content ofx which is 1.

Finally we set the validity of judgements as follows:|= [C]M :u [C′] iff, for each
(ξ,σ) s.t.(ξ,σ) |=C, we have((Mξ,σ) ⇓ (V,σ′) and(ξ ·u :V,σ′) |=C′. Thus, intuitively
speaking,|= [C]M :u [C′] says:

M converges under any environment and state satisfying C, so that the resulting
value and state together satisfy C′.

Note the close connection of the judgement with evaluation formulae, which may as
well be considered as internalisation of judgement.

We can now define TCAPs for imperative PCFv. Below in (3)σ1 . σ2 is taken
pointwise.

Definition 9. (TCAP) A pair(C,C′) is a total characteristic assertion pair, or TCAP,
of Γ;∆ `M : α at u, if the following conditions hold (fix the basis of models asΓ;∆).

1. (soundness)|= [C]M :u [C′].
2. (MTC, minimal terminating condition)(ξ ·u : Mξ,σ) ⇓ iff (ξ,σ) |= C.
3. (closure) Suppose|= [E]N :u [C′], E ⊃C and(ξ,σ) |= E. Then(Mξ,σ) ⇓ (V,σ′)

implies(Nξ,σ) ⇓ (W,σ′′) such thatV . W andσ′ . σ′′.

The generation of TCAPs thus defined will be presented later, after a short discussion
on a useful syntactic tool for our technical development.

Sequential Let Form. In the TCAP generation, we use the class of “sequentially flat-
tened” programs for a concise presentation of the generation rules. These flattened pro-
grams are generated by the following grammar.

U ::= x | c | λx.L | µx.λy.L

L ::= U | let x = op(U1..Un) in L | let x = UU ′ in L | ifU then L1 else L2

| x := U ;L | let x = !y in L

We call terms generated from this grammar,sequential let forms. Sequential let forms
are ranged over byL,L′, . . ., while values in sequential let forms are ranged over by
U,U ′, In sequential let forms, the evaluation ordering of expressions is directly vis-
ible as a sequence of lets, horizontally expanded. Thus, given a sequential let form,
the evaluation order of expressions can be traced by looking at the let sequence from
the left to the right except in recursion. Through the standard translation of “let” con-
structs into application and abstraction, each sequential let form can be considered as
a program in imperative PCFv: for example,let x = !y in let z= x0 in f z becomes

9

(λx.(λz. f z)(x0))(!y). In turn, all programs of imperative PCFv can be easily translated
to their flattened forms without changing semantics by the following mapping.

[[M]] def= 〈〈M〉〉x[x]

where〈〈M〉〉x[N] is given as follows.

〈〈x〉〉y[N] def= let x = y in N

〈〈c〉〉y[N] def= let y = c in N

〈〈λx.M〉〉y[N] def= let y = λx.[[M]] in N

〈〈M1M2〉〉y[N] def= 〈〈M1〉〉m1[〈〈M2〉〉m2[let y = m1m2 in N]]

〈〈µ f.λx.M〉〉y[N] def= let y = µ f.λx.[[M]] in N

〈〈if M then N1 else N2〉〉y[N] def= 〈〈M〉〉m[if mthen 〈〈N1〉〉y[N] else 〈〈N2〉〉y[N]]

〈〈x := M〉〉y[N] def= 〈〈M〉〉z[x := z;let y = () in N]

〈〈!x〉〉y[N] def= let y = !x in N

By regardinglet x = U in L aslet x = (λ()U)() in L, the mapping[[M]] is always a
sequential let form. Note the inductive translation does nothing but making explicit the
evaluation order in subexpressions ofM. The following derived proof rule is useful for
understanding how sequential let forms interact with compositional proof rules.

[let]
[C]M :x [C0] [C0]N :u [C′]
[C]let x = M in N :u [C′]

(3.1)

It is worth looking at how the “let” rule is derived through the standard translation of

the let command,let x = M in N
def= (λx.M)N.

1. [C0]N :u [C′] (premise)

2. [T]λx.N :n [[C0]n•x = u[C′]] (2, abs)

3. [C]λx.N :n [C∧ [C0]n•x = n[C′]] (3, weak)

4. [C]M :x [C0] (premise)

5. [C∧ [C0]n•x = n[C′]]M :x [C0∧ [C0]n•x = n[C′]] (4, inv)

6. [C](λx.N)M :n [C′] (5, invariance)

where (app) etc. indicate the proof rules in Appendix A.2 (Lines 3 and 6 use structural
rules admissible in the proof system). Note the evaluation order of subexpressions is
precisely captured in the compositional reasoning. Hereafter we consider an extended
syntax of imperative PCFv with “let” for which we assume the proof rule above (which
does not change semantics), in which case we write provabilty`let. For the proofs of
the following lemma, see Appendix C.4 and C.5.

Lemma 10. Below in (1),∼= on [[M]] is defined regarding sequential let forms as im-
perative PCFv-terms.

1. For eachΓ;∆ `M : α, we haveΓ;∆ `M ∼= [[M]].
2. `let [C] [[M]] :u [C′] implies` [C]M :u [C′].

10

Fig. 2 Derivation Rules for TCAPs for Imperative PCFv.

[var] −
`?? [T]y :u [u = y] [const] −

`?? [T]c :u [u = c] [val] `?? [T]U :u [A] ĩ fresh
`? [!x̃ = ĩ]U :u [A∧ !x̃ = ĩ]

[op-val] `?? [T]Ui :mi [Ai]
`? [T]op(U1, ..,Un) :u [∃m̃.(u=op(m1, ..,mn)∧

^
i
Ai)]

[abs]`
? [C]L :m [C′] ĩ = fv(C,C′)\(fv(L)∪{ux̃})
`?? [T]λy.L :u [∀yĩ.([C]u•y = m[C′])]

[let-app] `?? [T]V1 :m [A] `?? [T]V2 :n [B] `? [C]L :u [C′] ĩ fresh
`?[!x̃= ĩ∧∀mn.((A∧B)⊃ {!x̃= ĩ}m•n=y{C})]let y= V1V2 in L :u [C′]

[if] `?? [T]U :m [A] `? [Ci]Li :u [C′i] b1 = t, b2 = f

`? [
^

i=1,2
(A[bi/m]⊃Ci)]ifU then L1 else L2 :u [

_
i=1,2

(A[bi/m]∧C′i)]

[assign] `?? [T]U :z [A] `? [C]L :u [C′]
`? [∀z.(A⊃C[z/!y])]y := U ;L :u [C′]

[deref] `? [C]L :u [C′]
`? [C[!y/z]]let z= !y in L :u [C′]

Descriptive Completeness. Figure 2 gives the generation rules for TCAPs, using
sequential let forms without loss of generality (by Lemma 10-1). In all rules we fix, but
leave implicit, a reference basis with domain ˜x, which stays unchanged when going from
premises to conclusions. In [val], which transforms the sequent for values (written`??)
to that for general programs (writteǹ?). We write`? [C]L∆ :u [C′] when`? [C]L :u [C′]
is derived with an implicit basis∆.

Theorem 11. (descriptive completeness in imperative PCFv)If Γ;∆ ` M : α then`?

[C] [[M]]∆ :u [C′] implies(C,C′) is a TCAP ofΓ;∆ `M : α at u.

Convention 12. From now on we letA,B, . . . range overstateless formulae, i.e. those
formulae in which derefences occur only in pre/post conditions of evaluation formulae.

Note satisfaction of a stateless formula does not depend on store. The convention is
consistent with the usage of symbols in Figure 2.

Proof. By Lemma 10-1, it suffices to prove if̀? [C]L :u [C′] then(C,C′) gives a TCAP
of L at u. To show this, we verifỳ tcapv [T]U :u [A] then(T,A) gives a value-TCAP of
L atu, and that e if̀ ? [C]L :u [C′] then(C,C′) gives a TCAP ofL atu, by rule induction
of the generation rules in Figure 2, where we say(T,A) is avalue TCAP of V at uif we
have (1) (soundness)|= [T]V :u[A] and (2) (closure)|= [T]W :u [A] impliesVξ .Wξ for
eachW. Observe the notion of value-TCAPs is identical with TCAPs for values in the
pure PCFv. The inductive verification follows the one given Appendix C.1 as well as,
for imperative commands, a related proof for the finite subset of sequential let forms in
[18, Section 6.5] except for (val) and (rec). For (val), fix a reference basis with domain
x̃. Assume(T,A) is a value-TCAP ofV as well as|= [!x̃ = ĩ]M :u [A∧!x̃ = ĩ]. From the
latter we know, by easy calculation, that (1)M always converges under any model, and
that (2)(Mξ,σ) ⇓ (V,σ′) impliesMξ ∼= V andσ ∼= σ′. By (T,A) being a value-TCAP
of V we are done. For (rec) the proof is literally identical with the one given in Section
2, observing the store part of a model is irrelevant for value-TCAPs. ut

11

In the following we first present the consequences of 11 except the derivation of PCAP
(the latter demands internalisation of. which is more subtle in in imperative PCFv). In
(2) below, we sayC is upward-closed at uwhen for each(ξ,σ) covering free names of
B exceptu, whenever(ξ ·u : V,σ) |= C andV . W we have(ξ ·u : W,σ) |= C.

Corollary 13.

1. (observational completeness in imperative PCFv))M ∼= N if and only if, for each C
and C′, we have|= [C]M :u [C′] iff |= [C]N :u [C′].

2. (relative completeness for values in imperative PCFv)|= [T]V :u [A] such that A is
upward-closed at u implies̀ [T]V :u [A].

Remark. We believe (2) extends to general programs, with a notion of upward-closure
for pre/post conditions suitably defined. Practically we can always turn a program into
a value by vacuous abstraction, so that this does not lose generality.

Proof. The proof of (1) is literally the same as that of Corollary 7 (1). For (2), first note,
for an upward closedA:

|= [T]U :u [A] ⇒ ` [T]U :u [A]. (3.2)

which is immediate from Theorem 11, the definition of value-TCAP, andA’s upward-
closure. Now we reason:

|= [T]V :u [A] ⇒ |= [T] [[V]] :u [A] (Lem.10-1)
⇒ `let [T] [[V]] :u [A] (3.2)
⇒ ` [T]V :u [A] (Lem.10-2),

as required. ut

For PCAP generation, we need to internalise.. In the imperative PCFv, we directly
incorporate this notion as a predicate, writtenxv y. It satisfies the following axioms, in
addition to the standard axioms for partial order (we assume a singleton basis with the
domainr for brevity).

1. xα v yα iff x = y for α ∈ {Bool,Nat}; and
2. xα⇒β v yα⇒β iff ∀zα,vβ, i.([!r = i]x• z = v[v = j∧!r = h] ⊃ [!r = i]y• z = v[j v

v∧hv!r])

Note the right-hand side of (2) cannot be used as the inductive definition, since the type
of !r can be higher thanα⇒ β. The predicatev is interpreted as.. We expect the
above axioms offer a complete axiomatisation of the relation. Usingv, we can define
L(B,u) as before. We can now state the PCAP derivability under this extended logical
language. The proof is an immediate order-theoretic argument.

Corollary 14. (derivability of partial characteristic assertion)In the logic withv, If
`? [T]V :u [A] thenL(A,u) is a PCAP of V at u.

We conclude this section with examples.

12

Example 15. 1. Let us fix a basis for programs and judgements, assuming two imper-
ative variablesy andz storing natural numbers. Then we get the following TCAP
for λx.x (up to straightforward simplification):

`? [T] λx.x :u [∀xnm.([!y = n∧!z= m] u•x = i [i = x∧!y = n∧!z= m])]

Under the assumed basis, the lack of change of the contents ofy andz (i.e. n and
m) signify that the program has no side effects. Forλx. f x we get:

∀xnmn′m′.([!y = n∧!z= m] f •x = i [i = i′∧!y = n′∧!z= m′]
⊃ [!y = n∧!z= m] u•x = i [i = i′∧!y = n′∧!z= m′])

Note how causality between the calls tof and λx. f x, namedu, is described by
auxiliary variablesn,m,n′ andm′. The TCAP forµ f.λx. f x is againT.

2. Next we look at the TCAP for an imperative version of factorial, given as:

FactImp
def= while !z
 0 do (y :=!y×!z; z :=!z−1)

The “while” construct is easily represented in the imperative PCFv using recursion
[18], leading to the following TCAP for the thunk ofFactImp2:

`? [T] λxUnit.FactImp :u [B(u)∧ I(u)]

where we setB(u) andI(u), andE(u) used inI(u), to be:

B(u) def= ∀n.[!y = n∧ !z= 0] u• () [!y = n∧ !z= 0]

I(u) def= ∀nmn′m′.[!y = n∧ !z= m
 0 ∧ E(u)] u• () [!y = n′ ∧ !z= m′]

E(u) def= [!y = n×m∧ !z= m−1] u• () [!y = n′ ∧ !z= m′].

where[C] u• () [C′] is an abbreviation of[C] u• () = z [z= ()∧C′] with z fresh.
B(u) describes the behaviour when the loop condition is no longer true, whereas
I(u) when the loop condition is satisfied.E(u) specifies the assumed behaviour of
u whenz is decremented. By mathematical induction we obtain:

B(u)∧ I(u) ≡ ∀nm.[!y = n∧ !z= m] u• () [!y = n×m! ∧ !z= 0]

which eliminates the internal evaluation formulaE(u).
3. As a final example, we consider another imperative factorial, this time using a

stored procedure to realise recursion.

CircFact
def= w := λx.if x = 0 then 1 else x×!w(x−1)

In [18], we have shown that a natural specification forCircFact is derivable in the
logic for imperative PCFv. For this program,`? leads to the following TCAP:

[T] CircFact :m [m= ()∧B′(u)∧ I ′(u)]

2 In the assertion,B(u) andI(u) can be easily combined into a single evaluation formula (in fact
the TCAP is initially derived in such a form). We use these two formulae and a thunked form
for clarity of presentation.

13

where we set, assumingw constitutes the only store for brevity:

B′(u) def= ∀ f . [!w= f] u•0 = z [z= 1∧!w= f]∧!w = u

I ′(u) def= ∀ f f ′i.∀x
 0. [!w= f ∧ E′(u)] u•x = z [z= x× i ∧ !w= f ′]

E′(u) def= [!w= f] u• (x−1) = z [z= i ∧ !w= f ′]

This is the full specification ofCircFact: it does not directly say the program
computes a factorial since the procedure stored inw may change its behaviour de-
pending on whatw stores at the time of invocation (notew is not hidden). However
through mathematical induction we can justify the following (strict) implication:

B′(u)∧ I ′(u) ⊃ ∃ f .(∀i.[!w = f](!w)• i =z[z= i! ∧ !w = f] ∧ !w = f)

arriving at the “natural” specification ofCircFact given in [18], which says:after
executingCircFact, w stores a procedure f which would calculate a factorial if w
indeed stores that behaviour itself, and that w does store that behaviour.

4 Related Work

Apart from their usage in verification condition generation [10], weakest precondi-
tions and strongest postconditions [9] help in deriving relative completeness in Hoare
logic. Cook’s original proof [5] of relative completeness constructs the strongest post-
condition for partial correctness. Clarke [4] uses the weakest liberal pre-condition. In
both, the pre/post-conditions for loops use Gödel’sβ-function [23, Section 3.3]. Soko-
łowski [30] may be the first to give a completeness result for total correctness for the
while language. De Bakker [7] extends these results to parameterless recursive proce-
dures and concretely constructs what we call MTC (cf. Def. 1). Gorelick [11] seems
the first to use most general formulae (MGFs, which correspond to our CAPs) for
completeness in Hoare logic. Kleymann [20] introduces a powerful consequence rule
and employs MGF for proving completeness of Hoare logic with parameterless recur-
sive procedures. Halpern [14], Olderog [24] and others establish relative completeness
of Hoare logics for sublanguages of Algol (these logics do not include assertions on
higher-order behaviours, see [18, Section 8] for a survey). Von Oheimb’s recent work
[33] gives a mechanised proof of completeness for Hoare logic using MGFs.

Some authors also use abstraction on predicates to generate concise verification
conditions in the setting of Floyd-Hoare assertion methods for first-order imperative
programs. Blass and Gurevich [3], guided by a detailed study of Cook’s completeness
result, use an existential fixpoint logic. Leivant [21] uses second-order abstraction (ab-
straction on first-order predicates), inductively deriving a formula directly representing
a partial function defined by a while program with recursive first-order procedure. Once
this is done, characteristic assertions for both total and partial correctness for a given
program are immediate. We suspect that the use of predicate abstraction in these works
may make calculation of validity hard in practise, even for first-order programs.

There are two notable differences between the present work and these preceding
studies. First, in the preceding works, generated assertion pairs describe first-order state
transformation rather than the behaviour of higher-order programs. Philosophically, our
method may be notable in that it extends completeness and related results to assertions

14

which directly talk about (higher-order) behaviour. Second, the presented method for
constructing characteristic formulae is very different from those employed so far, espe-
cially in its treatment of recursion. We need neither theβ-predicate, loop annotation,
predicate abstraction nor inductively defined formulae for generating TCAPs for re-
cursion. Concretely, this clean treatment for recursion is made possible by evaluation
formulae. A deeper reason however may lie in analytical, fine-grained nature of our
assertion language, reflecting that of call-by-value higher-order computation. As far as
our experience goes, evaluation formulae do not make calculation of validity unduly
harder than in the first-order Hoare logic: for example, (often implicit) simplifications
of assertions in Sections 2 and 3 only use simple syntactic axioms in [15, 18] combined
with standard logical axioms including mathematical induction.

The order-theoretic nature of partial and total correctness is observed in early works
by Plotkin and Stirling [28] (cf. [29]). The present work differs in that it substantiates
these ideas at the level of concrete assertion methods and compositional proof rules
(see for example a derivation example ofλx.ω in Section 2). Finally our emphasis on
descriptive completeness, and the foundation of the logic itself, comes from Hennessy-
Milner logic [15], where Graf, Inǵolfsdóttir, Sifakis, Steffen and others [12, 31, 32]
study characteristic formulae for first-order communicating processes.

5 Further Topics

The present work is an inquiry into the descriptive power of program logic for higher-
order functions. Through inductive derivation of characteristic formulae, we have shown
that the logic allows concise description of full behaviour of programs involving arbi-
trary higher-order types and recursion. Logics for more complex classes of imperative
higher-order functions are studied in [2, 34]. Extensions of the presented results to these
logics are important for treating such languages as ML.

Practically speaking, the presented method for TCAP generation, along with its
properties, opens a new perspective for program validation based on verification con-
dition generators (VCG) [10, 19]. In traditional VCG, we have a target specification
{C}P{C′} and an annotated version of the program. A VCG then automatically gener-
ates, usually through backward chaining [19], one or more entailments whose validity
entailsP’s satisfaction of the specification. The presented TCAP generation has the po-
tential to improve this existing scheme. Schematically, our TCAP generation suggests
the following framework.

1. Assume given a programV (any program can be made into a value by vacuous
abstraction) and a desired specification[T]V :u [A].

2. We automatically generate the TCAP(T,A0).
3. By Theorem 4, if we can validateA0 ⊃ A, we knowV conforms toA.

First, this framework dispenses with the need to annotate programs, which has been one
of the obstacles preventing wide-spread adoption of the VCG-based validation methods.
Second, at the level of specification, it allows direct treatment of higher-order idioms,
opening the use of higher-order languages such as ML and Haskell for program certifi-
cation (arguably these languages offer a suitable basis for this task through their well-
studied semantic foundations). Third, the specificationA above can contain assumptions
on behaviour ofV ’s environment (say existing libraries, represented as free variables of

15

function types inV) on whichV relies. As we discussed in [18, Section 2], this allows
specifying complex interplay among the program and library functions beyond the sep-
arate treatment of assumptions on procedures in traditional methods. For these reasons,
inquiries into the practical potential of TCAP generation for program validation would
be worth pursuing. As an experiment towards this goal, we have developed a prototype
implementation of the TCAP generation algorithm [1].

One of the foremost challenges towards practical use of TCAP generation is the
development of tractable methods for logical calculation of entailment in Step 3 above,
which demands, in addition to first-order Hoare logic, the treatment of logical primitives
for (imperative) higher-order functions. It would be especially interesting to extend
verification tools like Simplify [8] in this direction, combined with studies on axiom
systems for e.g. evaluation formulae (see [2, 15, 18] for a preliminary study).

Finally, we believe that upper bound in Prop. 5 can be improved upon considerably,
at least for large and practically relevant classes of programs.

References

1. A prototype implementation of an algorithm deriving characteristic fomulae.
http://www.dcs.qmul.ac.uk/˜martinb/capg, October 2005.

2. M. Berger, K. Honda, and N. Yoshida. A logical analysis of aliasing for higher-
order imperative functions. InICFP’05, pages 280–293, 2005. A full version in
www.dcs.qmul.ac.uk/˜kohei/logics.

3. A. Blass and Y. Gurevich. The Underlying Logic of Hoare Logic. InCurrent Trends in
Theoretical Computer Science, pages 409–436. 2001.

4. E. M. Clarke. The characterization problem for Hoare logics. InProc. Royal Society meeting
on Mathematical logic and programming languages, pages 89–106, 1985.

5. S. A. Cook. Soundness and completeness of an axiom system for program verification.SIAM
J. Comput., 7(1):70–90, 1978.

6. B. A. Davey and H. A. Priestley.Introduction to Lattices and Order. Cambridge University
Press, Cambridge, 1990.

7. J. W. de Bakker.Mathematical Theory of Program Correctness. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1980.

8. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program checking.J.
ACM, 52(3):365–473, 2005.

9. E. W. Dijkstra.A Discipline of Programming. Prentice Hall, 1976.
10. R. W. Floyd. Assigning meaning to programs. InSymp. in Applied Mathematics, volume 19,

1967.
11. G. Gorelick. A complete axiomatic system for proving assertions about recursive and non-

recursive programs. Technical Report 75, Univ. of Toronto, 1975.
12. S. Graf and J. Sifakis. A modal characterization of observational congruence on finite terms

of ccs. InICALP’84, pages 222–234, London, UK, 1984. Springer-Verlag.
13. C. A. Gunter.Semantics of Programming Languages. MIT Press, 1995.
14. J. Y. Halpern. A good Hoare axiom system for an ALGOL-like language. In11th POPL,

pages 262–271. ACM Press, 1984.
15. K. Honda. From process logic to program logic. InICFP’04, pages 163–174. ACM Press,

2004.
16. K. Honda. From process logic to program logic (full version of [15]). Available at:

www.dcs.qmul.ac.uk/˜kohei/logics, November 2004. Typescript, 52 pages.
17. K. Honda and N. Yoshida. A compositional logic for polymorphic higher-order functions.

In PPDP’04, pages 191–202, 2004.

16

18. K. Honda, N. Yoshida, and M. Berger. An observationally complete program logic for
imperative higher-order functions. InLICS’05, pages 270–279, 2005. A full version in
www.dcs.qmul.ac.uk/˜kohei/logics.

19. J. C. King. A program verifier. InIFIP Congress (1), pages 234–249, 1971.
20. T. Kleymann. Hoare logic and auxiliary variables. Technical report, University of Edinburgh,

LFCS ECS-LFCS-98-399, October 1998.
21. D. Leivant. Logical and mathematical reasoning about imperative programs: preliminary

report. InProc. POPL’85, pages 132–140, 1985.
22. D. Leivant. Partial correctness assertions provable in dynamic logics. InFoSSaCS, volume

2987 ofLNCS, pages 304–317, 2004.
23. E. Mendelson.Introduction to Mathematical Logic. Wadsworth Inc., 1987.
24. E.-R. Olderog. Sound and Complete Hoare-like Calculi Based on Copy Rules.Acta Inf.,

16:161–197, 1981.
25. S. Owicki and L. Lamport. Proving liveness properties of concurrent programs.ACM Trans.

Program. Lang. Syst., 4(3):455–495, 1982.
26. B. C. Pierce.Types and Programming Languages. MIT Press, 2002.
27. A. M. Pitts. Operationally-based theories of program equivalence. InSemantics and Logics

of Computation, pages 241–298. Cambridge University Press, 1997.
28. G. D. Plotkin and C. Stirling. A framework for intuitionistic modal logics. InTARK, pages

399–406. Morgan Kaufmann, 1986.
29. M. Smyth. Power domains and predicate transformers: A topological view. InICALP’83,

volume 154 ofLNCS, pages 662–675, 1983.
30. S. Sokołowski. Axioms for total correctness.Acta Inf., 9:61–71, 1977.
31. B. Steffen. Characteristic formulae. InICALP’89, pages 723–732. Springer-Verlag, 1989.
32. B. Steffen and A. Inǵolfsdóttir. Characteristic formulae for processes with divergence.Inf.

Comput., 110(1):149–163, 1994.
33. D. von Oheimb. Hoare logic for mutual recursion and local variables. InFSTTCS, volume

1738 ofLNCS, pages 168–180, 1999.
34. N. Yoshida, K. Honda, and M. Berger. Local state in hoare logic for imperative higher-order

functions, 2006. www.dcs.qmul.ac.uk/̃ kohei/logics.

17

A Proof Rules

A.1 Proof Rules for PCFv: Total Correctness

Below A-x denotesA in which x does not occur free. See [2, 17, 18] for illustration
and examples. The consequence rule comes from Kleymann [20]. The recursion rule is
strengthened in comparison with [2, 17, 18] (the original recursion rule is still known to
be relatively complete when the logical language is extended with inductive definition,
see Appendix C.6).

[Var] −
[C[x/u]]x :u [C] [Const] −

[C[c/u]]c :u [C]

[Add]
[C]M :m [C0] [C0]N :n [C′[m+n/u]]

[C]M +N :u [C′]

[Abs] [A-x∧C]M :m [C′]
[A]λx.M :u [∀x.(C⊃ ∃m.(u•x=m ∧ C′))]

[App]
[C]M :m [C0] [C0]N :n [∃u.(m•n=u ∧ C′)]

[C]MN :u [C′]

[If]
[C]M :m [C0] [C0[t/m]]N1 :u [C′] [C0[f/m]]N2 :u [C′]

[C]if M then N1 else N2 :u [C′]

[Rec] [A-x]λy.M :u [B]
[A]µx.λy.M :u [B[u/x]]

[Conseq] [A′]M :u [B′] A ⊃ (A′ ∧ (B′ ⊃ B))
[A]M :u [B]

A.2 Proof Rules for Imperative PCFv: Total Correctness

The rules for expressions, first-order operators, recursion, and if-then-else are identical
with those in Appendix A.1.

[Abs] [A-x∧C]M :m [C′]
[A]λx.M :u [∀x.[C] u•x = m [C′]]

[App] [C]M :m [C0] [C0]N :n [C1∧ [C1] m•n = u [C′]]
[C]MN :u [C′]

[Deref] −
[C[!x/u]] !x :u [C] [Assign] [C]M :m [C′[m/ !x][()/u]]

[C]x := M :u [C′]

[Conseq-Kleymann] [C0]M :u[C′0] C ⊃ ∃ j̃.(C0[j̃/ĩ]∧ (C′0[ỹ j̃/x̃ĩ]⊃C′[ỹ/x̃]))
[C]M :u [C′]

In [Conseq-Kleymann], we assume a basisΓ (for non-reference) and∆ (for reference)
and set{x̃}= dom(Γ,∆)∪{u}, {ĩ}= fv(C,C′,C0,C′

0)\{x̃}. In addition, we require the
j̃ (resp. ˜y) to be fresh and of the same length asĩ (resp. ˜x).

18

B PCAP Generation Rules for PCFv

B.1 Generation Rules

The generation rules for PCAP are gven below. Since{A}M :u{B} can be equivalently
written{T}M :u{A⊃ B}, we use sequents of the form̀? M :u A without loss of gener-
ality. Unlike the rules The recursion rule[rec] directly uses inductive predicate,A(u,n),
defined by:

A(u,0) def= ∀x.〈u•x=z〉F, A(u,n+1) def= ∃ f .(A(u)∧A(f ,n)).

Note that∀x.〈u•x=z〉F denotesu’s divergence at all arguments.A(u,n) is the precise
dual ofA(u,n): it denotes all semantic points below, or equal to, then-th unfolding of
µ f.λx.M.

[var] −
`? x :u u = x

[const] −
`? c :u u = c

[op] `? Mi :mi Ai

`? op(M1..Mn) :u ∃m̃.(u=op(m1..mn)∧
^

i
Ai)

[abs] `? M :m A
`? λx.M :u ∀x.〈u•x=m〉A [app] `? M :m A1 `? N :n A2

`? MN :u ∃mn.(m•n=u∧A1∧A2)

[if] `? M :m A `? Ni :u Bi b1 = t, b2 = f

`? if M then N1 else N2 :u
_

i=1,2
(A[bi/m]∧Bi)

[rec] `? λx.M :u A
`? µ f.λx.M :u↓(∃n.A(u,n),u)

B.2 Proof Rules

The derivation of PCAPs leads to completeness of proof rules for partial correctness.
In this note we only present the proof rule for recursion, which is the only rule that is
non-trivially different from the corresponding rules for total correctness.

[Rec]
{A(y)}λy.M :u{A(u)-y} admissible(A(u))

{T}µx.λy.M :u{A(u)}

Aboveadmissible(A(u)) indicates the following two conditions hold for eachξ (to our
knowledge, these conditions are first noted by Plotkin and Stirling in [28], in the context
of CPOs). Below assumeu is typed asα⇒β.

1. ξ ·u : µ f.λx. f x |= A(u).
2. For eachλx.M, defineWn by: (1) W0

def= µ f.λx. f x and (2)Wn+1 = (λx.M)[Wn/ f].
Then if ξ ·u : Wn |= A(u) holds for eachn, thenξ ·u : µ f.λx.M |= A(u) also holds.

The use of these two conditions in syntactic reasoning will be discussed elsewhere.

C Remaining Proofs

C.1 Remaining Cases of the Proof of Theorem 4

We fist list the lemmas used in the proof of Theorem 4 (proofs are omitted for the
standard results).

19

Lemma 16. 1. If x /∈ fv(e), thenξ[[e]] = (ξ ·x : V)[[e]].
2. If x /∈ fv(A) then:ξ ·x : V |= A iff ξ |= A.

Proof. By straightforward inductions one/A.

Lemma 17. 1. If M i . Ni for each0≤ i ≤m−1, then alsoop(M̃) . op(Ñ) for each
op. Similarly Mi . Ni (i = 1,2) implies also M1M2 . N1N2.

2. If M . N and M⇓V then some W exists with N⇓W.

Proof. (1) is by congruency. (2) is by the reduction (hence evaluation) being a subset
of ∼=, hence of.. ut

Lemma 18. Let σ be an injective renaming. Then:ξ |= A iff ξσ |= Aσ.

Proof. Standard, formally by induction onA. ut

Lemma 19. Assume that x/∈ dom(ξ). Then Mξ[V/x] = M(ξ ·x : V).

Proof. Immediate, recallingMξ is the result of substitution induced byξ. ut

Lemma 20. If M −→ N and N⇓V then M⇓V.

Proof. Since in PCFv,M −→ N1,2 impliesN1 andN2 are alpha-convertible. ut

Lemma 21. 1. If L −→M and M. N then also L. N.
2. If K ∼= L . M ∼= N then K. N.

Proof. (1) is by−→ being a subset of.. (2) is direct from the definition of the precon-
gruence and the congruence, i.e.∼==. ∩.-1. ut

Lemma 22. Assume(A,B) satisfies (closure-2) w.r.t.Γ ` M : α at u andξ is a model
typable underΓ. Then:ξ |= B[T/x] iff ξ 6|= B[F/x].

Proof. Since if the assumption holds, thenB underξ uniquely definesx by (closure-2),
noting. becomes∼= for atomic types. ut

We now give the remaining cases of Theorem 4. For [var, const], the proof is trivial.
For [op] we consider the case of binary addition, i.e. we show that

[op]
`? [A1]M1 :m1 [B1] `? [A2]M2 :m2 [B2]

`? [A1∧A2]M1 +M2 :u [∃m1m2.(u=m1 +m2∧ B1∧B2)]

For soundness, assumeξ |= A1∧A2. By (IH):

– There isV1: (M1ξ ⇓V1 ∧ ξ ·m1 : V1 |= B1).
– There isV2: (M2ξ ⇓V2 ∧ ξ ·m2 : V2 |= B2).

Let V be the unique value of appropriate type such thatV ⇓ V1 +V2. Hence:(M1 +
M2)ξ ⇓V. Defineξ′ def= ξ ·m1 : V1 ·m2 : V2. Then

ξ ·m1 : V1 |= B1,ξ ·m2 : V2 |= B2 ⇒ ξ′ |= B1∧B2

⇒ ξ′ |= B1∧B2

⇒ ξ′ ·u : V |= u = m1 +m2∧B1∧B2

⇒ ξ ·u : V |= ∃m1m2.(u = m1 +m2∧B1∧B2)

20

For the (MTC) we get the result straightforwardly from the (IH).

(M1 +M2)ξ ⇓ iff M1ξ ⇓ ∧M2ξ ⇓
iff ξ |= A1 andξ |= A2 (IH)
iff ξ |= A1∧A2

Finally, (closure-2): assuming thatξ |= A1∧A2 andξ ·u : V |= ∃m1m2.(u = m1 +m2∧
B1∧B2). Hence for someW1,W2:

ξ ·u : V ·m1 : W1 ·m2 : W2 |= ∃u = m1 +m2∧B1∧B2.

By the definition of the satisfaction relation that means

V ∼= W1 +W2.

Now u,m2 /∈ fv(B1), hence, by Lemma 16:

ξ ·m1 : W1 |= B1 hence by (IH): M1ξ . W1.

Similarly we obtain thatM2ξ . W2, which, taken together gives

(M1 +M2)ξ = M1ξ+M2ξ . W1 +W2
∼= V,

using Lemma 17.
Next we treat [app]. For soundness, clearly:

1. ξ |= A1, hence by (IH):M1ξ ⇓V1 andξ ·m1 : V1 |= B1.
2. ξ |= A2, hence by (IH):M2ξ ⇓V2 andξ ·m2 : V2 |= B2.
3. ξ |= ∀m1m2.(B1∧B2∧∃z.m1•m2 = z)

Using Lemma 16, we weaken (1, 2) to

ξ ·m1 : V1 ·m2 : V2 |= B1∧B2. (C.1)

Hence for someW:

ξ ·m1 : V1 ·m2 : V2 ·z : W |= m1•m2 = z (C.2)

This impliesV1V2 ⇓W, hence:

(M1M2)ξ = (M1ξ)(M2ξ)−→ ·· · −→V1V2 ⇓W.

Renaming (C.2) gives

ξ ·m1 : V1 ·m2 : V2 ·u : W |= m1•m2 = u

using Lemma 18. Using weakening (Lemma 16) with (C.1) we obtain

ξ ·m1 : V1 ·m2 : V2 ·u : W |= m1•m2 = u∧B1∧B2,

hence
ξ ·u : W |= ∃m1m2.(m1•m2 = u∧B1∧B2).

21

For (MTC), first for (⇒) assumeMNξ ⇓V, henceM ⇓Vm andN ⇓Wn for some values
Vm,Vn. The (IH) yields

ξ |= A1∧A2. (C.3)

Choose valuesWm,Wn and assume

ξ ·m : Wm ·Wn |= B1∧B2.

ThenMξ . Wm andNξ . Wn by (closure-2), using weakening. Lemma 17 now allows
to conclude to

MN . WmWn.

This with Lemma 17 and (C.3) assures us of the existence of a valueV ′ such that
WmWn ⇓V ′. This means thatξ ·m : Wm ·Wn ·z : V ′ |= m•n = z, hence in fact:

ξ |= A1∧A2∧∀mn.(m•n = z∧B1∧B2)

as required. Conversely (⇐) is immediate from soundness.
We conclude this case by showing that (closure-2) is preserved by application. As-

sume

1. ξ |= A1∧A2∧∀mn.(m•n = z∧B1∧B2).
2. ξ ·u : V ·m : Vm ·n : Vn |= m•n = u∧B1∧B2.

From (2) we immediately getξ ·m:Vm |= B1, henceMξ .Vm using the (IH) and Lemma
16. Similarly we obtain:Nξ . Vn. In addition clearly alsoVmVn ⇓V ′ ∼= V. Hence

(MN)ξ . VmVn
∼= V

by Lemma 17.

Soundness of [abs] is straightforward. ChooseV and assume

ξ ·u : λx.M ·x : V︸ ︷︷ ︸
ξ′

|= A.

Then by (IH):Mξ′ ⇓, in fact, asu /∈ fv(M) even:M(ξ ·x :V) ⇓. In addition:ξ ·m:V |= B.
Hence all that is left to show for the soundness of this rule is(λx.M)ξ′V ⇓, which is
immediate because(λx.M)ξ′V −→ (Mξ ·u : λx.M)[V/x] = Mξ′ ⇓ by Lemma 19 and 20.

The (MTC) for this rule is trivial. Finally (closure-2). Assume that

ξ ·u : U |= ∀x.(B⇒∃m.(u•x = m∧B)). (C.4)

Choose arbitraryW of appropriate type with

ξ ·u : V ·x : W︸ ︷︷ ︸
ξ′

|= A.

Then (C.4) implies that someW′,W′′ exists with

VW⇓W′ ∼= W′′ and ξ′ ·m : W′′ |= B

22

By (IH) we know thatM(ξ · x : W′′) . W′′ ∼= VW. But (λx.M)ξW −→ Mξ[V/x] =
M(ξ.cdotx: W). Now Lemma 21 delivers

(λx.M)ξW . VW.

As W was arbitrary, in fact
(λx.M)ξ . V

as required.
The final rule is [if]. We omit the straightforward soundness proof. For the (MTC)

assume wlog. that
Mξ ⇓ T and N1ξ ⇓V.

By the (IH) thenξ |= A, henceξ ·m : T |= B. This implies

ξ |= B[T/m]

Now Lemma 22 entails that also
ξ 6|= B[F/m]

Hence clearly
ξ |= A∧ (B[T/m])∧ (B[F/m]).

For (closure-2), letξ |= A∧ (B[T/m]⇒ A1)∧ (B[F/m]⇒ A2) and wlog.ξ ·u : V |=
B[T/m]. Now ξ |= A∧B[T/m] implies wlog. thatM ⇓ T andξ ·m : W |= B. Henceξ |=
A1. This together impliesN1ξ .V, using the (IH). Now(if M then N1 else N2)ξ−→
N1ξ Hence by Lemma 20

(if M then N1 else N2)ξ . V

as required. ut

C.2 Proof of Claim for Corollary 7 (2)

By Theorem 4, we already know for eachM there exists a TCAP(A,B) of M at u. We
show` {A}M :u {↑(B,u)} which suffices. This is shown by establishing:

Proposition 23. `? [A]M :u [B] implies` [A]M :u [↑(B,u)].

The proof of Proposition 23 is by rule induction on the generation rules in Figure 1.
NotingB⊃↑(B,u), the verification is mechanical for all proof rules in Appendix A.1 (a
verification of the corresponding result for an alternative recursion rule is given at the
end).

C.3 Proof of Proposition 5

By induction on the structure of the program, for some constantc, we show the sum of
the sizes of two formulae,A andB, of M, is less thanc×m×2n, wherem is the size of
M andn is the number of applications/conditionals inM. As a non-trivial case, consider
[app]:

[app]
`? [A1]M1 :m [B1] `? [A2]M2 :n [B2]

`? [A1∧A2∧∀mn.(B1∧B2 ⊃ ∃z.m•n=z)]M1M2 :u [∃mn.(m•n=u∧B1∧B2)]

23

Write |A| for the size ofA. Then we note the size of the new TCAP is:

|A1|+2×|B1|+ |A2|+2×|B2|+12

Let the size ofM1 (resp.M2) bem1 (resp.m2). Then by induction, fori = 1,2:

|Ai |+ |Bi | ≤ c×mi ×2ni

So that we have, for a sufficiently largen:

2×(|A1|+|B1|+|A2|+|B2|)+12≤2×c× ∑
i=1,2

(mi×2n1+n2 +12≤ c×(m1+m2)×2n1+n2+1

hence as required. Other cases are simpler.

C.4 Proof of Lemma 10 (1)

To show for eachΓ;∆ `M : α we haveΓ;∆ `M ∼= [[M]], it suffices to prove:

〈〈M〉〉x[N]∼= let x = M in N. (C.5)

This suffices sincelet x= M in x∼= M by βv-equality. We use the structural induction
onM. The base case is obvious. Here we only show the case of application.

〈〈M1M2〉〉x[N] def= 〈〈M1〉〉m1[〈〈M2〉〉m2[let y = m1m2 in N]]
∼= let m1 = M1 in let m2 = M2 in let y = m1m2 in N
∼= let y = M1M2 in N

Other cases are similar.

C.5 Proof of Lemma 10 (2)

Thoughout the following proof, we consider, since it suffices while giving simpler ar-
guments, the proof system in Appendix A.1 replacing its consequence rule with the
following standard (weaker) consequence rule:

[Consequence]
C ⊃ C0 [C0]M :u[C′

0] C′
0 ⊃ C′

[C]M :u [C′]

We still write ` for the provability in this weaker system. We also consider a proof
system which extends this system with the let rule (reproduced below).

[let]
[C]M :x [C0] [C0]N :u [C′]
[C]let x = M in N :u [C′]

The provability in this extended system (still with the weaker consequence rule) is writ-
ten`let. Our purpose is to show:

`let [C] [[M]] :u [C′] implies` [C]M :u [C′].

As a preparation, we prove a couple of lemmas. The first one is about the let rule.

24

Lemma 24. (let-rule lemma)

1. `let [C]let x = M in N :u [C′] implies there exists C0 such that̀ let [C0]N :u [C′].
2. Suppose M does not contain let’s. Then`let [C]let x = M in x :u [C′] implies
` [C]M :u [C′].

Proof. For (1), sincè let is compositional, we can safely set the rule is derived from
[Let] followed by [Consequence]. Assume the result of applying [Let] is`let [G]let x=
M inN :u [G′] so thatC⊃GandG′⊃C′. Then there isG0 such that̀ let [G]M :x [G0] and
`let [G0]N :u [G′]. By applying [Consequence] we are done. For (2), if`let [C]let x =
M in x :u [C′] then`let [C]M :x [C0] and`let [C0]x :u [C′]. Since no let occurs in either
M nor x, we know` [C]M :x [C0] and` [C0]x :u [C′]. Since the strongest postcondition
of x with the preconditionC0 isC0[u/x], we knowC0[u/x]⊃C′. By [Consequence], we
have` [C]M :x [C′[x/u]], that is` [C]M :u [C′], as required. ut

Using the lemma above, we next prove:

Lemma 25. `let [C]〈〈M〉〉x[N] :u [C′] implies`let [C]let x = M in N :u [C′].

Proof. By induction onM. We show two cases, constant and application. Other cases
are similar. For constant:

`let [C]〈〈c〉〉x[N] :u [C′] ⇔ `let [C]let x = c in N :u [C′]

hence done. For application:

`let [C]〈〈M1M2〉〉x[N] :u [C′]
⇔ `let [C]〈〈M1〉〉m1[〈〈M2〉〉m2[let x = m1m2 in N]] :u [C′] (by def.)
⇒ `let [C]let m1 = M1 in let m2 = M2 in let x = m1m2 in N :u [C′] (IH)
⇒ `let [C]let x = M1M2 in N :u [C′] (Lem.24-1)

In the final step, we consecutively used Lemma 24-1, noting there areC, C0 andC1 for
intermediate steps, that is:

(I-1) ` [C]M1 :m1 [C0].
(I-2) ` [C0]M2 :m2 [C1].
(I-3) ` [C1]m1m2 :x [C2].

as well as̀ [C2]N :u [C′]. To infer (I-3), we may safely assume the rule is derived by
[app] (it is possible (I-3) is the result of applying [Consequence]: if so we have the same
provable judgements except for changes in the corresponding assertions, with precisely
the same subsequent reasoning). So we need to have:

(I-3a) ` [C1]m1 :z1 [Ca].
(I-3b) ` [Ca]m2 :z2 [Cb∧ [Cb]z1•z2 = u[C2]].

Since the corresponding strongest judgements are:

(I-3a’) ` [C1]m1 :z1 [C1[z1/m1]].
(I-3b’) ` [C1[z1/m1]]m2 :z2 [C1[z1z2/m1m2]]

25

Hence we need to have
C1 ⊃ [C1]m1•m2 = u[C2]. (C.6)

Combining (I-2) and (C.6) we obtain:

` [C0]M2 :m2 [C1∧ [C1]m1•m2 = u[C2]] (C.7)

By (I-1), (C.7) and` [C2]N :u [C′], we obtain` [C]let x = M1M2 in N :u [C′], as
required. ut

We can now conclude the proof of Lemma 10 (2). Assume belowM does not contain
let’s.

`let [C] [[M]] :u [C′] ⇔ `let [C]〈〈M〉〉x[x] :u [C′] (def.)
⇒ `let [C]let x = M in x :u [C′] (lem.25)
⇒ ` [C]M :u [C′] (lem.24-2)

hence as required.

C.6 Completeness of Alternative Recursion Rule

Assuming the logical language allows extension with inductively defined predicates, we
show the following proof rule for recursion is relatively complete (i.e. the proof system
in Appendix A.1 is relatively complete after replacing the recursion rule there with the
following one):

[Rec]
[A-xi∧∀ j � i.B(j)[x/u]]λy.M :u [B(i)-x]

[A]µx.λy.M :u [∀i.B(i)]

We work with the logic for PCFv, though the proof extends to the imperative PCFv.
To show completeness of this rule, we consider an alternative TCAP generation rule

which corresponds to [Rec] above.

[rec-fix]
`? [T]λx.M :u [A]

`? [T]µ f.λx.M :u [∀n.A(u,n)]

whereA(u,n) is given by the following induction:

A(u,0) def= T, A(u,n+1) def= ∃ f .(A∧A(f ,n)).

We first show:

Proposition 26. If (T,A) satisfies (soundness), (MTC) and (closure) w.r.t.λx.M, then
(T,A(u,n)) does so w.r.t. Wn for each n. Further|= [T]Wn :u [A(u,m)] for each m≤ n.

Proof. We argue by induction onn. The base case is immediate. For induction, assume
(soundness) and (closure) hold for(T,A(u,n)) w.r.t. Wn. We show the same holds for
(T,A(u,n+1)) w.r.t.Wn+1.

(soundness)For eachξ on fv(λx.M), and for eachm≤ n:

(assumption, IH) ⇒ ξ · f :Wmξ ·u:(λx.M)(ξ · f :Wmξ) |= A, ξ · f :Wmξ |= A(f ,m)
⇒ ξ ·u:(λx.M)(ξ · f :Wmξ) |= ∃ f .(A ∧ A(f ,m))

26

(closure-2) We showWn+1ξ is the least among those satisfyingA(u,n+1) underξ.

ξ ·u:V |= A(u,n+1) ⇒ ξ ·u:V · f :W |= A∧A(f ,n) for someW
⇒ Wnξ . W (∗)
⇒ (λx.M)(ξ · f :Wnξ) . (λx.M)(ξ · f :W) . V (∗∗).

Above (∗) is by ξ, f :W |= A(f ,n) and by (closure) ofWn w.r.t. A(f ,n). For (∗∗), the
first inequation is by (closure) ofλx.M w.r.t. A, the second is by(∗). ut

Corollary 27. If (T,A) satisfies (soundness), (MTC) and (closure-2) w.r.t.λx.M, then
(T,∀n.A(u,n)) does so w.r.t. µ f.λx.M.

Proof. We use the standardn-th unfoldingWn of recursion [27], which approximates
µ f.λx.M asn tends to infinity.

W0
def= µ f.λx.(f x), Wn+1

def= λx.M[Wn/ f]

(soundness) is direct from Claim A, while (MTC) is vacuous. For (closure-2), using the
syntactic notion of continuity [27]:

ξ,u:W |= ∀n.A(u,n) ⇒ ∀n.(ξ,u:W |= A(u,n)) (def)
⇒ ∀n.(Wnξ . W) (IH (closure))
⇒ µ f.λx.Mξ . W (continuity).

as required. ut

Lemma 28. [rec-fix] is admissible w.r.t.the proof system in Appendix A.1.

Proof. We show[rec-fix] is derivable by combining[Rec] (which is the proof rule for
recursion in Appendix A.1,not the generation rule [rec]) and the consequence rule. This
is the same thing as:

A(u)⊃ (A(f ,n)⊃ (A(u)∧A(f ,n))) ⇒ A(f ,n)⊃ (∃ f .(A(u)∧A(f ,n)))
⇒ A(f ,n)⊃ A(u,n+1)

Thus, if the premise{T}M :u {A(u)} (of [rec-fix]) is provable, then we can apply [Rec]
and [Conseq] to obtain the conclusion of[rec-fix]. ut

By Corollary 27 and Lemma 28 we are done.

27

