The Two-Phase Commitment Protocol
in an Extended m-Calculus

Martin Berger

Department of Computing
Imperial College, London
Email: M.Berger@doc.ic.ac.uk

Kohei Honda

Department of Computer Science
Queen Mary and Westfield College, London
Email: kohei@dcs.qgmw.ac.uk

Abstract

We examine extensions to the m-calculus for representing basic elements of dis-
tributed systems. In spite of its expressiveness for encoding various programming
constructs, some of the phenomena inherent in distributed systems are hard to
model in the w-calculus. We consider message loss, sites, timers, site failure and
persistence as extensions to the calculus and examine their descriptive power, taking
the Two Phase Commit Protocol (2PCP), a basic instance of an atomic commit-
ment protocol, as a testbed. Our extensions enable us to represent the 2PCP under
various failure assumptions, as well as to reason about the essential properties of
the protocol.

1 Introduction

The field of process calculi has seen major advances in the decades since the
introduction of CCS [21], CSP [14] and ACP [5]. In particular, with the advent
of the m-calculus [23] and other name passing process calculi [9,15,24,26], it
has been found that diverse computational structures in both sequential and
concurrent computing are uniformly representable as interacting processes.
This enables us to apply standard syntactic reasoning methods developed for
process calculi to a wide variety of computational phenomena. However, in
spite of its high expressive power and its interaction-based computing model,
the m-calculus as presently given does not suffice for sound description of basic
elements of distributed computing systems. This is because some operations
and phenomena which frequently arise in distributed systems are difficult to

This is a preliminary version. The final version can be accessed at
URL: http://www.elsevier.nl/locate/entcs/volume39.html

AFHIVA AL ALNLL AL VANLJA

decompose into name passing: they are often too “low-level,” in the sense
that they represent computational mechanisms left implicit or not treated
in the m-calculus, loss of message in transit, timers, manipulation of process
activities, process failure and recovery being examples. Some of these are
such that their satisfactory (say compositional and fully abstract) encodings
cannot exist: for others, even if a translation into name passing would be
possible, the description using such translations suffers basic problems such as
lack of compositionality, lack of extensibility or excessive complexity, making
reasoning cumbersome, if not impossible. Thus extensions cleanly representing
these phenomena are needed at least for convenience in the sense that they
should aid modelling distributed systems in a way faithful to real computing
phenomena, as well as offering useful reasoning frameworks. In this context
one may observe that, as far as the described phenomena are representable
by known computing devices, they are in some way encodable into Turing
machines. However this does not mean Turing machines provide a convenient
framework for modelling distributed computing systems!

But what kinds of extensions to the m-calculus should we consider for mod-
elling distributed systems? We wish them to be basic and incremental, in the
sense that combinations of a few simple extensions can represent a wide range
of phenomena, essential to distributed systems; and that these constructs
interact with each other consistently, so their incremental addition leads to
a feasible increase in the complexity of the equational frameworks. If well-
chosen, such constructs should be equipped with clean operational semantics,
both in terms of pure dynamics (reduction) and behavioural semantics (la-
belled transitions). The latter is important since equational reasoning based
on labelled transition offers a convenient method for exploring semantic prop-
erties without having to resort to quantification over all possible contexts.
More generally, the constructs should be able to represent distributed systems
with clarity and rigour so that descriptions become amenable to formal anal-
ysis as well as intuitive understanding to help putting the study of distributed
systems on a uniform technical footing to aid comparison, integration and
further development.

Against this background, the present paper studies a few extensions to an
asynchronous version of the m-calculus for representing distributed computa-
tion, and examines their descriptive power for the description and correctness
proof of an important distributed algorithm, the Two Phase Commit Protocol
(hereafter 2PCP). The extended constructs are chosen to cover, in as simple
as possible a way, what we regard as some of the essential phenomena of dis-
tributed systems, namely message loss, timers, process failure and savepoints.
As they are omnipresent in distributed computing, these phenomena must,
in some way or other, be captured when representing distributed systems.
While we are far from claiming our extensions are comprehensive enough,
they together offer a coherent framework for describing and reasoning about
extended processes based on the labelled transitions. The description and

2

AFHIVA AL ALNLL AL VANLJA

the correctness proof of the 2PCP using the extended constructs demonstrate
their expressive power and applicability. As the 2PCP deals with key elements
of distributed computing systems including message loss, timers and process
failures/recoveries, it is an ideal testbed for our purpose. A clean description
of the 2PCP is obtained under various failure assumptions, and the correct-
ness proof of its central property is obtained using the equations inherent in
added constructs.

Since the present paper uses the 2PCP not only as an application but also
for motivating our extended constructs, general illustration of this protocol
would be due. The 2PCP is the most basic instance of an atomic commaitment
protocol [6,11,12,20], which achieves basic properties of transactions, notably
atomicity, in the presence of (partial) failures in distributed systems. By atom-
icity we mean that a transaction is committed if and only if all the transactions
it depends on also commit. The 2PCP achieves atomic commitment under the
assumption that all occurring failures are of the following two kinds.

4%

» Messages either get delivered accurately or disappear without a trace (“no
forging”).

* Processes either work correctly or they fail by stopping completely. As long
as a process is stopped, it does not engage in any interaction or state change
(“fail-stop” [27]). Stopped processes may or may not restart later.

In particular, it assumes the absence of Byzantine behaviour [19]. Under these
assumptions, the 2PCP is known to achieve atomic commitment, using timers
and savepoints as countermeasures against the failures noted above. Based on
the 2PCP, other atomic commitment protocols have been developed, which are
more efficient with respect to certain metrics (such as the number of messages
to be sent to achieve commitment, or the likelihood of blocking) [6,12,28,29].
While being most basic among atomic commitment protocols, the 2PCP has
fairly complex behaviour, due to the possibilities of failures and the incorpo-
ration of mechanisms to cope with them. We are not aware of any previous
work offering a fully formal description of this algorithm. The extensions to
the m-calculus we introduce in the present paper are simple, but they are pow-
erful enough to concisely and cleanly represent, as well as reason about the
full 2PCP. The high-level structure of both the description of the protocol
and the correctness of the proofs remain stable for all versions of the protocol
under different failure assumptions (most of which are presented only in the
full version of the present paper [4]). This may be seen as good evidence that
our extensions coherently capture basic elements of distributed computing. In
comparison with the description of the 2PCP in representative textbooks on
transaction processing [6,12], the present approach differs in that it captures
the whole of the interactive behaviour of the protocol in a compositional way:
all participants of the 2PCP are described as interacting processes, and their
composition formally defines what the behaviour of the 2PCP is in a math-
ematically unambiguous way. This enables us to use behavioural semantics

AFHIVA AL ALNLL AL VANLJA

for formulating and reasoning about atomicity, a fundamental property of the
protocol. Another payoff of our formalisation was that we identified two subtle
problems in the classic presentation of the 2PCP.

This paper is a technical summary of [4] to which readers may refer for
full proofs and further details. In the remainder, Section 2 gives an informal
description of the 2PCP. Section 3 presents the base calculus, and shows how
it can be used for representing the core protocol without the assumption of
failures. Section 4 studies our few extensions to the base calculus, message loss,
timers, process failure and savepoints, and uses them to represent the 2PCP.
Section 5 outlines how the description in Section 4 enables us to establish the
central property of the 2PCP, concentrating on key technical ideas and the use
of algebraic laws. Section 6 is devoted to discussions, including observations
on relative expressiveness of the added constructs with respect to the original
calculus.

2 Behaviour of the 2PCP: an Informal Description

The 2PCP [6,11,12,20] is a distributed protocol, in the sense that it consists
of multiple possibly faulty processes that interact via possibly faulty chan-
nels. It has one transaction manager, which we hereafter call coordinator, and
participating (sub)transaction, which we call participants. The principal ob-
jective of this protocol is to ensure that, as far as outside observers can tell, all
participating transactions commit together (usually writing some datum to a
persistent storage, though they can include other actions) or abort together.
This is the atomicity property of the protocol. Below we outline the basic
behaviour of 2PCP. First we describe the central part of the protocol, which
we call the core protocol, assuming the absence of failures.

(1) Each participant sends to the coordinator a message containing its vote
(abort or commit). If its message is abort, the participant will itself abort
immediately. If not, it waits for the votes from all the participants. The
coordinator waits for these messages. The coordinator itself can decide to
commit or abort.

(2) When all the participants as well as the coordinator have voted to commit,
the coordinator will send all participants a message telling them to commit.
A participant which has voted to commit would now commit, once it receives
this message.

(3) If there is any abort vote (including the vote by the coordinator), the
coordinator sends all the participating transactions a message ordering them
to abort. A participant which has voted to commit would now abort on
receiving this message.

Since the protocol should work in distributed environments, messages can be
lost in transit. To cope with it, the 2PCP uses a timer. Using timers, the
above core protocol is augmented as follows.

4

AFHIVA AL ALNLL AL VANLJA

(T1) In (1), the coordinator sets a timer before starting to wait for votes: if
the timer expires, it decides to abort.

(T2) Similarly, in (1), a participant who has voted to commit, waits for a
decision after setting up its own timer: if the timer expires, it assumes the
decision message is lost, and requests the coordinator to give the decision
again, after setting up another timer (the request can again be lost, in which
case the participant’s timer expires so the same procedure is repeated) ! .

Another type of failure is process failure, i.e. the possibility a system can
crash. We assume all crashed systems will eventually restart, cf. [6,12]. It is
crucial that processes restart in a consistent manner after a process failure:
To this end, the protocol is further augmented by savepoints [7]. Roughly, a
savepoint S of a process P is a process as a persistent datum such that if P
recovers from a crash, it will be reincarnated as S. We augment the protocol
as follows:

(S1) The initial savepoint of the coordinator is a process such that, after
restart, it will order participants to abort. This is because a crashed coor-
dinator is regarded as untrustworthy.

(S2) After the transaction manager has received all the votes from the par-
ticipants and all are for commit, the coordinator makes a savepoint that
will order “commit” to all participants. This savepoint should be made
persistent before any orders are sent out.

(S3) For participants, the initial savepoint is a process that aborts, while,
after it voted to commit, its savepoint is such that, when restarted, again
to vote to commit and to wait for the decision. This savepoint should again
be made persistent before the vote is sent.

The essence of the 2PCP as a distributed protocol lies in that the core protocol
is capable of harnessing these additional mechanisms so that its key properties
such as atomicity are maintained in the presence of failures.

3 Representing the 2PCP in the m-Calculus (1): The
Core Protocol

This section presents the base calculus used in our present study. We use the
calculus to represent the core part of the 2PCP, and discusses a basic semantic
property of the protocol we can state for the description.

LA variation of the protocol would obtain this information from other participants rather
than from the coordinator. Such 2PCPs are called decentral. They are advantageous in
that the coordinator is not a single point of failure in the last phase of the protocol. To
keep proofs simple, we shall not deal with decentral 2PCPs in this text even though an
adaptation would simple.

AFHIVA AL ALNLL AL VANLJA

3.1 A Basic m-Calculus

As in many distributed protocols, the 2PCP is based on asynchrony in mes-
sages. Further, information flow with respect to binary decision (abort or
commit) plays a central role in its description and analysis. For describing
these features, we choose the asynchronous version of the 7-calculus [16] aug-
mented with branching [30]. The role of branching in semantic arguments will
become clear later. Let a,b,c,...,x,y, 2, ... range over names. The syntax of
processes, written P, Q, R, ..., is given by the following grammar.

Pu=a2@).P | (7 | PIQ | (vz)P | 0
| ()P [12(g) | 2[(9).P,(2).Q | Tleft(y) | Zright(y)

The last three constructs are called branching input and (left and right) branch-
ing output, and perform branching at the time of interaction. This construct
is easily encodable in the calculus without these constructs: however, in the
presence of distributed failures, the known simple encoding does not work,
see Section 6. They also play an essential role in equational reasoning. The
notion of free and and bound names, written fn(P) and bn(P), as well as a-
convertibility =, are standard. Throughout the paper we assume the natural
sorting discipline [30]. When no name passing is used, we write z.P for input,
7 for output, z[P, Q] for a branching input, and Zleft and Zright for branching
outputs. Leaving the standard definition of structural rules and reduction to
[4], we here only record the dynamics of branching (without name passing):
z[P, Q]| Tleft — P, and z[P,Q]|Zright — Q. The corresponding la-
belled transitions — are easily obtained, using Zleft((v)Z) and zleft((v¥)?)
(and the symmetrically for the right branch) as labels. The standard strong
and weak bisimilarities (the latter subsequenty often referred to simply as
bisimilarity) are denoted ~ and ~. We also use the notation P & Q, the in-
ternal sum of P and Q, which stands for (vc¢)(c.P|c.Q|¢) with ¢ fresh. Clearly
PeQ—P ~Pand P®Q — Q' ~ Q, which are the only one-step reduc-
tion P & Q owns. Please note that the expressive power of the m-calculus is
not needed to model the 2PCP (assuming no failures).

3.2 Description of the 2PCP (1): the Core Protocol

If we assume the absence of failure, i.e. if we only deal with the core protocol
in the sense of Section 2, then the 2PCP can be described using the basic
calculus just introduced. The representation is simple and serves as a basic
reference point on which further constructs would be built. For readability, we
use symbols such as vote; for channels to describe the meaning of the messages
they would carry (for example vote; is used as the channel for a vote by the i-th
participant). One of the basic aspects of the representation is that it gives the
behaviour of the protocol as seen by external observers. The representation is

6

AFHIVA AL ALNLL AL VANLJA

denoted 2PCP, and is given by the following configuration.
2PCP = (vvote,e) (vvote)(vdec)(C | Py | ... | P,).

The protocol is the composition of one coordinator and n participants. Chan-
nels used for communication among a coordinator and participants are hidden.
The coordinator C is again a composition of several subprocesses:

C = (1) (Vesay) (va)(Cuait | Chi | Chait | Coey)
where C,q; is a process which waits for votes from other processes, including
its own one. CI"™ is a process which, when the votes are unanimously “com-
mit”, would send out the “commit” decision to participants. C’;’:fff, on the
other hand, would send out the “abort” decision if any one of participants (or
itself) sends an abort vote. Finally C,.yis a process which nondeterministically

decides whether it wants to abort or to commit.

Cwait = VOtel[C_l, a] ‘ Ca | vote, [@, a] | VOteself[@, a]
Cyeip = voteygleft @ voteyqyright

Che=cy..... Cn-Cseyf-(decleft | .. .| dec,left)

Clv% = a.(decyright | ... | dec,right)

Note that CI“¢ needs n + 1 commit votes to decide to commit, while C’;‘jfff

needs only one abort vote to decide to abort. We now give the representation
of a participant, where P; denotes the i-th participant.

Pz' _ Pfrue @ P{alse
Pire —Vote;left | dec;[!commit;, !abort;]
P/els — Yote,right | labort;

To model two possible outcomes of voting in a participant, each participant
consists of two branches of an internal sum, one voting to commit (and to
wait for a decision from the coordinator) and the other voting to abort. The
actions of committing and aborting are represented by outputting at special
ports: in practice, they would contain various behaviours including writing
to databases. Replication is not necessary, but simplifies reasoning. Using
bisimilarity, we state a central property of the core protocol. It shows how a
central property of atomic commitment protocols is cleanly translated into a
statement on behavioural equivalence between processes. We do not prove the
result here since it is subsumed by the equivalent result for the full protocol,
which we discuss in Section 5.

Proposition 3.1 Let Abort = II}"_;!abort; and Commit = II7_,lcommit;. Then
2PCP = Abort & Commit.

4 Representing the 2PCP in the m-Calculus (2)

AFHIVA AL ALNLL AL VANLJA

4.1 Eztending the m-Calculus (1): Message Loss

In many distributed computing environments such as the Internet, a mes-
sage can be lost during transmission (for example due to overflowing router
buffers). The incorporation of message loss looks simple: just add the rule
Z(y) — 0 (and mutatis mutandis for branching outputs). Alas this rule does
not capture the reality of message loss: two processes in a shared memory
multiprocessor computer are more realistically modelled without the possibil-
ity of message loss. One method is to have two kinds of channels, lossy (or
non-dependable) ones and dependable ones, cf. [1]. However, in distributed
systems, the same channel could be both reliable and unreliable depending on
whether it is carrying a local message or a remote message. As an alternative
way to realistically model message loss in distributed systems, we augment
the calculus with “sites”, and separate “internal message passing” (interac-
tion within a site) from “external message passing” (interaction between two
sites). The idea is that interaction within a site does not suffer from message
loss, while any message travelling from its originating site to a remote site
may disappear without a trace. To be able to determine whether a message
is for communication within a site or for some other site, we impose a natural
restriction on syntax of processes. Sites play an essential role in the subse-
quent development, not only for message loss but also for process failures and
persistence.

The incorporation of sites is simple. Processes P are as defined before.
Then networks, ranged over by N,N’, ..., are given by the following syntax,
where A is a finite set of names.

N == [Pla| NiJNa | (vz)N | O

Here [P]4 denotes a site which is ready to receive messages at names in A. We
may consider [P]4 as a LAN connected to the Internet, in which case A may
as well be the set of IP-addresses the hosts on the LAN own. Alternatively,
we may consider [P]4 as a host, in which case A might be understood as con-
taining all addresses of sockets that are serviced by P. Following networking
community terminology, we call A the (set of) access points of [P]4. More
generally, the set of access points of N, ap(N), is given by: ap([P]a) = A,
ap(N1|N2) = ap(N;) Uap(N2), ap((v2)N) = ap(N) \ {z}) and ap(0) = @. The
overloaded operators |, (vx) and 0 are understood in the same way as the cor-
responding operators for processes and obey the same structural rules. The
idea of using input interface for a process in a similar setting already appeared
in the context of the join calculus [10]. We use the following well-formedness
condition (here and henceforth we assume the standard variable convention
for names). Given Q = z(y).P, we say x occurs in Q as an input subject and
a free occurrence of y in P is input-bound by (y). We then say P is local if no
input subject is input-bound. We say N is well-formed, written - N, if = N is
derivable using the following rules: (i) i 0 is always derivable; (ii) F [P], if

8

P is local and each free input subject in P is in A; and (iii) = Ny|Ng if = Ny
and F Np and, moreover, ap(N;) Nap(N2) = 0; and (iv) F (vz)N if = N. The
free and bound names of processes and networks are entirely standard, but
note that fn([P]4) = fn(P) U A. From now on we assume all networks are well-
formed. The structural congruence for processes, P = Q, is just as in the basic
calculus. The operators (vz), | and 0 for networks obey the same structural
rules as those for processes. In addition we set [(vz)Pla = (va)[Plaugs) ?-
Over networks = is the smallest congruence containing these rules. The re-
duction — over processes is unchanged, while that over networks, is given by
the following rules.

— P
[Pla — [P']a

(N-Com) [Plz(9)-P" |4 [[Z(2)|Q]z — [PIP'{Z/§}]a | [Qls
(Loss) [P[z(Z) Ja — [Pla (z ¢ A)

o

(INTRA)

as well as the obvious rule for branching corresponding to (N-Cowm), and
the standard rules which close — under |, (vz) and =, all assuming well-
formedness. As an example of the use of (Loss) we obtain the reduction of
form [T(Z)]a — [0]4 whenever z ¢ A.

The corresponding labelled transitions are also concise. The rules for pro-
cesses are identical to those in the basic calculus. For networks, we define
transitions by the following rules.

(INTRA) P—Q
[Pla — [Qla
(N-0ur) P z¢A {inA=0

Pl " Qv
) PR Q {finA=0
P 2 [q],

P ﬂ@a Q z& A
[Pla — [(v#)Qa

(N

(Loss)

There are also the obvious branching versions of (N-Ovut), (N-In) and the rules
corresponding to the rules of the basic calculus. We also need a version of
(ALpuA) for networks. As can be seen, access points play a central role for
interaction between two networks. Detailed illustration of transition rules is
relegated to [4]. Weak bisimilarity =& over networks is defined in the standard

2 We do not add the rule [0]4 = 0 because, if we did, M = N would not imply fn(M) =
fn(N) as fn([0];,3) = {z} # 0 = fn(0). A network [0]4 acts as a ‘domain squatter’ that
cannot perform any computation but prevents other networks from utilizing names in A.

9

way. For well-formed networks, = is a congruence with respect to all operators.

4.2 Extending the w-Calculus (2): Timers

If we can lose messages, the core protocol loses atomicity: it is now possible
that the whole configuration deadlocks by the loss of, say, a vote. The 2PCP,
as many other distributed algorithms, addresses this issue by using timers.
Timers play a fundamental role in all areas of distributed software, including
for example TCP, one of the core Internet protocols. The timer we choose in
the present paper reflects the basic character of timers in distributed systems
in a simple form. While there have been various attempts to incorporate the
notion of (real-)time behaviour into process calculi, cf. [13], the addition of
a timer to the m-calculus has been lacking so far. The syntax of processes is
extended as follows.

P = ... | timer!(Q,R)

where Q should be input guarded, i.e. prefixed by either a standard or a branch-
ing input. The subject of a timer timer’(P, Q) is the initial input subject of P.
t ranges over integers greater than 0. In timer'(P,Q), ¢ represents the clock
ticks left before timeout of the timer. P and Q are the timeout and timein con-
tinuation of the timer. When it times out, the timer becomes Q. As long as it
has not timed out, interaction with the input guard of P is possible: on having
this input, the timer becomes the residual of P. The technical development of
timers hinges on the following time stepper function ¢.

(timer'™}(Q,R) P = timer'(Q,R),t > 1
R P =timer'(Q,R),t < 1
¢(P) = { 4(Q)[(R) P=QIR

(vz)6(Q) P=(vz)Q

P else

\

Thus ¢(P) ticks each timer in P by one discrete degree: this can be thought
of as the passing of, say, one second in a global clock. Note that this function
only acts on non-guarded timers: it does not influence timers under prefixes.
This indicates a timer starts only after the guarding prefix is taken off, i.e.
after the process is launched into the environment. Timers guarded by prefixes
are said to be inactive, otherwise they are active. The free and bound names
of timers are obtained by set-union from those of the timer’s continuations.
Using this extended set of processes, the set of networks is defined just as
in Section 3.3. This means that timers might be distributed among different
sites. There can be two assumptions about how these timers would relate to
each other: there would be a global clock, or time would be local to each site.
Here, following Lamport’s principle of local clocks [18], we take the second
option. Synchronisation among local clocks in different sites can easily be

10

AFHIVA AL ALNLL AL VANLJA

incorporated, but this is not our concern in the present work. With this in
mind, the dynamics of timers is given as follows.

(TmveIN) timer'™™ (z(7).P, Q) | Z(i/) — P{y/v}

(IoLe) P — ¢(P)

The communication rule for timers with branching input is defined accord-
ingly. The rules (TmveIn) and (IpLe) are naturally extended to reduction
in networks, though (Par) is extended to networks only in the sense that
M — M’ implies M[N — M’|N, because we assume local clocks. The idea
underlying the above reduction rules is that a timer which is not under some
prefix necessarily advances whenever there is some reduction within the same
site. The underlying intuition is that a reduction (computation) always takes
some time: we represent it here as one discrete unit. But time can advance
without computation happening, which is not only natural but also is essential
if we wish to model timeouts when a process waits for an expected message
but which may not come due to, say, message loss [4]. This is the purpose
of the idle rule. The corresponding additions to the transition relation are as
follows.

(Tvely) timer' (2(7).P,Q) ““Z piz/q}

PP bnr)Nnf(Q) =10
PIQ — P'|¢(Q)
(IoLe) P LA o(P)

(PaR)

Using the extended set of processes, we incorporate sites and message loss just
as before.

Immediately we obtain the weak bisimilarity &~ over processes and over
networks, for which we have the following result.

Proposition 4.1 (i) ~ and ~ on processes are preserved by prefiz and re-
striction but not by parallel composition. (i) =~ and ~ are congruences over
networks.

As a simple example of the failure of congruence consider P! = timer'(y.Z, 0).
Then P! ~ P?. But z|P! is not bisimilar to z|P? (since, while the input action
by the former inevitably makes it 0, that by the latter can still retain P!). See
[3] for further discussions.

11

AFHIVA AL ALNLL AL VANLJA

4.8 Eztending the m-Calculus (3): Process Failure and Persistence

Message loss is not the only problem for distributed systems. Machines and
processes in distributed systems can fail or crash. This is not specific to
distributed systems: however, when a centralized system crashes, the whole
computational process comes to an end. There is no notion of partial failure
in centralized systems. On the other hand, one of the key characteristics of
distributed systems is that they have a natural notion of partial failures and
are supposed to tolerate this type of failure.

This section introduces partial failure at the level of sites. For a process to
fail or crash (henceforth we shall use these two terms interchangeably) means
that it cannot participate in interactions, and that it cannot itself reduce,
until it restarts (which it might or might not do). We may conceive of crashed
but not restarted processes as processes that, before restarting, act like the
0 process. We allow processes to fail and restart at any point in time. To
be precise, we are assuming that failure cannot occur during an interaction,
that is we assume the action of a process receiving a message to be atomic.
This gives a fairly accurate abstraction of real distributed systems under the
assumption that no Byzantine failure is possible. Failures and restarts of sites
are completely non-deterministic events. There is nothing a process can do to
influence failure or restart.

In order to cope with the possibility of site failures and restarts, distributed
systems allow processes to specify how to restart, but not if or when. This can
be achieved in many ways that often boil down to the existence of persistent
memory that is unaffected by failures, together with mechanism that allows
restarting processes to read data off that persistent store to find out as what
kind of process it should reemerge. There are diverse ways to save state:
operating systems often save entire processes for scheduling purposes at run
time. A weaker mechanism would allow ‘passive data’ to be made persistent,
for example indications that a process has passed a certain program point.
Data that is made persistent to aid later restart is called a savepoint. We
note that persistence and savepointing have received much attention from the
distributed systems community [7], but to the best of our knowledge process
theoretic accounts are lacking. While the mechanisms we present only skim
the surface of this complex topic, we hope to offer a valuable starting point
for further study.

The extensions with failure and restart mechanisms we use in the 2PCP
are straightforward and can be built on top of the basic 7-calculus or the
calculus extended with message loss and timers. For convenience we opt for
the latter. At the level of processes, we introduce a new prefix for making
savepoints. As the m-calculus does not distinguish state, data and processes,
we allow processes to be savepoints.

P = ... | save(P).Q.
12

AFHIVA AL ALNLL AL VANLJA

The notion of process crash is incorporated at the level of sites. Each site
records the latest savepoint in a superscript, with new savepoints overwriting
previous ones. Additionally, we need to represent a crashed process that has
not yet restarted. We denote such a process by [x]%. Networks are now given
by the following grammar.

Noa= [PSR

A process [P] should be understood as a a site containing a process P with
the latest savepoint being Q. Should it crash and later restart, it will restart
as Q (to be precise, it will reemerge as [Q]9). We do not require Q to have any
resemblance to P. The well-formedness conditions are extended as follows.
- [P]Q if P as well as Q are local and have all their free input subjects in A.
F [x]7 if P is local and all its free input subjects are in A. Finally, save(P).Q
is local if P and Q are and the free input subjects of save(P).Q are the union
of the free input subjects of P and Q.

A site [x]f represents a crashed process that will become [P]% should it
ever restart. We overload the operators |, (vx) and 0 as before, and keep their
algebraic laws. Other definitions including the free and bound names are
standard. We set fn([P]®) = fn(P) U fn(Q) and fn([x]?) = fn(P), and similarly
for bound names. We need one additional axiom to define the structural
congruence.

[(vz)P]} = (V.T)[P]Slu{w} if z ¢ fn(Q)
For reduction, we add:
(save) [Plsave(Q).R]S — [P|R]S
(soe) [PIR — [+I3

(Restart) [x]f — [P]}

P—Q

(IN18) o= QR

The (Stop) rule turns a process into a crash state while leaving its persistent
storage. The saved state is used when restarting a process by Restart rule.
The (Stop) and (Restart) rules allow network failure and recovery to happen
asynchronously. We also note that the above dynamics assume that crashed
processes can always restart: we consider only this case since standard treat-
ment of the 2PCP is based on this idea. It is possible to have a variant in
which some of crashed processes cannot restart

For the labelled semantics of the extended calculus we add labels of the
from save(P) (where P is any process) to the core calculus. The free and bound
names of the action save(P) are defined to be the free and bound names of

13

AFHIVA AL ALNLL AL VANLJA

P. The transition system is then defined inductively by the following rules, in
addition to those of the previous calculus.

(s-Our) save(Q).P 2@ p

(RESTART) [*]3 SN [Q]?1
Pl q

59%) (P = QR

(sto) [PI3 — [+]3

P-5Q 7 #save(S)
PI§ — [Qf

(Proc)

The (S-Ovut) rule introduces a form of process passing. It is weaker than
process passing in higher order 7-calculi [26] because no process can interact
with an emission of save(P). Interaction with such an emission is exclusive to
the persistence mechanism integrated into sites.

Definition 4.2 A symmetric binary relation of processes is a bisimulation if
PRQ implies:

* whenever P - P’, 7 # save(R), bn(r) N fn(Q) = () then we can find a
transition @ — Q' such that PRQ".

« whenever P 2% P’, bn(save(R)) Nfn(Q) = @ then we can find a transition

Q%" ' such that PRQ’ and (R,R) € R.

Bisimilarity on processes, denoted = as usual, is the greatest bisimulation.
Similarly, one defines strong bisimilarity on processes. Extensions of notions
bisimulation and strong bisimulation to networks are straightforward, as sav-
ing induced process passing is not observable in networks.

Proposition 4.3 Bisimilarity ~ and strong bisimilarity ~ are congruences
on networks but not on processes.

4.4 Description of 2PCP (2): the Full Protocol

Using the extended m-calculus, we can now rigorously describe the behaviour
of the 2PCP incorporating all failure assumptions. As discussed, there are
two stages where messages can be lost in the protocol: one is when votes are
cast by sending them to from participants to the coordinator, the other is
when the decision is communicated from the coordinator to the participants.
Thus timers need be incorporated on both of these occasions to deal with
message loss. Processes can fail at any point during the computation. This
possibility is dealt with by adding savepoints before state changing decisions
are externalized.

14

AFHIVA AL ALNLL AL VANLJA

The whole configuration is given as follows. Each of the coordinator and
participants are located in a separate site.

alse
Pl

OPCP = (1) (vvte) (vdec) ([C(to) [[Py ()] |- |[Pa(th)]7E).

where C(t) and P;(t) are as given below. The variable ¢ denotes the timeout
periods of the timers in the respective processes. A suitable choice for ¢,
would be any number exceeding 1 while for ¢, one can choose any number
greater than n 4+ 1. The access points are defined as in the previous section:
A = {vote,e} and A; = {dec;}. First we present the coordinator. Below
and henceforth we use recursive equations of form P = C[P] where P should
always be under prefix, assuming the standard encoding [22] using replication.
Now we consider the coordinator.

C(t) = (v2) (Vesen) (va) (vvotesey) (Cuai (1) | Chng [CLet | Coey)
Cuwait (t) = Cyaity (t)| <o ‘Cwaitn (t) |Cwaitse:f
Cuwait; (t) = timer’ (vote;[c;, @), @)

Cieif = voteggleft @ votegyright

Cwaitself = VOteself[cself: a]

Climein — yote;[c, @
Clrue—cy.. ... Cn-Cself-SAVE(Srye) -Strue
Cgf;e = a'-sfalse
St’rue = St’rue,l <. |St'rue,n
Sfalse = Sfalse,l <. ‘Sfalse,n

Strue,i = decileft|€i-strue,i
Sfalse,i = deci right|ei-sfalse,i

We focus on four sub-behaviours, Cyait;, Struei, Co% and Syusei- Cuwair; Waits

for a vote from the i-th participant using a timeout, because the vote can
be lost during transmission. This is crucial for the whole protocol not to
deadlock. Sy, is the subbehaviour in charge of sending the commit decision
to the i-th participant. Since this decision message can also be lost, we let
a participant request for a decision using timeout. Thus, for example, Sy
first sends a commit decision then waits at e; for the request to arrive from
the i-th participant. If the request comes, it resends the same decision, and
again waits at e;. C¢ checks if all cast votes are for committing. If they
are, before externalising the command to participants to commit (Sspye), it
savepoints the result of the vote. Once this has been done, no further message
loss or process failure can prevent the overall outcome of the protocol to be
that all participants eventually commit. If the coordinator crashes before this
savepoint has been taken, it can only restart as the aborting coordinator. This
behaviour is achieved by the initial savepoint being Syqs.
Now the participants become:

15

AFHIVA AL ALNLL AL VANLJA

Pi(t) = P{™(t) @ PI***
P™¢(t) = save(P(t)).P (t)

P/else — Yote;right|labort;
P¢(t) = vote;left|P}(¢)

P.(t) = timer’(dec;[save(!commit;).!commit;, save(labort;).!abort;], &]|P%(ty))

Each participant starts by non-deterministically deciding how to vote. With
the initial savepoint being the aborting i**-participant, only if the decision is
to commit, this decision needs to be made persistent before it is communicated
to the coordinator, otherwise, when waiting for the decision, it uses a timeout
to cope with message loss: if a timeout takes place, it requests the decision
again. Since a message loss (of either this request itself or the repeated vote)
can take place again, the behaviour is given recursively, possibly asking for
the decision unboundedly many times. If the message from the coordinator
has successfully been communicated, an appropriate savepoint is taken, en-
suring that subsequent crashed do not lead to additional interactions with
the coordinator. This ensures the atomicity in the face of message loss and
process failure because, essentially speaking, the decision of the coordinator
is constant once it is determined: thus we may expect the same decision to
be eventually communicated to each participant. The framework of reasoning
about the resulting behaviour is presented in the next section, where we show
how the central property of the 2PCP, atomicity, can be cleanly formulated
and established for the above configuration.

5 Proving Atomicity

5.1 Atomicity in Processes

The process representation of protocols in particular and of computational
structures in general would have two purposes: to precisely describe their
operational behaviour and to analyse their behavioural properties based on
the description. This section discusses how the process description of the
2PCP in the preceding section can be used for reasoning about atomicity,
a key property of the 2PCP. As noted in Section 3, the atomicity property
can be cleanly represented using bisimilarity, although the formulation of the
property for the full protocol needs care due to the existence of sites and the
possibility of site failures. The proof is done based on algebraic laws associated
with the calculus extension. Many of these equations capture the significant
interplay among timers, persistence and message loss in general forms.

Theorem 5.1 Let Commit = II},!commit;, and Abort = II}",!abort;, P, =
save(Commit).Commit and P, = save(Abort).Abort.

(i) Assume that P; € {Pie, Pllse} for gll i € {1,...,n,self} and P;, = Pl
for some iy € I. Then CO[[Pl]ill ...[[Pn]i’;][Pself] ~ [Abort]4bert.

16

AFHIVA AL ALNLL AL VANLJA

.. ru ptrue ru ;Lrue ru c o
(ii) CollPyT] [Pl NPLe] = [Pe @ Palg=®™.
(iii) 2PCP = [P, @ PJ5°".

The theorem asserts that the full 2PCP behaves, as far as external observers
can tell, in one of the two ways: as the committing process or as the aborting
process. Furthermore, if one or more of the participants or the coordinator
decide to abort, then all participants will abort.

5.2 Correctness Proof (1): Two Basic Equations

The essential feature of our proof of Theorem 5.1 is that it is equational: a
succession of smaller equations leads to the desired bisimilarity. Among them,
we single out two because in addition to being basic for our present proof,
they capture a fundamental relationship between message loss, timers and
persistence. Their proofs, via appropriate closures, can be found in [4].
Message loss induces a certain type of non-determinism: a message may
arrive or may be lost during transmission. Thus a natural idea is to simplify
the equation by removing lossy messages and reduce them to non-deterministic
choice at the receiver’s side. This is indeed possible when combined with a
suitable form of timers, as the following lemma demonstrates. The formulation
needs care due to the interaction between timers and persistence. Below by
process reduction context we mean a context whose hole is not under prefix and
which does not contain networks. A process or a context is timer-free (save-
free) if it does not contain timers (subexpressions of the form save(P).Q).

Lemma 5.2 Let C be a reduction context, C' be a timer-free process reduction
context, the set I be partitioned by I, I, and z; ¢ fn(P;,R,C,C")UA; UBU
{y;, 2} for alli,j € I. Then, with S; = l;ctimer (z;[7;, 2], Z), we have:

(v&)C[Wiy, [Tleft | P51 | Mgy, [maright | PG 1P | (O] S TR]
~ O Wier, Pily | Wier, [Pily | [C' WierTi ® % | Wier, 2115 1.

Note how branching works effectively. Below, in Lemmas 5.4 and 5.5, this
equation is used to reduce the possible loss of message of votes to nondeter-
minism on the part of the coordinator.

The next equation concerns the use of recursive timers. A recursive timer
is another form of the use of timers in distributed algorithms. The objective
is to cancel the effect of partial failures such as message loss and site crash
by repeated actions based on timeouts. As such, there should be a general
equation which precisely captures this effect. The following lemma gives one,
indicating how the effect of message loss can be ignored by a certain forms of
use of recursive timers.

Lemma 5.3 Assume C s a reduction context. Assume that I C J. Also
let Si(t) be such that S;(t) = timer’(z;[P;, Qi],%|S:i(t0)), Qi = save(R;).R;,

17

T; = Zyright|e;. T; with, in each case, t is such that 0 <t <ty and to > 1. As-
sume further {x;, €;}ier N fn(C, Ry, T)) = 0 for allk € I and alll € J\I. Then

)))) II; T;
(r{s, e}ier) Ol Wier [Si(0) 5" | Mies Til 5 ™ | & O Wier [R5y | [Mie s Tl -
There is a symmetric version with T;left instead of x;right.

The equation has a natural counterpart for non-branching prefixes and is used
below for eliminating recursive timers in participant waiting for the coordina-
tor’s decision.

5.3 Correctness Proof (2): Main Part

We are now ready to embark on the outline of the proof of Theorem 5.1.
Its proof is split in three parts: Lemmas 5.4 and 5.5 establish the content
of Theorem 5.1 assuming that all decisions have already been made. These
results are then combined using Lemma 5.6 (iv). The proofs of Lemmas 5.4
and 5.5 proceed by algebraic reasoning using equations established in Lemmas
5.2, 5.3 and 5.6. To aid legibility we highlight those parts of a given network
that are changed in each step. We offer the algebraic reasoning to establish
these results in some detail. The equations in Lemma 5.6 are mostly tailor
made to meet the needs of the proofs of Lemmas 5.4 and 5.5 and are placed
at the end.

Lemma 5.4 Assume that n > 0 and for all i € {1,...,n} N; = [PZ-]Z and
for alli € {1,...,n,self} it is the case that P; € {Prue Plalse} " but for at least
one appropriate iy, P;y = P25 Then Co[N1] . .. [Ny][Pser] & [Abort]ye.

Proof. We shall assume that P s = vote,gleft. The case that Py = vote,right
is dealt with similarly. Now, Co[N;]...[N,][Psey] is structurally equivalent to

O e, [otaleft | Py(E) | , VORI Pi(th)

| ;er,[votesright | labort;]A:/oteirlght | fabort;

— P, S atse
| [C'] [voteseeft | I Q; | votesefcsap, @l | i1 - . - Cn-Cseip-Strue | @-Spaise 1147 |

where Q; = timer” (vote;[&;, @], @). Applying Lemma 5.2 and Lemma 5.6 (viii)
and (v), gives
~ Ol Hier [Pi(t)]" | ies, [labort 52

Sfalse]

| [Cl[HiEIcc_i@ a | Telf | Hielaa | Ci... cn-cself-strue | a-sfalse] A
Next, we use Lemma 5.6 (vii) and (v).
~ C[Mier, [Pi(t)]5"®) | Ticy, [fabort;] 52
— PR— s atse
| [Cl[HiEIcci D a ‘ Cy... cn-cself-strue ‘ Sfa,lse] Afl]
18

AFHIVA AL ALNLL AL VANLJA

As I, # 0, we can find some iy € {1,...,n,self}: such that iy ¢ I., so
Cip € (C") Un(Spuse) U A. Hence we can apply Lemma 5.6 (v) and (viii) to
obtain

~ Of Wier, [Pi(tp) 5"

| Mier, [fabort,) 3 | [FC™[icr,a | a.Spatee 11" |

= O Ter, [P | Wier, 1aborti) % | F[Spamelst |

Now we use Lemma 5.3 and Proposition 4.3 where S}alse = Iicr, Statse,i-

~ C My, |! abort; abortl | Hzga[abort abort, | [S}alse]lsfalaaA]
Next apply Lemma 5.6 (iii)

~ O [e, [@Bore 2 | Thiep, [Faborti| 7 | | = C[TI7_, ['abort| 255 |

We then use Lemma 5.6 (ii) to get

~ HOT[1T, ['abort; ab°’“]5 117, ['abort;]; labort;

By Lemma 5.6 (i) this gives

———— I, 'abort;
~ [II7_, labort;], =" """ = [Abort]3"",
as required. O

Lemma 5.5 Let n > 0, and N; = [Pgr“e]ztl:ue then Co[Ny]...[N,][PIie] ~
[Pa @ Pc]mPaGBPc‘

Proof. Cy[N,]...[N,][PT] is structurally equivalent to

O I, [Ieteefa P , Ot et 1P

s atse
| [C [VOteselerft | H 1Qz | VOteself[Cselﬁ a] | C1 - Cp.- Cself Strue | a. Sfalse]] ol]

where Q; = timer’ (vote;[c;, @], @). We apply Lemma 5.2 and Lemma 5.6 (v) to
obtain

n n Sase
~ O[T, [Pi(t) 5™ | [C'] M@ @@ | S el Greiir Sina @Shise 115

Next we apply Lemma 5.6 (ix) and (v).

C[I, [Pi(%)] i(to) | [FC"7[save(Sirue)-Strue D Sraise | ifazse]

[1[P ()] tO) | [save<strue> Strue D Sfalse]smse]
19

22

To finish the proof, we will show that
C[HILZl[PZ(t:))]A | [save<strue> Strue Spee] =~ [Pc SY Pa]gCEBPa (1)

O[T [Pa(t)) ™ | [Spasel ¥] (I Tabort g =" (2)
and then apply Lemma 5.6 (x) To establish Equation (2) we proceed as in

the latter parts of the proof of Lemma 5.4, taking I, = (). For (1) we observe
that Lemma 5.6 (xi) guarantees that

CLII Pi(t) 5" | Sl | 2 [TT2, Tcommit =1 ™™ (3)
i ' St 7 \Short. ?:1!—U'
cl Hi:l[Pi(tf))]zi | [Spatse] 4™]%[Hi:ﬂaborti]g bt (4)

together imply Equation (3). To establish (3) we proceed as follows. Consider

C| Hyzl[Pi(tf))]iii(to) | [Strue]Strua]

This network is bisimilar to the following, according to Lemma 5.3 together
with Proposition 4.3.

~ O T, fcommmit ™™ | SIS |
And then we apply Lemma 5.6 (iii).

~ C| H?Zl[!m]!T]
We can now use Lemma 5.6 (ii) to obtain

~ OV TT ['mm]z Hfl[mm.
Finally, Lemma 5.6 (i) allows to conclude

[H —1- W]mz 1 lcommit; _ [Commit]%ommit.
The proof of (4) is similar. -

Finally we present the remaining algebraic laws used above.

Lemma 5.6 (Z) Let I 75 @ Then HZEI['xz] [Hzel'xz]@la!w_i-

(ii) If ;& A for all i € I, then C| [ILie,'T5]4 "™ | ~ C] [HiEI!x—i]mﬂiez!Ti]
(iii) If {z} = fn([P]}) and {Z} N fn(C,N) = 0 then (vZ)C[N |[P]]~ C[N].
() Let C[]...[] be an n+1-ary reduction context taking n networks and (as

rightmost argument) a process. Let Pg, R; be processes fori=1,...,n+1
(n>0)and j = 1,2 such that

C| [P’f]ill:]...] [P;“]Z%”j Il P;"jll | ~ [P]} where at least for one j €
{1,...,n+1} 4, =

20

AFHIVA AL ALNLL AL VANLJA

Pl 3 ~ save(P).P@save(Q).
CLIPLG 1+ [P [P] = [save(P).P @ save(Q). QI 7@,
Then C[P} @ P23]...[[PL@ P2][PL,, ®P2,, | ~ [save(P).P &
save(Q) 'Q]f:ve(P).PeBsave(Q).Q
(v) If P =~ Q then [P} ~ [Q]R.
(vii) Let I # 0, Q be timer-free and C be a timer-free process reduction context
such that x ¢ fn(C,P,Q). Then (vx)C| ez | 2.P | Q | = C[P|Q].

(viii) Let C be a timer-free process reduction context such that {x1, ..., Ty, y}N
m(C,P,Q) = 0. Furthermore, assume that I C {1,...,n} andn > 0. Then

(vy)(var) ... (a,)C[Wig/T; DY | 21 ... 2,.P | Q | = C[Q]-

(iz) Assume that {Z,y} N fn(C,P,Q) =0, C is a timer-free process reduction
context and n > 0, then (vZ)(vy)C| P \Z; @Y | z1...2,.P | yQ] =
ClP®Q]

(z) Assume that C is a reduction context such that

C| [save(P).P]?1 |~ [save(R).R & save<s>‘S];sve(R)-R@save(S)-S
Ol [QIF 1~ [R]3-
Then C| [save(P).P @ Q]?] ~ [save(R).R & SaVe<S>_S]S;ve(R).R@save(S).S

(zi) Assume that C is a reduction context such that C[[P]% | ~ [R]}, C| [Q]g | ~
S]$ Then C| [save(P).P]§ | ~ [save(R).R @ save(S).S]sg"e(R)'R@save<s>'s.

6 Discussion

The extensions to the w-calculus we have introduced in the present paper,
message loss, timers and process failure/recovery mechanisms, enable us to
concisely represent and reason about the 2PCP, a realistic distributed algo-
rithm. The simplicity of the description and the equational reasoning using
the extensions suggest their possible applicability for other distributed algo-
rithms. Below we offer further remarks on these constructs, first regarding
their translatability into name passing and, secondly, regarding related works
and further issues.

6.1 Translation into the m-Calculus

Given the expressive power of name passing interaction, a natural question is
whether added constructs can be represented in the original m-calculus. A few
essential points are involved in this question. First, the representability of a
certain construct does not mean it is representable when combined with other
added constructs: the interplay among diverse syntactic constructs is crucial.
As a simple example, we take the known encoding (cf. [15,23]) of branching

21

into the m-calculus:

[Flefe(i)] £ (ve)(@(c)le(212) 7 ()

(symmetrically for the right selection, and dually for the branching input).
This encoding is sound and compositional in the base calculus without branch-
ing: however its natural encoding into the full calculus (or the calculus with
message loss and timers) is much more involved than the above, since we need
to consider the case when this message is sent remotely: we want either this
message to be lost completely, or to be sent safely, in other works: atomi-
cally. For this purpose we need to use recursive timers just as we did for the
two-phase commitment protocol. Thus it s possible to encode this branching
construct into the full calculus, but its representation becomes quite complex.
This example suggests that individual representability of extensions may not
lead to the representability of their combination so that the study of expres-
siveness for these constructs should be performed with care.

With this in mind, we are currently studying the relative expressiveness
of the extended constructs. Message loss can be encoded by translating a site
as a collection of forwarders of a certain kind [10,15]. Essentially a site is
translated into a system which takes care of all messaging from and to a site.
On the other hand, timers are provably [3] not encodable fully abstractly and
compositionally. We doubt that there is even a non-trivial sound composi-
tional encoding (there is compelling evidence that such an encoding is hard
to obtain, even though there seems to be a non-compositional way to repre-
sent global timing using specific messages representing signals) and even if we
have, we may not be able to obtain the equations on timers as used in Sec-
tion 5. For site-failure, a crucial point is that processes in a site should crash
together, rather than partially. For this purpose, again the implementation in
the basic m-calculus should have an elaborate operational structure, which is
polled by processes for the state of crash each time it takes any action. The
resulting construction is already quite complex: it remains to be seen how
the structure can be combined with that of timers and other constructs, and
what equational properties this encoding owns. As far as the constructions
we have studied go, the translations first of all often do not enjoy satisfactory
equational properties (such as compositionality and fully abstractness) and,
second, they hardly assist our reasoning on these constructs and the concerned
phenomena, especially when timers are involved. We believe further study on
(im)possibility of satisfactory encodings would help us understand the status
and nature of added constructs. Some aspects of this topic will be further
discussed in the forthcoming [3].

6.2 Related Work and Further Issues

Process algebras have been used as syntactic tools for representing various
computational phenomena involving concurrency and communication, and, as

22

AFHIVA AL ALNLL AL VANLJA

such, there have been many studies on the incorporation of “non-standard”
features into process calculi. For example, the addition of (real-)time to pro-
cess algebra has been studied extensively (see [13] for a survey). There are
also recent studies on extensions of the m-calculus to describe various aspects
of distributed systems, cf. [2,9,25]. In comparison with these, the present
work differs in that it demonstrates how these constructs can be coherently
combined semantically to offer a unified reasoning framework. As we saw in
Section 5, the clear articulation of related phenomena and their combination
in the form of timers, their localisation via sites, process crash and persistence,
are crucial for reasoning about distributed algorithms, which would be, to our
knowledge, first demonstrated in the present work. We also note that the use
of the m-calculus as our base calculus is not arbitrary: distributed software
consists of not only protocols but also programming languages (indeed proto-
cols are implemented by programming languages). By using the 7-calculus as
our base language, a resulting formalism would be able to capture not only
the part of protocols but the whole of distributed systems on a uniform basis.

An interesting further topic is the deeper study of the semantic properties
of the extended calculus. In particular, timers drastically change the semantic
theory. Not only is strong and weak bisimilarity no longer preserved by parallel
composition (as noted in Section 3), but also strong and weak reduction-
based congruence [8,17] coincide [3]. This is a consequence of the implicit
synchronisation that timing engenders (see also [13] for discussion in a different
setting). We conjecture that all reasonable congruences for the m-calculus
with timers will exhibit similar properties. This suggests that conventional
definitions of process equivalences are inappropriate in a timed setting. In
[3], we present techniques to finely control the sensitivity of equivalences to
timing. Nevertheless, much work in this area needs to be done, especially with
regards to the combination of timers, message loss and process failure.

Another important topic is how additional syntactic constructs, as intro-
duced in the present paper, can be systematically explored and developed,
both at the syntactic and semantic level. What general concepts underly
various notions which arise in distributed systems and which defy straight-
forward representation in the bare w-calculus? Relatedly, ramification of the
introduced primitives is an interesting subject of study. As an example, the
proposed process failure and recovery may be given a more general formu-
lation. The presented constructs are sufficiently powerful to describe 2PCP;
however they would be too simple for modeling diverse realistic process re-
covery mechanisms, cf. [7]. We wish to address these and related problems in
future studies.

Finally, important remaining work is to take the present study further
in representing other distributed algorithms and models. In particular, we
are currently working on the representation of the more sophisticated atomic
commitment protocols, such as the Three Phase Commitment Protocols [6],
using the present extended calculus. Such study may also contribute to the

23

AFHIVA AL ALNLL AL VANLJA

clarification of basic building blocks and structures of this and other classes
of distributed algorithms.

Acknowledgements
We thank Chris Hankin and the referees for their helpful comments.

References

[1] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable
channels. Journal of Information and Computation, 127(2):91-101, 1996.

[2] Roberto M. Amadio. An asynchronous model of locality, failure, and process
mobility. In Proc. of COORDINATION 97, volume 1282 of LNCS. Springer
Verlag, Berlin, 1997. Also Rapport Interne 216 LIM February 1997, and INRIA
Research Report 3109.

[3] Martin Berger. Towards Abstractions for Distributed Systems. PhD thesis,
Imperial College, Department of Computing, 2000. To appear.

[4] Martin Berger and Kohei Honda. Atomic commitment protocols in extended
m-calculi (1). Available upon request from the authors, May 2000.

[6] Jan A. Bergstra and Jan Willem Klop. Algebra of communicating processes.
TCS, 37:77-121, 1985.

[6] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[7] Elmootazbellah N. Elnozahy, David B. Johnson, and Yi-Min Wang. A survey
of rollback-recovery protocols in message-passing systems. Technical Report
CMU-CS-96-181, School of Computer Science, Carnegie Mellon University,
1996.

[8] Cédric Fournet and Georges Gonthier. A hierarchy of equivalences for
asynchronous calculi. In Proceedings of ICALP 1998, 1998.

[9] Cédric Fournet, Georges Gonthier, Jean-Jaques Lévy, Luc Maranget, and Didier
Rémy. A calculus of mobile agents. In U. Montanari and V. Sassone,
editors, Principles of Programming Languages, volume 1119 of Lecture Notes in
Computer Science, pages 406—421, Pisa, Italy, January 1996. Springer-Verlag,.

[10] Cedric Fournet and Cosimo Laneve. Bisimulations in the join-calculus. To
appear in Theoretical Computer Science.

[11] Jim Gray. Notes on data base operating systems, 1979.

[12] Jim Gray and Andreas Reuter. Transaction processing: concepts and techniques.
Morgan Kaufmann, 1993.

[13] Matthew Hennessy. Timed process algebras: a tutorial, 1992.
24

AFHIVA AL ALNLL AL VANLJA

[14] Charles Anthony Richard Hoare. = Communicating Sequential Processes.
Prentice Hall International, 1985.

[15] Kohei Honda and Mario Tokoro. An object calculus for asynchronous
communication. In Proceedings of ECOOP’91, volume 512 of LNCS, pages
133-147. Springer-Verlag, 1991.

[16] Kohei Honda and Mario Tokoro. A small calculus for concurrent objects. OOPS
Messenger, 1991.

[17] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics.
Theoretical Computer Science, 151:437-486, 1995.

[18] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-564, July 1978.

[19] Leslie Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382-401, July
1982.

[20] Butler W. Lampson and Howard E. Sturgis. Reflections on an operating system
design. In Fifth ACM Symposium on Operating Systems Principles, pages 19—
21, November 1975.

[21] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[22] Robin Milner. The polyadic m-calculus: A tutorial. Technical Report 91-180,
Laboratory for Foundations of Computer Science, Department of Computer
Science, University of Edinburgh, 1991.

[23] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, parts I and II. Information and Computation, 100(1):1-77, 1992.

[24] Joachim Parrow and Bjorn Victor. The fusion calculus: Expressiveness and
symmetry in mobile processes. In Proceedings of LICS’98, 1998.

[25] James Riely and Matthew Hennessy. Distributed processes
and location failures. In Pierpaolo Degano, Robert Gorrieri, and Alberto
Marchetti-Spaccamela, editors, Automata, Languages and Programming, 24th
International Collogquium, volume 1256 of Incs, pages 471-481. Springer Verlag,
Berlin, 1997.

[26] Davide Sangiorgi. Ezpressing Mobility in Process Algebras: First-Order and
Higher Order Paradigms. PhD thesis, University of Edinburgh, 1992.

[27] Fred B. Schneider. Fail-stop processors: An approach to designing fault-
tolerant computing systems. ACM Transactions on Programming Languages
and Systems, 1(3):222-238, 1983.

[28] Dale Skeen. Non-blocking commit protocols. In Proceedings of the ACM
SIGMOD International Conference on the Management of Data, pages 133—
142, 1981.

25

AFHIVA AL ALNLL AL VANLJA

[29] P. Spiro, A. Joshi, and T. Rengarajan. Designing an optimized transaction
commit protocol. Digital Technical Journal, 3(1), 1991.

[30] Vasco Vasconcelos. Typed concurrent objects. In Proceedings of ECOOP’9/,
pages 100-117. Springer Verlag, 1994.

26

