
Modelling homogeneous generative
meta-programming

Martin Berger Laurence Tratt Christian Urban

"The formal model is quite similar to the interpreter proposed in
McCarthy’s 1955 paper on LISP. I also didn’t find it particularly
insightful" ECOOP’17 review of this paper.

The reviewer is 95% right, but ...

"The formal model is quite similar to the interpreter proposed in
McCarthy’s 1955 paper on LISP. I also didn’t find it particularly
insightful" ECOOP’17 review of this paper.

The reviewer is 95% right, but ...

Problem is a nutshell

List of industrial verification tools with first-class support for MP:

Problem is a nutshell

List of industrial verification tools with first-class support for MP:

What is MP?

Meta-programming = code as data.

Meta-programming: L-programs as data in L′.

Homogeneous meta-programming: MP where L = L′.

What is MP?

Meta-programming = code as data.

Meta-programming: L-programs as data in L′.

Homogeneous meta-programming: MP where L = L′.

What is MP?

Meta-programming = code as data.

Meta-programming: L-programs as data in L′.

Homogeneous meta-programming: MP where L = L′.

Why MP?

Lowering the “price of abstraction”, the hard trade-off between
abstraction and performance, at the price of higher language
complexity.

What is MP: example

printf("System.out.println(\"Hello World!\");");

Meta-programming is simple if you don’t care about convenient,
principled and safe handling of programs as data. Just use
strings.

Problem: strings contain ’junk’

What is MP: example

printf("System.out.println(\"Hello World!\");");

Meta-programming is simple if you don’t care about convenient,
principled and safe handling of programs as data. Just use
strings.

Problem: strings contain ’junk’

What is MP: example

printf("System.out.println(\"Hello World!\");");

Meta-programming is simple if you don’t care about convenient,
principled and safe handling of programs as data. Just use
strings.

Problem: strings contain ’junk’

MP is ubiquitous: example

Web
framework
e.g Flask

PL
e.g Python

HTML
CSS

Javascript

Template processor
e.g. Jinja generates

Serverside

HTML
CSS

Javascript
DOM

generates renders

Clientside

Network

HTML
CSS

Javascript

Research hypothesis

What has been missing is a simple and language
independent foundational approach towards MP that
expresses the main dimensions of MP as first-class citizens on
an equal basis, and shows how they interrelate.

Research hypothesis

λ-calculus
Functional programming

=
???

Meta-programming

Let’s simplify

We ignore:

I Non-homogeneous meta-programming
I Hygiene
I Types
I Notions of equality
I Beauty of syntax
I Efficiency, performance
I Lexical rewriting (e.g. C preprocessor)
I ...

What we are looking for is a foundation that we use to study
those later.

Research hypothesis

Essential features of MP:

I Language representation (code as data)
I Homogeneous meta-programming
I Language levels (base, meta, meta-meta ...)
I Navigation between language levels
I Computation is driven by the base-language

Base language

Meta

up down

Meta-meta

up down

Meta-meta-meta

up down

up down

PL empiricism: the HGMP design space

I What kind of MP?
I When is MP executed?
I How are programs represented as data?

PL empiricism: the HGMP design space

I What kind of MP?
I When is MP executed?
I How are programs represented as data?

HGMP design space: What kind of MP?

I Homogeneous MP: the object- and the meta-language
are identical (examples: Racket, Template Haskell,
MetaOcaml, Scala).

I In heterogeneous MP object- and the meta-language are
different (example: C++ templates)

We restrict our attention to homogeneous meta-programming.

HGMP design space: What kind of MP?

I Homogeneous MP: the object- and the meta-language
are identical (examples: Racket, Template Haskell,
MetaOcaml, Scala).

I In heterogeneous MP object- and the meta-language are
different (example: C++ templates)

We restrict our attention to homogeneous meta-programming.

HGMP design space: What kind of MP?

I Generative MP: where an program is generated (put
together) by another program.

I Intensional MP: where an program is analysed (taken
apart) by another program, e.g. reflection.

Duality?

We restrict our attention to homogeneous generative
meta-programming (HGMP).

HGMP design space: What kind of MP?

I Generative MP: where an program is generated (put
together) by another program.

I Intensional MP: where an program is analysed (taken
apart) by another program, e.g. reflection.

Duality?

We restrict our attention to homogeneous generative
meta-programming (HGMP).

HGMP design space: What kind of MP?

I Generative MP: where an program is generated (put
together) by another program.

I Intensional MP: where an program is analysed (taken
apart) by another program, e.g. reflection.

Duality?

We restrict our attention to homogeneous generative
meta-programming (HGMP).

HGMP design space: How are programs
represented as data?

I Using strings.
I Abstract syntax trees (ASTs) typically using ADTs

(algebraic data types).
I Quasi-quotes, where programs are represented by

’themselves’ (plus marker to distinguish code/data).

Reminder: quasi-quote

"I’m a quote"

"I’m a [| (λx .x) "quasi" |] quote"

Reminder: quasi-quote

"I’m a quote"

"I’m a [| (λx .x) "quasi" |] quote"

HGMP design space: How are programs
represented as data?

Evaluation criteria:

I Syntactic overhead
I Support for generating only ’valid’ programs
I Expressivity

Taxonomy

Construct Terse only valid programs expressive

Strings • ◦ •
ASTs ◦ • •
QQs • • ◦

HGMP design space: How are programs
represented as data?

Important goal: give both QQs and ASTs first class status, and
show how they relate.

HGMP design space: When is MP executed?

I At compile-time: e.g. the Lisp family, Template Haskell,
C++. We call this CTMP.

I At run-time: e.g. the MetaML family, JavaScript,
printf-based MP. We call this RTMP.

The difference is subtle. The result of CTMP is ’frozen’ (e.g. by
saving the produced executable), multiple evaluations of a
CTMP’ed program can be done with one compilation. RTMP’ed
programs are regenerated on every run. Whether that leads
to observable differences depends on the available language
features.

HGMP design space: When is MP executed?

I At compile-time: e.g. the Lisp family, Template Haskell,
C++. We call this CTMP.

I At run-time: e.g. the MetaML family, JavaScript,
printf-based MP. We call this RTMP.

The difference is subtle. The result of CTMP is ’frozen’ (e.g. by
saving the produced executable), multiple evaluations of a
CTMP’ed program can be done with one compilation. RTMP’ed
programs are regenerated on every run. Whether that leads
to observable differences depends on the available language
features.

HGMP design space: When is MP executed?

Important goal: give both CTMP and RTMP first class status,
and show how they relate.

HGMP(λ) = λ-calculus with CTMP and RTMP

We start with the untyped λ-calculus, and CBV.

M ::= x || MN || λx .M || c || M + N || ...

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M ::= ... || astt(M̃)

t ::= var || app || lam || int || string || add || ...

HGMP(λ) = λ-calculus with CTMP and RTMP

We start with the untyped λ-calculus, and CBV.

M ::= x || MN || λx .M || c || M + N || ...

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M ::= ... || astt(M̃)

t ::= var || app || lam || int || string || add || ...

HGMP(λ) = λ-calculus with CTMP and RTMP

We start with the untyped λ-calculus, and CBV.

M ::= x || MN || λx .M || c || M + N || ...

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M ::= ... || astt(M̃)

t ::= var || app || lam || int || string || add || ...

HGMP(λ) = λ-calculus with CTMP and RTMP

We start with the untyped λ-calculus, and CBV.

M ::= x || MN || λx .M || c || M + N || ...

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M ::= ... || astt(M̃)

t ::= var || app || lam || int || string || add || ...

HGMP(λ) = λ-calculus with CTMP and RTMP

We start with the untyped λ-calculus, and CBV.

M ::= x || MN || λx .M || c || M + N || ...

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M ::= ... || astt(M̃)

t ::= var || app || lam || int || string || add || ...

Notice something?

Adding ASTs mirrors the syntax of the language. We make a
’copy’ of the base language.

This is not λ-specific, we’d do the same for any other base.

HGMP(λ): adding CTMP

We add marker to indicate compile-time HGMP should occur.

M ::= ... || ↓{M}

Meaning of ↓{M} is
I M must be evaluated (= run) at compile-time
I CT-evaluation of M yields an AST
I AST gets ’spliced into’ the rest of the AST the compiler is

constructing
I Compilation proceeds

HGMP(λ): adding CTMP

We add marker to indicate compile-time HGMP should occur.

M ::= ... || ↓{M}

Meaning of ↓{M} is
I M must be evaluated (= run) at compile-time
I CT-evaluation of M yields an AST
I AST gets ’spliced into’ the rest of the AST the compiler is

constructing
I Compilation proceeds

HGMP(λ): adding CTMP

We add marker to indicate compile-time HGMP should occur.

M ::= ... || ↓{M}

Meaning of ↓{M} is
I M must be evaluated (= run) at compile-time
I CT-evaluation of M yields an AST
I AST gets ’spliced into’ the rest of the AST the compiler is

constructing
I Compilation proceeds

Operational semantics of the foundational
calculus

We keep the usual ⇓λ from λ-calculus, but now add a second
phase:

M ⇓ct︸ ︷︷ ︸
compile-time

A ⇓λ V︸ ︷︷ ︸
run-time

⇓ct

Idea: ⇓ct scans for ↓{·} and eliminates them by evaluation and
splicing.

x ⇓ct x VAR CT
M ⇓ct A N ⇓ct B

MN ⇓ct AB APP CT
M ⇓ct N

λx .M ⇓ct λx .N LAM CT

c ⇓ct c CONST CT
M ⇓ct A N ⇓ct B
M + N ⇓ct A + B ADD CT

Mi ⇓ct Ni
astt(M̃) ⇓ct astt(Ñ)

ASTc CT
M ⇓ct A A ⇓λ B B ⇓dl C

↓{M} ⇓ct C DOWNML CT

⇓dl

Idea: ⇓dl removes one layer of ASTs, i.e. goes down a
meta-level.

astvar(”x”) ⇓dl x VAR DL
M ⇓dl M ′ N ⇓dl N ′

astapp(M,N) ⇓dl M ′N ′ APP DL

M ⇓dl ”x” N ⇓dl N ′

astlam(M,N) ⇓dl λx .N ′ LAM DL astint(n) ⇓dl n INT DL

aststring(”x”) ⇓dl ”x” STRING DL
M ⇓dl M ′ N ⇓dl N ′

astadd(M,N) ⇓dl M ′ + N ′ ADD DL

Note that non-ASTs have no ⇓dl rules, they are stuck.

Scoping

Our simple calculus intentionally allows variables to be
captured dynamically, because strings are not α-converted.

Run-time HGMP

It is now easy to add run-time HGMP:

M ::= ... || eval(M) t ::= ... || eval

We add the following rules to ⇓ct ,⇓λ and ⇓dl .

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′ EVAL RT

Run-time HGMP

It is now easy to add run-time HGMP:

M ::= ... || eval(M) t ::= ... || eval

We add the following rules to ⇓ct ,⇓λ and ⇓dl .

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′ EVAL RT

Run-time HGMP

It is now easy to add run-time HGMP:

M ::= ... || eval(M) t ::= ... || eval

We add the following rules to ⇓ct ,⇓λ and ⇓dl .

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′ EVAL RT

Run-time HGMP

It is now easy to add run-time HGMP:

M ::= ... || eval(M) t ::= ... || eval

We add the following rules to ⇓ct ,⇓λ and ⇓dl .

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′ EVAL RT

Run-time HGMP

It is now easy to add run-time HGMP:

M ::= ... || eval(M) t ::= ... || eval

We add the following rules to ⇓ct ,⇓λ and ⇓dl .

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′ EVAL RT

Enriching the calculus: higher-order ASTs

What about e.g. ↓{↓{M}}, i.e. meta-meta-programming?

Calculus is extended with AST for ASTs, see paper for details.

Enriching the calculus: higher-order ASTs

What about e.g. ↓{↓{M}}, i.e. meta-meta-programming?

Calculus is extended with AST for ASTs, see paper for details.

Quasi-quotes

We have now finished, and obtained a λ-calculus with CTMP
and RTMP.

But that calculus is lacks the convenience of quasi-quotes.
Let’s add them.

Quasi-quotes

ASTs are the cornerstone of our calculus.

For quasi-quotes, we extend the language:

M ::= ... || ↑{M}

We model QQs as “syntactic-sugar” to be removed at
compile-time by conversion to ASTs, e.g.

↑{2} ⇓ct astint(2)

Quasi-quotes

ASTs are the cornerstone of our calculus.

For quasi-quotes, we extend the language:

M ::= ... || ↑{M}

We model QQs as “syntactic-sugar” to be removed at
compile-time by conversion to ASTs, e.g.

↑{2} ⇓ct astint(2)

Modelling the holes in QQs

Holes in quasi-quotes can run arbitrary computation. How to
model that?

Let’s reuse ↓{·}!

A downML ↓{·} inside ↑{... ↓{M}...} is a ’hole’ where arbitrary
computation can be executed to produce an AST. This AST is
then used as is. For example:

↑{2 + 7} ⇓ct astadd(astint(2),astint(7))

↑{2+ ↓{(λx .x)astint(7)}} ⇓ct astadd(astint(2),astint(7))

Modelling the holes in QQs
Holes in quasi-quotes can run arbitrary computation. How to
model that?

Let’s reuse ↓{·}!

A downML ↓{·} inside ↑{... ↓{M}...} is a ’hole’ where arbitrary
computation can be executed to produce an AST. This AST is
then used as is. For example:

↑{2 + 7} ⇓ct astadd(astint(2),astint(7))

↑{2+ ↓{(λx .x)astint(7)}} ⇓ct astadd(astint(2),astint(7))

Modelling the holes in QQs
Holes in quasi-quotes can run arbitrary computation. How to
model that?

Let’s reuse ↓{·}!

A downML ↓{·} inside ↑{... ↓{M}...} is a ’hole’ where arbitrary
computation can be executed to produce an AST. This AST is
then used as is. For example:

↑{2 + 7} ⇓ct astadd(astint(2),astint(7))

↑{2+ ↓{(λx .x)astint(7)}} ⇓ct astadd(astint(2),astint(7))

Modelling the holes in QQs
Holes in quasi-quotes can run arbitrary computation. How to
model that?

Let’s reuse ↓{·}!

A downML ↓{·} inside ↑{... ↓{M}...} is a ’hole’ where arbitrary
computation can be executed to produce an AST. This AST is
then used as is. For example:

↑{2 + 7} ⇓ct astadd(astint(2),astint(7))

↑{2+ ↓{(λx .x)astint(7)}} ⇓ct astadd(astint(2),astint(7))

Modelling the holes in QQs
Holes in quasi-quotes can run arbitrary computation. How to
model that?

Let’s reuse ↓{·}!

A downML ↓{·} inside ↑{... ↓{M}...} is a ’hole’ where arbitrary
computation can be executed to produce an AST. This AST is
then used as is. For example:

↑{2 + 7} ⇓ct astadd(astint(2),astint(7))

↑{2+ ↓{(λx .x)astint(7)}} ⇓ct astadd(astint(2),astint(7))

Operational semantics for ↑{M}

We introduce a new reduction relation ⇓ul :

M ⇓ul A
↑{M} ⇓ct A UPML CT

M ⇓ct A
↓{M} ⇓ul A DOWNML UL

”x” ⇓ul aststring(”x”) STRING UL
M ⇓ul A N ⇓ul B

MN ⇓ul astapp(A,B)
APP UL

M ⇓ul A
λx .M ⇓ul astlam(aststring(”x”),A) LAM UL tagt ⇓ul tagt

TAG UL

M ⇓ul A
eval(M) ⇓ul asteval(A)

EVAL UL
M ⇓ul A A ⇓ul B
↑{M} ⇓ul B UPML UL

x ⇓ul astvar(”x”) VAR UL
... Mi ⇓ul Ai ...

astt(M̃) ⇓ul astpromote(tagt, Ã)
AST UL

The rules capture our intuitions

I ↑{·} goes up one meta-level (= adds a layer of ASTs).
I ↓{·} goes down one meta-level (= removes a layer of

ASTs).

Base language

Meta

up down

Meta-meta

up down

Meta-meta-meta

up down

up down

Thus RT-HGMP and CT-HGMP are connected as two facets of
the same AST-coin.

The rules capture our intuitions

I ↑{·} goes up one meta-level (= adds a layer of ASTs).
I ↓{·} goes down one meta-level (= removes a layer of

ASTs).

Base language

Meta

up down

Meta-meta

up down

Meta-meta-meta

up down

up down

Thus RT-HGMP and CT-HGMP are connected as two facets of
the same AST-coin.

HGMP(·)

Nothing in the HGMPification of λ-calculus depended on
λ-calculus being the source language. The process was
completely generic.

HGMP(·)

Nothing in the HGMPification of λ-calculus depended on
λ-calculus being the source language. The process was
completely generic.

HGMP(·)

We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.
I Add eval and tags eval and promote.
I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add reduction rules for ASTs, QQs and downMLs with
computation driven by the base language. Note that HGMP(λ)
does not change the reduction rules of λ-calculus itself. Note:
only adds rules.

HGMP(·)

We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.
I Add eval and tags eval and promote.
I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add reduction rules for ASTs, QQs and downMLs with
computation driven by the base language. Note that HGMP(λ)
does not change the reduction rules of λ-calculus itself. Note:
only adds rules.

HGMP(·)

We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.

I Add eval and tags eval and promote.
I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add reduction rules for ASTs, QQs and downMLs with
computation driven by the base language. Note that HGMP(λ)
does not change the reduction rules of λ-calculus itself. Note:
only adds rules.

HGMP(·)

We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.
I Add eval and tags eval and promote.

I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add reduction rules for ASTs, QQs and downMLs with
computation driven by the base language. Note that HGMP(λ)
does not change the reduction rules of λ-calculus itself. Note:
only adds rules.

HGMP(·)

We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.
I Add eval and tags eval and promote.
I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add reduction rules for ASTs, QQs and downMLs with
computation driven by the base language. Note that HGMP(λ)
does not change the reduction rules of λ-calculus itself. Note:
only adds rules.

HGMP(·)

We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.
I Add eval and tags eval and promote.
I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add reduction rules for ASTs, QQs and downMLs with
computation driven by the base language. Note that HGMP(λ)
does not change the reduction rules of λ-calculus itself. Note:
only adds rules.

HGMP(·)

We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.
I Add eval and tags eval and promote.
I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add reduction rules for ASTs, QQs and downMLs with
computation driven by the base language. Note that HGMP(λ)
does not change the reduction rules of λ-calculus itself. Note:
only adds rules.

Thank you.

