Modelling homogeneous generative
meta-programming

Martin Berger Laurence Tratt Christian Urban

"The formal model is quite similar to the interpreter proposed in
McCarthy’s 1955 paper on LISP. | also didn’t find it particularly
insightful" ECOOP’17 review of this paper.

"The formal model is quite similar to the interpreter proposed in
McCarthy’s 1955 paper on LISP. | also didn’t find it particularly
insightful" ECOOP’17 review of this paper.

The reviewer is 95% right, but ...

Problem is a nutshell

List of industrial verification tools with first-class support for MP:

Problem is a nutshell

List of industrial verification tools with first-class support for MP:

What is MP?

Meta-programming = code as data.

What is MP?

Meta-programming = code as data.

Meta-programming: L-programs as data in L'.

What is MP?

Meta-programming = code as data.
Meta-programming: L-programs as data in L'.

Homogeneous meta-programming: MP where L = L.

Why MP?

Lowering the “price of abstraction”, the hard trade-off between
abstraction and performance, at the price of higher language
complexity.

What is MP: example

printf("System.out.println(\"Hello World!\");")

What is MP: example

printf("System.out.println(\"Hello World!\");")

Meta-programming is simple if you don’t care about convenient,
principled and safe handling of programs as data. Just use
strings.

What is MP: example

printf("System.out.println(\"Hello World!\");"

Meta-programming is simple if you don’t care about convenient,
principled and safe handling of programs as data. Just use
strings.

Problem: strings contain ’junk’

MP is ubiquitous: example

Serverside

Web Template processor
e.g. Jinja >

h

generates

framework
e.g Flask

Clientside ‘

HTML
CSs
Javascript

generates

= m

Research hypothesis

What has been missing is a simple and language
independent foundational approach towards MP that
expresses the main dimensions of MP as first-class citizens on
an equal basis, and shows how they interrelate.

Research hypothesis

A-calculus 77

Functional programming ~ Meta-programming

Let’s simplify

We ignore:

v

Non-homogeneous meta-programming
Hygiene

Types

Notions of equality

Beauty of syntax

Efficiency, performance

Lexical rewriting (e.g. C preprocessor)

v

v

v

v

v

v

> ...

What we are looking for is a foundation that we use to study
those later.

Research hypothesis

Essential features of MP:

» Language representation (code as data)
» Homogeneous meta-programming

Meta-meta
» Language levels (base, meta, meta-meta ...) r y
. . up own
» Navigation between language levels v
o6 e ™
» Computation is driven by the base-language (: e
up‘ down
\4

Base language

PL empiricism: the HGMP design space

PL empiricism: the HGMP design space

» What kind of MP?
» When is MP executed?
» How are programs represented as data?

HGMP design space: What kind of MP?

» Homogeneous MP: the object- and the meta-language
are identical (examples: Racket, Template Haskell,
MetaOcaml, Scala).

» In heterogeneous MP object- and the meta-language are
different (example: C++ templates)

HGMP design space: What kind of MP?

» Homogeneous MP: the object- and the meta-language
are identical (examples: Racket, Template Haskell,
MetaOcaml, Scala).

» In heterogeneous MP object- and the meta-language are
different (example: C++ templates)

We restrict our attention to homogeneous meta-programming.

HGMP design space: What kind of MP?

» Generative MP: where an program is generated (put
together) by another program.

» Intensional MP: where an program is analysed (taken
apart) by another program, e.g. reflection.

HGMP design space: What kind of MP?

» Generative MP: where an program is generated (put
together) by another program.

» Intensional MP: where an program is analysed (taken
apart) by another program, e.g. reflection.

Duality?

HGMP design space: What kind of MP?

» Generative MP: where an program is generated (put
together) by another program.

» Intensional MP: where an program is analysed (taken
apart) by another program, e.g. reflection.

Duality?

We restrict our attention to homogeneous generative
meta-programming (HGMP).

HGMP design space: How are programs
represented as data?

» Using strings.
» Abstract syntax trees (ASTs) typically using ADTs
(algebraic data types).

» Quasi-quotes, where programs are represented by
‘themselves’ (plus marker to distinguish code/data).

Reminder: quasi-quote

"I'm a quote"

Reminder: quasi-quote

"I'm a quote"

"I'm a [|(Ax.X) "quasi"|] quote"

HGMP design space: How are programs
represented as data?

Evaluation criteria:

» Syntactic overhead
» Support for generating only 'valid’ programs
» Expressivity

Taxonomy

Construct Terse only valid programs expressive

Strings . o
ASTs o °
QQs [°

HGMP design space: How are programs
represented as data?

Important goal: give both QQs and ASTs first class status, and
show how they relate.

HGMP design space: When is MP executed?

» At compile-time: e.g. the Lisp family, Template Haskell,
C++. We call this CTMP.

» At run-time: e.g. the MetaML family, JavaScript,
printf-based MP. We call this RTMP.

HGMP design space: When is MP executed?

» At compile-time: e.g. the Lisp family, Template Haskell,
C++. We call this CTMP.

» At run-time: e.g. the MetaML family, JavaScript,
printf-based MP. We call this RTMP.

The difference is subtle. The result of CTMP is 'frozen’ (e.g. by
saving the produced executable), multiple evaluations of a
CTMP’ed program can be done with one compilation. RTMP’ed
programs are regenerated on every run. Whether that leads
to observable differences depends on the available language
features.

HGMP design space: When is MP executed?

Important goal: give both CTMP and RTMP first class status,
and show how they relate.

HGMP()\) = A-calculus with CTMP and RTMP

HGMP()\) = A-calculus with CTMP and RTMP

We start with the untyped \-calculus, and CBV.

HGMP()\) = A-calculus with CTMP and RTMP

We start with the untyped \-calculus, and CBV.

M o= x| MN | \>xM | c| M+N | ..

HGMP()\) = A-calculus with CTMP and RTMP

We start with the untyped \-calculus, and CBV.

M o= x| MN | \>xM | c| M+N | ..

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

HGMP()\) = A-calculus with CTMP and RTMP

We start with the untyped \-calculus, and CBV.

M o= x| MN | \>xM | c| M+N | ..

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M == .. | ast(M)
t == var | app | lam | int | string | add | ...

Notice something?

Adding ASTs mirrors the syntax of the language. We make a
‘copy’ of the base language.

This is not A-specific, we'd do the same for any other base.

HGMP()\): adding CTMP

HGMP()\): adding CTMP

We add marker to indicate compile-time HGMP should occur.

HGMP()\): adding CTMP
We add marker to indicate compile-time HGMP should occur.

M = .| {M}

Meaning of [{M} is
» M must be evaluated (= run) at compile-time
CT-evaluation of M yields an AST

AST gets ’'spliced into’ the rest of the AST the compiler is
constructing

Compilation proceeds

v

v

v

Operational semantics of the foundational
calculus

We keep the usual |, from A-calculus, but now add a second
phase:

M ilct A U/\ v
~—~— S~~~
compile-time run-time

Yot

Idea: |}¢ scans for [{-} and eliminates them by evaluation and
splicing.

<~ 1T < VARCT M \UCt A N Uct B APP CT —M UCT N Lam cT

T A CONSTCT M Uct A N Uct B ADD CT
CclctC M+Nlg¢A+B

Mi llCt Ni ~— AST¢ CT M Uct A A U)\ B B Ud/ C DowNML cT
ast,(M) o ast(N) WM} det ©

Var

Idea: |4 removes one layer of ASTs, i.e. goes down a
meta-level.

MigM NUygN
astapp(M, N) »Ud/ M/N/

VAR DL

astyar("x") Yo x

Mig"x" NigN
astiam(M, N) Ug Ax.N' astini(n) Yar n

INT DL

MigM NUygN
astaga(M, N) g M' + N’

STRING DL

aststring ("x") bar " x"

Note that non-ASTs have no |}y rules, they are stuck.

Scoping

Our simple calculus intentionally allows variables to be
captured dynamically, because strings are not a-converted.

Run-time HGMP

Run-time HGMP

It is now easy to add run-time HGMP:

Run-time HGMP

It is now easy to add run-time HGMP:

M= .. | eval(M) t:=.. | eval

Run-time HGMP

It is now easy to add run-time HGMP:

M= .. | eval(M) t:=.. | eval

We add the following rules to ¢,) and | 4.

Run-time HGMP

It is now easy to add run-time HGMP:

M:= .. | eval(M) t:=.. | eval

We add the following rules to ¢,) and | 4.

LhyM MygN NN
eval(L) |, N'

EVAL RT

Enriching the calculus: higher-order ASTs

Enriching the calculus: higher-order ASTs

What about e.g. [{|{M}}, i.e. meta-meta-programming?

Calculus is extended with AST for ASTs, see paper for details.

Quasi-quotes

We have now finished, and obtained a A-calculus with CTMP
and RTMP.

But that calculus is lacks the convenience of quasi-quotes.
Let’s add them.

Quasi-quotes

ASTs are the cornerstone of our calculus.
For quasi-quotes, we extend the language:

M = .. | M}

Quasi-quotes

ASTs are the cornerstone of our calculus.
For quasi-quotes, we extend the language:

M = .. | M}

We model QQs as “syntactic-sugar” to be removed at
compile-time by conversion to ASTs, e.g.

N2} e astin(2)

Modelling the holes in QQs

Modelling the holes in QQs

Holes in quasi-quotes can run arbitrary computation. How to
model that?

Modelling the holes in QQs

Holes in quasi-quotes can run arbitrary computation. How to
model that?
N

Modelling the holes in QQs

Holes in quasi-quotes can run arbitrary computation. How to
model that?
N

Let’s reuse |{-}!

Modelling the holes in QQs

Holes in quasi-quotes can run arbitrary computation. How to

model that?
N

Let’s reuse |{-}!
A downML [{-} inside 1Y{... [{M}...} is a 'hole’ where arbitrary

computation can be executed to produce an AST. This AST is
then used as is. For example:

H2+7} o astagd(asting(2), astin(7))

T{2+ i{()‘x‘x)aStint(7)}} Vet aStadd(aStint(z)v aStint(7))

Operational semantics for t{ M}

We introduce a new reduction relation | :

M%U(UI A P CT 7"4 \U(Ct A OWN UL
MY Yot AP UMYy AP

o oy STRING UL MuUIA N@UIB APP UL
X" Ju aststring(x") MN | astapp(A, B)

1% Uul A —
AX.M |y aS’[Iam(aSJ[string(x"),A)

LAM UL TAG UL

tag; U tag;

My A EVAL UL MiyA AlyB UPML UL

Mi Ju A;

VAR UL ~ ~— AST UL

X ‘U’U/ aStvar(” X”) aStt(M) »U«u/ astpromote(tagt, A)

The rules capture our intuitions

The rules capture our intuitions

» 1{-} goes up one meta-level (= adds a layer of ASTs).

» |{-} goes down one meta-level (= removes a layer of
ASTs).

n
Base language

Thus RT-HGMP and CT-HGMP are connected as two facets of
the same AST-coin.

HGMP(.)

HGMP(-)

Nothing in the HGMPification of A-calculus depended on
A-calculus being the source language. The process was
completely generic.

HGMP(.)

HGMP(-)

We seek to extend L with HGMP features to create Ly, . We
can then create Lmp as follows:

HGMP(-)

We seek to extend L with HGMP features to create Ly, . We
can then create Lmp as follows:

» Mirror every syntactic element of L with an AST and a tag.

HGMP(-)

We seek to extend L with HGMP features to create Ly, . We
can then create Lmp as follows:

» Mirror every syntactic element of L with an AST and a tag.
» Add eval and tags eval and promote.

HGMP(-)

We seek to extend L with HGMP features to create Ly, . We
can then create Lmp as follows:
» Mirror every syntactic element of L with an AST and a tag.
» Add eval and tags eval and promote.
» Add 1{-} and [{-}.

HGMP(-)

We seek to extend L with HGMP features to create Ly, . We
can then create Lmp as follows:

» Mirror every syntactic element of L with an AST and a tag.
» Add eval and tags eval and promote.
» Add 1{-} and [{-}.

That gives us the syntax of L, . Operational semantics:

HGMP(-)

We seek to extend L with HGMP features to create Ly, . We
can then create Lmp as follows:
» Mirror every syntactic element of L with an AST and a tag.
» Add eval and tags eval and promote.
» Add 1{-} and [{-}.

That gives us the syntax of L, . Operational semantics:

Add reduction rules for ASTs, QQs and downMLs with
computation driven by the base language. Note that HGMP()\)
does not change the reduction rules of A-calculus itself. Note:
only adds rules.

Thank you.

