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Why MP?

Lowering the “price of abstraction”, the hard trade-off between
abstraction and performance, at the price of higher language
complexity.



What is MP: example

printf( "System.out.println( \"Hello World!\" );" );

Meta-programming is simple if you don’t care about convenient,
principled and safe handling of programs as data. Just use
strings.

Problem: strings contain ’junk’
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MP is ubiquitous: example

Web 
framework
e.g Flask

PL
e.g Python

HTML 
CSS 

Javascript

Template processor
e.g. Jinja generates

Serverside

HTML
CSS

Javascript
DOM

generates renders

Clientside

Network

HTML 
CSS 

Javascript



Research hypothesis

What has been missing is a simple and language
independent foundational approach towards MP that
expresses the main dimensions of MP as first-class citizens on
an equal basis, and shows how they interrelate.



Research hypothesis

λ-calculus
Functional programming

=
???

Meta-programming



Let’s simplify

We ignore:

I Non-homogeneous meta-programming
I Hygiene
I Types
I Notions of equality
I Beauty of syntax
I Efficiency, performance
I Lexical rewriting (e.g. C preprocessor)
I ...

What we are looking for is a foundation that we use to study
those later.



Research hypothesis

Essential features of MP:

I Language representation (code as data)
I Homogeneous meta-programming
I Language levels (base, meta, meta-meta ...)
I Navigation between language levels
I Computation is driven by the base-language

Base language

Meta

up down

Meta-meta

up down

Meta-meta-meta

up down

up down
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I Homogeneous MP: the object- and the meta-language
are identical (examples: Racket, Template Haskell,
MetaOcaml, Scala).

I In heterogeneous MP object- and the meta-language are
different (example: C++ templates)

We restrict our attention to homogeneous meta-programming.
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I Intensional MP: where an program is analysed (taken
apart) by another program, e.g. reflection.

Duality?

We restrict our attention to homogeneous generative
meta-programming (HGMP).
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HGMP design space: How are programs
represented as data?

I Using strings.
I Abstract syntax trees (ASTs) typically using ADTs

(algebraic data types).
I Quasi-quotes, where programs are represented by

’themselves’ (plus marker to distinguish code/data).
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HGMP design space: How are programs
represented as data?

Evaluation criteria:

I Syntactic overhead
I Support for generating only ’valid’ programs
I Expressivity



Taxonomy

Construct Terse only valid programs expressive

Strings • ◦ •
ASTs ◦ • •
QQs • • ◦



HGMP design space: How are programs
represented as data?

Important goal: give both QQs and ASTs first class status, and
show how they relate.



HGMP design space: When is MP executed?

I At compile-time: e.g. the Lisp family, Template Haskell,
C++. We call this CTMP.

I At run-time: e.g. the MetaML family, JavaScript,
printf-based MP. We call this RTMP.

The difference is subtle. The result of CTMP is ’frozen’ (e.g. by
saving the produced executable), multiple evaluations of a
CTMP’ed program can be done with one compilation. RTMP’ed
programs are regenerated on every run. Whether that leads
to observable differences depends on the available language
features.
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HGMP design space: When is MP executed?

Important goal: give both CTMP and RTMP first class status,
and show how they relate.



HGMP(λ) = λ-calculus with CTMP and RTMP

We start with the untyped λ-calculus, and CBV.

M ::= x || MN || λx .M || c || M + N || ...

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M ::= ... || astt(M̃)

t ::= var || app || lam || int || string || add || ...
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Notice something?

Adding ASTs mirrors the syntax of the language. We make a
’copy’ of the base language.

This is not λ-specific, we’d do the same for any other base.



HGMP(λ): adding CTMP

We add marker to indicate compile-time HGMP should occur.

M ::= ... || ↓{M}

Meaning of ↓{M} is
I M must be evaluated (= run) at compile-time
I CT-evaluation of M yields an AST
I AST gets ’spliced into’ the rest of the AST the compiler is

constructing
I Compilation proceeds
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Operational semantics of the foundational
calculus

We keep the usual ⇓λ from λ-calculus, but now add a second
phase:

M ⇓ct︸ ︷︷ ︸
compile-time

A ⇓λ V︸ ︷︷ ︸
run-time



⇓ct

Idea: ⇓ct scans for ↓{·} and eliminates them by evaluation and
splicing.

x ⇓ct x VAR CT
M ⇓ct A N ⇓ct B

MN ⇓ct AB APP CT
M ⇓ct N

λx .M ⇓ct λx .N LAM CT

c ⇓ct c CONST CT
M ⇓ct A N ⇓ct B
M + N ⇓ct A + B ADD CT

Mi ⇓ct Ni
astt(M̃) ⇓ct astt(Ñ)

ASTc CT
M ⇓ct A A ⇓λ B B ⇓dl C

↓{M} ⇓ct C DOWNML CT



⇓dl

Idea: ⇓dl removes one layer of ASTs, i.e. goes down a
meta-level.

astvar(”x”) ⇓dl x VAR DL
M ⇓dl M ′ N ⇓dl N ′

astapp(M,N) ⇓dl M ′N ′ APP DL

M ⇓dl ”x” N ⇓dl N ′

astlam(M,N) ⇓dl λx .N ′ LAM DL astint(n) ⇓dl n INT DL

aststring(”x”) ⇓dl ”x” STRING DL
M ⇓dl M ′ N ⇓dl N ′

astadd(M,N) ⇓dl M ′ + N ′ ADD DL

Note that non-ASTs have no ⇓dl rules, they are stuck.



Scoping

Our simple calculus intentionally allows variables to be
captured dynamically, because strings are not α-converted.



Run-time HGMP

It is now easy to add run-time HGMP:

M ::= ... || eval(M) t ::= ... || eval

We add the following rules to ⇓ct ,⇓λ and ⇓dl .

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′ EVAL RT
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Calculus is extended with AST for ASTs, see paper for details.
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Quasi-quotes

We have now finished, and obtained a λ-calculus with CTMP
and RTMP.

But that calculus is lacks the convenience of quasi-quotes.
Let’s add them.
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ASTs are the cornerstone of our calculus.

For quasi-quotes, we extend the language:

M ::= ... || ↑{M}

We model QQs as “syntactic-sugar” to be removed at
compile-time by conversion to ASTs, e.g.

↑{2} ⇓ct astint(2)
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Modelling the holes in QQs

Holes in quasi-quotes can run arbitrary computation. How to
model that?

Let’s reuse ↓{·}!

A downML ↓{·} inside ↑{... ↓{M}...} is a ’hole’ where arbitrary
computation can be executed to produce an AST. This AST is
then used as is. For example:

↑{2 + 7} ⇓ct astadd(astint(2),astint(7))

↑{2+ ↓{(λx .x)astint(7)}} ⇓ct astadd(astint(2),astint(7))
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Operational semantics for ↑{M}

We introduce a new reduction relation ⇓ul :

M ⇓ul A
↑{M} ⇓ct A UPML CT

M ⇓ct A
↓{M} ⇓ul A DOWNML UL

”x” ⇓ul aststring(”x”) STRING UL
M ⇓ul A N ⇓ul B

MN ⇓ul astapp(A,B)
APP UL

M ⇓ul A
λx .M ⇓ul astlam(aststring(”x”),A) LAM UL tagt ⇓ul tagt

TAG UL

M ⇓ul A
eval(M) ⇓ul asteval(A)

EVAL UL
M ⇓ul A A ⇓ul B
↑{M} ⇓ul B UPML UL

x ⇓ul astvar(”x”) VAR UL
... Mi ⇓ul Ai ...

astt(M̃) ⇓ul astpromote(tagt, Ã)
AST UL



The rules capture our intuitions

I ↑{·} goes up one meta-level (= adds a layer of ASTs).
I ↓{·} goes down one meta-level (= removes a layer of

ASTs).

Base language

Meta

up down

Meta-meta

up down

Meta-meta-meta

up down

up down

Thus RT-HGMP and CT-HGMP are connected as two facets of
the same AST-coin.
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We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.
I Add eval and tags eval and promote.
I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add reduction rules for ASTs, QQs and downMLs with
computation driven by the base language. Note that HGMP(λ)
does not change the reduction rules of λ-calculus itself. Note:
only adds rules.
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Thank you.


