
Basic Theory of Reduction Congruence for
Two Timed Asynchronous π-Calculi

Martin Berger

Dept. of Computer Science, Queen Mary, Univ. of London

Abstract. We study reduction congruence, a popular notion of process
equality, for the asynchronous π-calculus with timers, and derive several
alternative characterisations, one of them being a labelled asynchronous
bisimilarity. These results are adapted to an asynchronous π-calculus
with timers, locations and message failure. In addition we investigate
the problem of how to distribute value-passing processes in a semantics-
preserving way.

The π-calculus has been used to good effect as a tool for modelling and reason-
ing about computation [6, 7, 18, 23, 26]. Unfortunately, it appears incomplete for
compositional representation and verification of distributed systems. An impor-
tant instance of what cannot be covered convincingly are network protocols, for
example TCP, that implement reliable (under some mild constraints about the
probability of message failures) FIFO channels on top of an unreliable message
passing fabric. Typically, such protocols start a timer when sending a message
and, if the corresponding acknowledgement doesn’t arrive early enough or not at
all, a time-out initiates a retransmission. Timed Automata, Time(d) Petri Nets,
Timed CCS and many other formalisms have been proposed to help express
this or similar phenomena. Unfortunately, they all seem insufficient to give con-
vincing accounts of advanced programming languages containing primitives for
distribution, such as Java or the POSIX libraries. The two key shortcomings are
the lack in expressivity of the underlying non-distributed formalism (e.g. finite
automata or CCS do not allow precise and compositional modelling of Java’s
non-distributed core) and incomplete integration of the different features that
are believed to be necessary for modelling distributed systems (e.g. [1] lacks tim-
ing and many timed process algebras do not feature message failures among their
primitive operations). As an initial move towards overcoming this expressivity
gap, [5] augmented the asynchronous π-calculus with a timer, with locations,
message-loss, location failure and the ability to save process state. The present
text, a partial summary of [4], takes the next step and starts the study of two ex-
tensions in earnest by investigating the natural equality for πt, the asynchronous
π-calculus with timers and πmlt , the asynchronous π-calculus with timers and
message failure.

The remainder has two main parts. First, several characterisations of πt’s
reduction congruence, the canonical equivalence for asynchronous π-calculi [12,
17], are obtained. The most useful of those is as a labelled bisimilarity. For

other untyped π-calculi, weak labelled characterisations of reduction congruence
have not been forthcoming, only sound approximations. πt is interesting because
it allows to study the effect of combining discrete timing and name passing
interaction, a line of inquiry long overdue. It also paves the way for the second
part which studies πmlt , a minimal extension of πt allowing convenient expression
of basic distributed algorithms such as the aforementioned network protocol. We
show that reasoning about πmlt can be broken down into two parts: reasoning
about processes, i.e. reasoing in πt, and reasoning about distributed interaction.
A related aim is to devise a translation (·)• that allows to take a non-distributed
process P |Q and locate it as [P•] | [Q•] in a semantics preserving way (here [·]
denotes location). This may help to reason about some properties of distributed
processes using tools from centralised computing. That may not be possible
for arbitrary P and Q but we identify a translation that works for a restricted
class of processes and may be a good starting point for further investigations.
The other main contribution of this second part is a characterisation of πmlt ’s
reduction congruence by a barbed congruence [21], and a sound approximation
by a labelled bisimilarity.

1 Adding Discrete Timing to π

1.1 Syntax and Semantics of πt

The π-calculus [16, 20] is a simple syntax for modelling computation as name-
passing interaction. The key operational rule is

(Com) x〈ỹ〉 |x(ṽ).P → P{ỹ/ṽ}

where the process x〈ỹ〉 sends the data ỹ along a channel x (drawn from a count-
ably infinite set N of names) and another process x(ṽ).P waits to receive data on
the same channel x, called input subject. When the interaction happens, x(ṽ).P
evolves into P{ỹ/ṽ}. The operator | is parallel composition. Finitely describable
infinitary behaviour is achieved by way of a replication operation ! and interac-
tion of P at x with the environment can be prevented by the restriction (νx)P.

Our new syntax timert(x(ṽ).P,Q), with t > 0 being an integer, is straight-
forward and completely standard. It supports two operations: (1) the time-out
which means that after t steps it turns into Q, unless (2) it has been stopped,
i.e. that a message has been received by the timer at x.

(Stop) timert+1(x(ṽ).P,Q) | x〈ỹ〉 → P{ỹ/ṽ}

The resulting calculus is given by the following grammar.

P ::= x(ỹ).P || x〈ỹ〉 || P|Q || (νx)P || timert(x(ṽ).P,Q) || !x(ṽ).P || 0

We often abbreviate x〈〉 to x and write x.P in x().P’s stead. The asynchronous
π-calculus is a sub-calculus of πt. The free and bound names of timers are:
fn(timert(x(ṽ).P,Q)) = fn(x(ṽ).P) ∪ fn(Q), bn(timert(x(ṽ).P,Q)) = bn(x(ṽ).P) ∪

bn(Q). Structural congruence ≡ is defined by the same axioms as in the asyn-
chronous π-calculus, but over our extended syntax.

The flow of time is communicated at each step in the computation by a time
stepper function φ, which acts on processes. It models the implicit broadcast of
time passing and works equally well for labelled transitions and reductions.

φ(P) =

timert−1(x(ṽ).Q,R) P = timert(x(ṽ).Q,R), t > 1
R P = timert(x(ṽ).Q,R), t ≤ 1
φ(Q)|φ(R) P = Q|R
(νx)φ(Q) P = (νx)Q
P otherwise.

Here is how time stepping is used.

(Par) P → P′ ⇒ P|Q → P′|φ(Q)

The only difference with the corresponding rule of untimed calculi is that we
have φ(Q) rather than Q in the resulting process of the conclusion. It ensures
that each active timer, that is any timer not under a prefix, is ticked one unit
at each interaction. The additional rule

(Idle) P → φ(P)

prevents the flow of time from ever being halted by deadlocked processes. This
means, πt does not enforce progress assumptions that can be found in many
models of timed computations. It is possible to add progress requirements later
on top of πt. Here are the remaining reduction rules.

(Rep) !x(ṽ).P | x〈ỹ〉 → !x(ṽ).P | P{ỹ/ṽ}
(Res) P → Q ⇒ (νx)P → (νx)Q (Cong) P ≡ P′ → Q′ ≡ Q ⇒ P → Q

The corresponding labelled synchronous semantics is obtained from the con-
ventional synchronous semantics [15] of the asynchronous π-calculus with the
following new rules, the first of which replacing that for parallel composition.

P
l−→ P′, bn(l) ∩ fn(Q) = ∅ ⇒ P |Q l−→ P′ |φ(Q)

timert+1(x(ṽ).P,Q)
x(z̃)−→ P{z̃/ṽ} P

τ−→ φ(P)

Labels are given as l ::= τ | x(ỹ) | x〈(νỹ)z̃〉. Contexts are standard except for
two new rules: C[·] ::= ... | timert(x(ṽ).P, C ′[·]) | timert(x(ṽ).C ′[·],P). A binary
relation R on processes is a πt-congruence if it is an equivalence, if ≡ ⊆ R
and if P R Q implies C[P] R C[Q] for all contexts C[·]. The strong barb ↓x

for πt is defined (up to ≡) by (1) x〈ỹ〉 ↓x; (2) P ↓x ⇒ P|Q ↓x; and (3) P ↓x,
x 6= y ⇒ (νy)P↓x. A symmetric binary relation R on processes is a strong barbed
bisimulation if it is a πt-congruence and if P R Q implies the following: (1) for
all names x: P↓x implies Q↓x; and (2) whenever P → P′ then there is a process

Q′ such that Q → Q′ and P′ R Q′. The largest strong barbed bisimulation rc∼ is
strong reduction congruence. The corresponding notions of barbed bisimulation
and reduction congruence

rc
≈ are derived by replacing↓x with⇓x and → with →�.

Here →� is the transitive and reflexive closure of → and P ⇓x means P →� Q↓x

for some Q. A binary relation R on processes is time-closed if P R Q implies
φ(P)R φ(Q). It will later emerge that

rc
≈ and rc∼ are time-closed.

Examples (1).

1. The process delayt(P) = (νx)timert(x.0,P) implements a delay operator, as-
suming x /∈ fn(P). For t units of time, it cannot interact at all, it behaves
like 0, but then it evolves into P. It is comparable to the sleep operator in
Java and can be used to implement cyclic behaviour: (νx)(x | !x.delayt(P |x))
(x /∈ fn(P)) which can spawn P every t+1 units of time. The delay operator
is crucial in the proof of Theorem 2.

2. The next example shows that we only need timer1(x(ṽ).P,Q) as timing con-
struct. As all others can be built up by iteration of this basic form. De-
fine T1 = timer1(x(ṽ).P,Q) and Tt+1 = timer1(x(ṽ).P,Tt). Then Tt

rc∼
timert(x(ṽ).P,Q) for all t > 0.

3. Assume that P is a process of the form x(ṽ).Q. Define P0 to be 0 and let
Pn+1 = timer1(P,Pn). Then Pn is a process that offers the service P for n
time units when it becomes unguarded. Note that P is offered only once.
delayn(Pm) also offers P for n units of time, but not straight away. Instead
the service is available only after m units of time.

4. A variant of the previous example. Assume P = x(ṽ).Q with fn(P) = {x}, x /∈
{ṽ}. Let P0 = 0 and set Pn+1 = timer1(x(ṽ).(Q | Pn),Pn). Now P is offered
for repeated use in Pn, for n units of time, so we may invoke P up to n times.

1.2 Why a Novel Kind of Timer?

Before getting on with the technical development, we’d like to summarise the key
reasons for devising our own reduction-based account of discrete timing rather
than adapting one of the existing constructs.

– A key design objective was simplicity and preservation of as much estab-
lished π-calculus technology as possible. That ruled out labelled transitions
with dedicated time passing actions to communicate the flow of time. The
ability to use the simpler reduction semantics is advantageous because it is
sometimes difficult to find suitable labelled semantics. It is trivial to adapt
the timer proposed here to other models of computing, from Ambient Cal-
culi [11], to λ-calculi and Abstract State Machines [9]. This is currently not
possible for labelled-transition based approaches to timing.

– Some previous proposals exhibit behavioural anomalies, such as timers being
able to stop themselves. This is caused, to put it simplistically, by less than
ideal combinations of progress assumptions, the ability for time to pass under
unrestricted sums and computational steps having zero duration. The calculi
proposed here do not suffer from these shortcomings.

– Finally, we must emphasise that our timer is different from those where time-
flow is communicated by labelled transitions only in its syntactic presenta-
tion. Its behaviour is essentially identical. Semantically relevant differences
between our calculus and its alternatives are a consequence of other design
choices, for example progress assumptions or the presence of mixed choice,
not of the presentation of timers by way of time-steppers.

Our design of πt and πmlt is discussed in great detail in [4], which also contains
comparisons with the alternative approaches.

1.3 The Maximal Sound Theory

Reduction congruence is often seen to be the most canonical equivalence for
asynchronous π-calculi. This section looks at its incarnation for πt. The presen-
tation is close to [17] to facilitate comparison, but due to timers, proofs are quite
different.

A logic is a pair L = (F,`) comprising a set F of formulae and an entailment
relation ` ⊆ P(F) × F . In this section, F will always be pairs of πt-processes.
References to the underlying logic L will often be omitted. A set T of formulae is
a πt-theory, or simply a theory, and its members are axioms. We write T ` P = Q
whenever (T , (P,Q)) ∈ ` and call (P,Q) a theorem or consequence of T in L. If
T ` P = Q is not derivable, we write T 6` P = Q. The set of all consequences of
T in L is denoted | T |L (with the subscript L often omitted). T is consistent if
| T | does not equate all processes, otherwise it is inconsistent. T is reduction-
closed if T ` P = Q and P →� P′ implies the existence of a reduction sequence
Q →� Q′ such that T ` P′ = Q′. T is strongly reduction-closed if T ` P = Q and
P → P′ implies the existence of a reduction Q → Q′ such that T ` P′ = Q′. In
this section we only use πt-logics (T ,`) whose entailment is inductively defined
such that | T | is a πt-congruence containing T . T is time-closed if T ` P = Q
implies T ` φ(P) = φ(Q).

As is well-known, there is no unique largest consistent and reduction-closed
theory (Theorem 1.2 below), so we have to impose a mild additional constraint.
Preservation of weak barbs is a popular choice, but requires a notion of observa-
tion. Alas, it is not apriori clear what observing timed computations may entail.
Fortunately, we can do without a notion of observation and will prove in The-
orem 1 that ↓x defined above is in fact a correct notion of barb. A process P is
insensitive if it can never interact with any other process, i.e. P →� Q implies
an(Q) = ∅. Here an(P), the active names of P, is given by induction on the
syntax of P: an((νx)P) = an(P) \ {x}, an(P|Q) = an(P) ∪ an(Q), an(0) = ∅ and
an(x(ṽ).P) = an(!x(ṽ).P) = an(timert(x(ṽ).P, Q)) = an(x〈ỹ〉) = {x}. A πt the-
ory is sound if it is consistent, reduction-closed and equates any two insensitive
terms.

The dramatic semantic effect of timers becomes apparent in the next propo-
sition: we are guaranteed strong reduction-closure despite having stipulated only
reduction-closure.

Proposition 1. Let T be sound. (1) If T ` P = Q, then: P ↓x if and only if
Q ↓x. (2) If T ` P = Q then for all appropriate x̃, ṽ: T ` P{x̃/ṽ} = Q{x̃/ṽ}.
(3) If T is a sound theory, then T is time-closed. (4) T is reduction-closed if
and only if, whenever T ` P = Q, then, for all contexts C[·], C[P] → P′ implies
C[Q] → Q′, for some Q′ with T ` P′ = Q′.

The key reason why requiring reduction-closure and congruency gives strong
reduction-closure is (roughly) that we can use a process like timer1(x(ṽ).a, 0) to
detect and signal the fact that P ↓x by running both in parallel. After the first
step of the clock, that ability disappears forever. Hence any process that wishes
to be equated to P by a sound theory better be able to match any of P’s strong
barbs immediately and not only after some reduction steps.

With Tmax =
⋃
{T | T is a sound theory} we can now state the existence

and various alternative presentations of the maximal sound theory.

Theorem 1. (1) Tmax is the unique sound theory such that | T | ⊆ | Tmax | for
all sound theories T . Tmax is called the maximum sound theory. (2) There is no
largest consistent, reduction-closed theory. (3) | Tmax | = Tmax = rc∼ =

rc
≈.

1.4 Labelled Semantics

Reduction based equivalences are sometimes hard to use. To make reasoning
easier, labelled semantics and associated notions of bisimilarities have been de-
veloped for many untimed calculi. We shall now do the same for πt. A symmetric
binary relation R is a strong synchronous bisimulation if P R Q and P

l−→ P′

means that there is a synchronous transition Q
l−→ Q′ with P′ R Q′. The

largest strong synchronous bisimulation ∼ is strong synchronous bisimilarity.

Weak bisimilarity ≈ is defined by replacing Q
l−→ Q′ with Q

l̂−→� Q′ (̂. is the
usual τ -erasing operation).

The failure of the various synchronous bisimilarities to equate fwxx with 0
has lead to asynchronous transitions [15] which model asynchronous observers.
Since Tmax , unlike ≈ and ∼, equates fwxx and 0, asynchronous bisimilarity might
also be interesting in πt (here fwxy = !x(ṽ).y〈ṽ〉). But what are asynchronous

transitions l−→a? Unfortunately, the straightforward adaptation to πt of the
transitions introduced in [15] does not work, because the obvious rule for parallel
composition

P
l−→a P′, bn(l) ∩ fn(Q) = ∅ ⇒ P |Q l−→a P′ |φ(Q) (1)

does not connect asynchrony well with time passing. To see what goes wrong
consider what it means to be an asynchronous observer. Interacting with a pro-
cess to detect that it sends a message consumes one unit of time. The (Par)
rule and its labelled counterpart (1) ensure that this time-step permeates all pro-
cesses. Dually, testing that a process is inputting involves sending a message. But
asynchronously entails that the observer cannot know exactly when the message

has been consumed. Hence the observation
x(ṽ)−→a should not be associated with

a time step, for otherwise a judiciously set timer could detect that interaction
by the time it takes. So the rule (1) for parallel composition above may work
incorrectly. We propose to split it in two:

– P
l−→a P′, l 6= x(ṽ), bn(l) ∩ fn(Q) = ∅ ⇒ P | Q

l−→a P′ |φ(Q)

– P
x(ỹ)−→a P′, bn(l) ∩ fn(Q) = ∅ ⇒ P |Q x(ỹ)−→a P′ |Q

The remaining rules for the inductive definition of l−→a are here:

x〈ỹ〉 x〈ỹ〉−→a 0 P
l−→a Q, x /∈ fn(l) ∪ bn(l) ⇒ (νx)P l−→a (νx)Q

x〈ỹ〉 | x(ṽ).Q τ−→a Q{ỹ/ṽ} x〈ỹ〉 | !x(ṽ).Q τ−→a Q{ỹ/ṽ} | !x(ṽ).Q

x〈ỹ〉 | timert(x(ṽ).Q,R) τ−→a Q{ỹ/ṽ} P
τ−→a φ(P)

P ≡ P′,P′ l−→a Q′,Q′ ≡ Q ⇒ P
l−→a Q 0

x(z̃)−→a x〈z̃〉

P
x〈(νỹ)z̃〉−→ a Q, a 6= x, a ∈ {z̃} \ {ỹ} ⇒ (νa)P

x〈(νỹ,a)z̃〉−→ a Q

The set of labels is the same as for synchronous transitions. Strong asynchronous
bisimilarity ∼a and its weak counterpart ≈a are defined just as (strong) syn-
chronous bisimilarity except that l−→ is replaced with l−→a. The next lemma
shows that timers also wreak havoc with labelled equivalences.

Lemma 1. Neither ≈ nor ∼, ≈a and ∼a are closed under parallel composition.

As an example of what may go wrong, note that P
def= (νx)(x | timer1(x.y, 0)) ∼

(νx)(x | timer1(x.0, y)) def= Q means P R Q (R is any of the four equivalences in

Lemma 1) but Q | a a−→ y−→ (νx)x cannot be matched by P | a.
This failure of closure under parallel composition is caused by lacking time-

closure. Let ∼′
a be the largest strong, asynchronous bisimulation that is also

time-closed, with ≈′, ∼′ and ≈′
a being defined similarly. Its easy to show that

these four new equivalences are closed under parallel composition. Still, this does
not guarantee congruency.

Proposition 2. Assume x, y, a, b are fresh and distinct names. Define

P = (νa)(x〈a〉 | !y(v).v)
Q = (νa)(x〈a〉 | !y(v).v | timer1(y(v).(v | timer1(a.b, 0)), 0)).

If R is one of ≈, ∼, ≈a, ∼a, ≈′, ∼′, ≈′
a or ∼′

a, then PR Q but not P{x/y} R
Q{x/y}. Consequently, R cannot be closed under any of the three available forms
of input prefixing.

In the asynchronous π-calculus, various reasonable equivalences are congruences.
That this fails for πt hints at renaming carrying non-trivial computational con-
tent. Interestingly, our example uses nested timers. It is conceivable that pro-
hibiting nesting of timers results in a subcalculus where the relevant equivalences

are renaming-closed. The next result shows that failure of renaming-closure is
the only defect ∼′

a has vis-a-vis congruency. Define ∼c
a as the largest strong,

time-closed, asynchronous bisimulation that is also renaming-closed.

Proposition 3. ∼c
a is the largest strong asynchronous bisimulation contained

in ∼a that is also a congruence.

The processes P and Q, defined just after Lemma 1, also show that fully ab-
stract and compositional encodings [[·]] of πt into the asynchronous π-calculus
are impossible, when the equivalence R on the source of the encoding is one of
those mentioned in Lemma 1. Otherwise we could derive P∼Q ⇒ [[P]]∼ [[Q]] ⇒
[[P]] | [[a]] 1 [[Q]] | [[a]] ⇒ [[P | a]] 1 [[Q | a]] ⇒ P | a∼Q | a (the target’s equivalence 1

is only required to be closed under parallel composition for the encoding to be
contradictory). The converse question is also interesting: can untimed subcal-
culi of πt, for example the asynchronous π-calculus, be embedded? Once again
the answer seems mostly negative: a translation [[·]] from πa into πt is barb-
expansive if for all P and all names x we can find an integer n > 0 such that
d([[P]], x) ≥ n · d(P, x). Here d(P, x) is the least n such that P→ · · · →︸ ︷︷ ︸

n

Q↓x and

ω if no such n exists. Then one can easily show the following. Assume the cho-
sen πa-equivalence equates x with τ.x. If [[·]] is a barb-expansive mapping from
πa into πt, then it cannot be complete with reduction congruence being πt’s
equivalence. In particular, the syntactic inclusion of πa into πt cannot be fully
abstract.

1.5 Characterising Tmax as ∼c
a.

In the asynchronous π-calculus, asynchronous bisimilarity soundly approximates
the corresponding maximal theory, but does not characterise it, a counterexam-
ple being x〈y〉 | eqyz and x〈z〉 | eqyz, where eqyz = fwyz | fwzy [17]. The reason
for their semantic equality is that eqyz turns any observation on y into a weak
observation on z and vice versa. There is no way for a process in the asyn-
chronous π-calculus to detect whether a name has come via eqyz or not. In
πt this is different because forwarding takes time. This leads to the following
labelled characterisation of reduction congruence.

Theorem 2. Tmax = ∼c
a (∼′

a (∼a (≈′
a (≈a. In addition ∼ (≈ and

≈ (≈a.

The proof is straightforward, except for showing Tmax ⊆ ∼c
a. The key difficulty

is to establish that Tmax ` P = Q and P
x〈(νỹ)z̃〉−→ P′ together imply Q

x〈(νỹ)z̃〉−→ Q′

for some Q′ with Tmax ` P′ = Q′. Simplifying greatly, the proof uses a context
like

C[·] = [·] | x(ṽ).Πzi∈z̃Π
f(i)
j=1zi〈. . .〉

which receives a tuple of names at x and encodes at what positions in the tuple
ṽ a name w was received by encoding these positions through the number of

uninterrupted (even by τ) outputs of w. Here Πi∈{1,...,n}Pi ≡ P1|...|Pn and f is
a suitable function allowing this encoding. The construction of f is delicate and
omitted for brevity, but we cannot use simple functions like the identity i 7→ i,
because C[·] must be able to distinguish, for example, x〈abaa〉 from x〈aaab〉.
Both have the same number of as and bs. This is why we must code up not
only how many times a name occurs in ỹ but also at which positions. Using
the observational capabilities of timers, we can distinguish processes that can
output a fixed name n times, but not n + 1 times in an uninterrupted row from
processes that can do more than n uninterrupted outputs of that name. Thus
the sketched construction of C[·] ensures that Tmax ` C[P] = C[Q] can only hold
if Q can do exactly the same initial outputs as P, which is what was needed to
be shown. The actual proof is more complicated and can be found in [4].

Examples (2). The next few examples show how easy it is to reason about
Tmax with ∼c

a.

1. The identity forwarder fwaa and 0 are strongly reduction congruent. To see
this, define R up to ≡ by fwxx |Πiyi〈z̃i〉 R Πiyi〈z̃i〉 whenever {yi, z̃i} ⊆ N .
Obviously R is time- and renaming closed. Since all occurring processes
are timer-free, idle transitions can trivially be matched. The only vaguely
interesting transition fwxx |x〈ã〉 |Πiyi〈z̃i〉

τ−→a fwxx |x〈ã〉 |Πiyi〈z̃i〉 is clearly
matched by the idle transition x〈ã〉 |Πiyi〈z̃i〉

τ−→a x〈ã〉 |Πiyi〈z̃i〉.
2. To see that Tmax ` Tt = timert(x(ṽ).P,Q), simply define the relation R by

Tt | Πn
i=1xi〈ỹi〉 R timert(x(ṽ).P,Q) | Πn

i=1xi〈ỹi〉. Verification that R has all
the required closure properties is easy.

3. Parallel composition and delay operators commute, i.e. Tmax ` delayt(P|Q) =
delayt(P) | delayt(Q): consider R given by delayt(P|Q) R delayt(P) | delayt(Q).
It is again straightforward to verify that R ∪ id is a renaming-closed, time-
closed, asynchronous bisimulation.

Locality. A process P is local no input is bound by another input, i.e. we do
not allow processes like x(y).y(v).P. We denote πt restricted to local processes
by πloc

t . Local processes are convenient for modelling distributed computing.

Theorem 3. All results stated so far also hold in πloc
t .

2 Adding Location and Message Failure

One of the main uses of timers is to unblock computations after they became
stuck due to some fault such as a lost message. This is inconvenient to model
in πt because it lacks message failures. To explore timers in a more realistic set-
ting, this section augments πt with locations and non-byzantine message failure,
obtaining πmlt .

2.1 Syntax and Semantics of πmlt

Processes in πmlt , called networks and closely related to, but not identical with
[5], are parallel compositions of messages in transit x〈ỹ〉 and locations or sites
[P]A which execute πt processes. Restriction of names is also possible for networks
using (νx). For simplicity P must be local and the subscript A contains the free
names that [P]A may use to receive data on. Messages in transit have left their
source location but not yet arrived at the destination. Message failure occurs
only in transit and can involve loss and duplication of messages.

In summary, our networks are generated by the grammar below.

N ::= x〈ỹ〉 || [P]A || N1|N2 || (νx)N || 0

N is well-formed, written ` N, if ` N is derivable using the following rules. (1)
` 0 is always derivable; (2) ` [P]A if P is local and each free input subject in
P is in A; (3) ` N1|N2 if ` N1 and ` N2 and, moreover, ap(N1) ∩ ap(N2) = ∅;
(4) ` (νx)N if ` N. Here the access points ap(N) of a network N are given by:
ap([P]A) = A, ap(N1|N2) = ap(N1) ∪ ap(N2) and ap((νx)N) = ap(N) \ {x}. The
free names of networks are given by fn(x〈ỹ〉) = {x, ỹ}, fn([P]A) = fn(P) ∪ A,
fn(M|N) = fn(M) ∪ fn(N), fn((νx)N) = fn(N) \ {x}, fn(0) = ∅. Bound names
are omitted. In the remainder of this text, we assume that expressions involving
networks such as [P]A are well-formed. In particular, quantifications like: “for
all P and all A, [P]A has property X” or even “for all P, [P]A has property X”
abbreviate the statement: “for all P and all A such that [P]A is well-formed, [P]A
has property X”. On networks, ≡ is generated by the axioms below.

M ≡α N ⇒ M ≡ N M |N ≡ N |M
L | (M |N) ≡ (L |M) |N M | 0 ≡ M
x /∈ fn(M) ⇒ M|(νx)N ≡ (νx)(M|N) (νx)(νy)M ≡ (νy)(νx)M
(νx)0 ≡ 0 [(νx)M]A ≡ (νx)[M]A∪{x}
[0]∅ ≡ 0 P ≡ Q ⇒ [P]A ≡ [Q]A

One of the key objectives in the design of πmlt was to retain the semantics of the
underlying πt, to allow separation of reasoning about networks from reasoning
about processes. Hence the first reduction rule.

(Intra) P → Q ⇒ [P]A → [Q]A

Inter-site communication happens by message migration.

(Out) x /∈ A, [x〈ỹ〉|P]A → [φ(P)]A|x〈ỹ〉

(In) x ∈ A, [P]A|x〈ỹ〉 → [P | x〈ỹ〉]A

Incursion of one time step in (Out) is crucial for a smooth integration of πloc
t into

πmlt . Message failures arise from the following rules (which deal with messages
in transit only).

(Loss) x〈ỹ〉 → 0 (Dupl) x〈ỹ〉 → x〈ỹ〉 |x〈ỹ〉

Many distributed systems offer only weak guarantees on the upper bound of
inter-location clock drift. (Par) reflects this by not synchronising different sites
through application of time-stepping.

(Par) M → M′ ⇒ M|N → M′|N

The remaining rules are:

(Cong) M ≡ M′ → N′ ≡ N ⇒ M → N (Res) M → N ⇒ (νx)M → (νx)N.

A binary relation R on processes is a πmlt -congruence if it is an equivalence, if
≡ ⊆ R and if PRQ implies C[P]R C[Q] for all network contexts C[·]. Network
contexts are given by the grammar C[·] ::= [·] || C[·] |N || (νx)C[·]. Barbs are
generated by the following rules. M ↓x and x /∈ ap(N) imply M|N ↓x, M ↓x and
x 6= a imply (νa)M↓x and x〈ỹ〉↓x. A symmetric binary relation R on networks is
a strong barbed bisimulation if it is a πmlt -congruence and if M R N implies: (1)
for all names x: M↓x ⇒ N↓x; and (2) whenever M → M′ then there is a network
N′ such that N → N′ and M′ R N′. The largest barbed bisimulation rc∼ is called
strong reduction congruence. Barbed bisimulation and reduction congruence

rc
≈

are derived as usual.

Examples (3).

1. Let fwxy =!x(v).y〈v〉. Then the network [x〈a〉]∅ | [fwxy]x | [fwyz]y | [z(v).Q]z
tries to relay the message x〈a〉 via two intermediate hops to [z(v).Q]z,
where it will be used by Q. It can be seen as a distributed version of
x〈a〉 | fwxy | fwyz | z(v).Q, but semantically it is rather different, due to
message loss and duplication.

2. The next example shows how to deal with message failure.

[(νab)(x〈ỹa〉 | timert(a, b) | !b.(x〈ỹa〉 | timert(a, b)))|P]A | [x(ṽa).(a | Q)]B .

The location on the left sends a message to that on right and sets a timer
to wait for an acknowledgement. If that doesn’t come in time, it resends the
original message.

3. We can also locate the time services of Example 1(3) as [delayn(Pm)]A but
because there is no synchronisation of time between sites, this is not very
effective: the location is bisimilar to [P⊕ 0]A.

The last example is indicative of πmlt ’s being too asynchronous for realistic mod-
els of distributed systems. In other aspects, too, this calculus is overly idealising,
for example in its lack of location failure. The point of πmlt is rather to facilitate
the study of message failure in isolation, as a first step towards more realistic
models.

2.2 The Maximal Sound Theory

The development in this section mirrors that for πt with proof being similar,
albeit more involved because of possible message failure. πmlt -logics (T ,`) are
like πt-logics, except that formulae are now pairs (M,N) of networks such that
ap(M) = ap(N).

As in πt, there is no maximal consistent and reduction-closed theory. A
network M is insensitive if an(N) = ∅ for all reduction sequences M →� N,
where active names for networks extend those of processes: an(x〈ỹ〉) = {x},
an([P]A) = an(P), an(M|N) = an(M)∪an(N), an((νx)N) = an(N)\{x}, an(0) = ∅.
A theory is sound if it is consistent, reduction-closed and identifies all insensitive
terms. As before, we set Tmax =

⋃
{T | T is a sound theory}. Tmax is called the

maximum sound theory.

Theorem 4. (1) Tmax is the unique sound theory such that | T | ⊆ | Tmax | for
all sound theories T . (2) There is no largest, consistent, reduction-closed theory.
(3) | Tmax | = Tmax =

rc
≈, rc∼ (

rc
≈.

2.3 Labelled Semantics.

As with πt, we present an asynchronous transition system l−→a. The induced
asynchronous bisimilarity soundly approximates Tmax , but does not characterise
it. Characterisation fails because the timers in different sites are not synchro-
nised. The most interesting rule is that for parallel composition

M
l−→a M′, bn(l) ∩ fn(N) = ∅, (l = x〈(νỹ)z̃〉 ⇒ x /∈ ap(N)) ⇒ M|N l−→a M′|N

The reason for the side condition l = x〈(νỹ)z̃〉 ⇒ x /∈ ap(N) is that well-formed
observers cannot input on channels that are in ap(N). The remaining rules follow.

M
l−→a N, x /∈ fn(l) ∪ bn(l) ⇒ (νx)M l−→a (νx)N 0

x(ỹ)−→a x〈ỹ〉

x 6∈ A ⇒ [P|x〈ỹ〉]A
τ−→a [φ(P)]A | x〈ỹ〉 x〈ỹ〉 x〈ỹ〉−→a 0

x ∈ A ⇒ [P]A | x〈ỹ〉 τ−→a [P|x〈ỹ〉]A x〈z̃〉 τ−→a 0

M ≡ M′ l−→a N′ ≡ N ⇒ M
l−→a N x〈z̃〉 τ−→a x〈z̃〉 | x〈z̃〉

P
τ−→a Q ⇒ [P]A

τ−→a [Q]A

M
x〈(νỹ)z̃〉−→ a N, a 6= x,∈ {z̃} \ {ỹ} ⇒ (νa)M

x〈(νỹ,a)z̃〉−→ a N

A symmetric relation R is an strong asynchronous bisimulation if (M,N) ∈ R
implies whenever M

l−→a M′ then there is a transition sequence N
l−→a N such

that M′ R N′. The largest strong asynchronous bisimulation ∼a is called strong
asynchronous bisimilarity. The largest asynchronous bisimulation ≈a is defined
analogously.

Theorem 5. (1) If T ′
max ` P = Q then [P]A ∼a [Q]A, where T ′

max is the max-
imal sound theory on πloc

t ; (2) ≈a is a congruence; (3) ≈a is not closed under
renaming. (4) ∼a (≈a (

rc
≈.

To see that Tmax properly includes ≈a consider [P|eqyz|x〈y〉]A 6≈a [P|eqyz|x〈z〉]A
where A contains y, z and P is an arbitrary process. To verify that these two
networks are related by Tmax , define T by

[P|eqyz|x〈y〉|Πi∈Ici〈d̃i〉]A|Πj∈Jaj〈b̃j〉 T [Q|eqyz|x〈y〉|Πi∈Ici〈d̃i〉]A|Πj∈Jaj〈b̃j〉
[P]|eqyz|Πi∈Iai〈b̃i〉]A|Πj∈Jcj〈d̃j〉 T [Q|eqyz|Πi∈Iai〈b̃i〉]A|Πj∈Jcj〈d̃j〉

It is possible but laborious to verify that T ∪{(M,N)|M,N insensitive} is a sound
theory.

This theorem shows that πmlt integrates and extends πloc
t in a strong sense.

Congruency and failure of renaming-closure can coexist because πmlt does not
have prefixing operators.

2.4 Locating Processes

How expressive is πmlt compared with πt? It might be possible to modify the sep-
aration result in [10] to show that πt cannot (nicely) encode πmlt . The other way
round may be more interesting: how is (discretely timed) name-passing affected
by message failure? Would it be possible to design a non-distributed process
first – without having to worry about distribution – and then scaffold it so that
it can function in a distributed setting? This roughly boils down to finding a
transformation (·)• that allows to go from non-located, failure-free processes
P |Q to [P•]A | [Q•]B in a semantics preserving way. Without message failure,
that would not be a problem, but loosing messages might lead to deadlocks and
duplicated messages may confuse a receiver. We suspect that no appropriate en-
coding (·)• could work for all πt processes. But that does not mean translations
must fail for all processes. As an example of a class of processes that allows
distribution, let P,Q be timer free and x /∈ fn(P) ∪ fn(Q). Assume we wanted
to distribute P |x〈ỹ〉 and x(ṽ).Q as [(P |x〈ỹ〉)•]A | [(x(ṽ).Q)•]B . By the condi-
tions on free names, message duplication is no problem. To overcome message
loss, we replace x〈ỹ〉 with (νab)(x〈ỹa〉 | timert(a, b) | !b.(x〈ỹa〉 | timert(a, b))) and
x(ṽ).Q with x(ṽa).(a |Q) (a, b fresh and ignoring the scaffolding of P and Q for
brevity), i.e. we do what TCP does to deal with message loss and add an explicit
acknowledgement. If that isn’t returned in time, the original message is resent.
The resulting distributed process is

[P• | (νab)(x〈ỹa〉 | timert(a, b) | !b.(x〈ỹa〉 | timert(a, b)))]A | [x(ṽa).(a |Q•)]B .

It is equated by Tmax with [P•]A | [Q•{ỹ/ṽ}]B as we sketch later. This transla-
tion is quite inefficient, it even introduces divergence, but that does not matter
because – due to the absence of inter-site clock synchronisation – Tmax is diver-
gence insensitive. More sophisticated variants of our translations are possible,

the pragmatically most important being putting an upper bound on the number
of retransmissions and making time-out times contingent on the number of failed
retransmissions. It would also be possible to dispense with acknowledgement and
time-outs altogether: simply use (νa)(a | !a.(x〈ỹ〉 | a)) to flood the receiver with
an unbounded number of messages. This brute force approach is semantically
sound under the aforementioned constraints, but it has less potential for gener-
alisation and refinement, whether by using less asynchronous equivalences or by
limiting the number of retransmissions.

Continuing with the process above, we show that [P•]A | [Q•{ỹ/ṽ}]B is re-
lated by ≈a to [P•|(νab)(x〈ỹ〉|timert(a, b)|!b.(x〈ỹ〉|timert(a, b))]A|[x(ṽa).(a|Q•)]B .
Set Ut = (timert(a, b) | !b.x〈ỹ〉 | timert(a, b)). In addition, let R ⊕ S, the internal
sum of R and S, be the process (νa)(a.R | a.S | a), where a is fresh. Then we can
reason in little steps as follows.

[P• | (νab)(x〈ỹa〉 |Ut)]A | [x(ṽa).(a |Q•)]B
≡ (νab)([P• |x〈ỹa〉 |Ut]A∪{ab} | [x(ṽa).(a |Q•)]B)
≈a (νab)([P• |Ut]A∪{ab} | [x〈ỹa〉 |x(ṽa).(a |Q•)]B)
≈a (νab)([P• |Ut]A∪{ab} | [a |Q•{ỹ/ṽ}]B)
≈a (νab)([P• |Ut | a]A∪{ab} | [Q•{ỹ/ṽ}]B)

= (νab)([P• | !b.(x〈ỹa〉 | timert(a, b)) | timert(a, b) | a]A∪{ab} | [Q•{ỹ/ṽ}]B)

≈a (νab)([P• | !b.(x〈ỹa〉 | timert(a, b)) | 0⊕ b]A∪{ab} | [Q•{ỹ/ṽ}]B)

≈a (νab)([P• | !b.timert(a, b) | 0⊕ b]A∪{ab} | [Q•{ỹ/ṽ}]B)
≈a (νab)([P•]A∪{ab} | [Q•{ỹ/ṽ}]B)
≡ (νab)[P•]A∪{ab} | [Q•{ỹ/ṽ}]B
≈a [P•]A | [Q•{ỹ/ṽ}]B

The justification of all the individual steps by defining appropriate bisimulations
is straightforward, but rather tedious – [4] has all the details.

3 Conclusion

Models of timed computation are legion, we mention [8, 14] in lieu of a compre-
hensive overview. A close look at the omitted proofs reveals that bound name
passing plays no significant role – scope mobility seems orthogonal to timing, at
least in this early stage of integration. This promises easy transfer of the pre-
sented technology to other timed calculi. Formalisms for distributed computing
are also too numerous to survey here. Most closely related are Dpi [24], Nomadic
Pict [25] and the Join Calculus [13]. Other influential distributed extensions of
π-calculi can be found in [2, 3, 22]. Possibly the most important criticism of πt is
that it is too synchronous, but also too asynchronous for realistic models. Too
synchronous because the absence of clock-drift forces many (in)equalities that
might be inappropriate, the coincidence of

rc
≈ and rc∼ being an example. Always

allowing time to pass by (Idle) means that important progress assumptions can

be expressed only indirectly, leading to the charge of too much asynchrony. By
modifying the time-stepper φ, it is possible to express clock-drift, thus coars-
ening equivalences. Having all timers to be of the form timert·n(x(ṽ).P,Q) for
some fixed n > 1 may also be an important step towards more liberal equalities.
Arbitrary progress assumptions can be studied by semantically restricting the
set of valid traces. On the network level, πmlt is also too asynchronous because it
puts no constraints on inter-site clock-drift. With modern clock-synchronisation
algorithms [19] it is possible to push clock-drift under the average inter-site com-
munication latency (which is still many orders of magnitude above the duration
of atomic computational steps). By modifying (Par) at the network level to
also apply φ(·), suitably augmented to allow intersite clock-drift, πmlt may also
become more realistic. A multidimensional open problem looming large is the
expressive power of πt and πmlt . One of its most interesting facets is the question
if the translation in §2.4 could be refined to allow a larger class of πt-processes
to be mechanically distributed into πmlt .

References

1. Abdulla, P. A., and Jonsson, B. Verifying programs with unreliable channels.
Info. & Comp. 127, 2 (1996), 91–101.

2. Amadio, R. M. An asynchronous model of locality, failure, and process mobility.
In Proc. COORDINATION 97 (1997), vol. 1282 of LNCS.

3. Amadio, R. M., and Prasad, S. Localities and failures. In Proc. FSTTCS’94
(1994), vol. 880 of LNCS.

4. Berger, M. Towards Abstractions for Distributed Systems. PhD thesis, Imperial
College, London, 2002.

5. Berger, M., and Honda, K. The Two-Phase Commit Protocol in an Extended
π-Calculus. In Proc. EXPRESS’00 (2000), vol. 39 of ENTCS.

6. Berger, M., Honda, K., and Yoshida, N. Sequentiality and the π-calculus. In
Proc. TLCA’01 (2001), vol. 2044 of LNCS.

7. Berger, M., Honda, K., and Yoshida, N. Genericity and the π-Calculus. In
Proc. FOSSACS’03 (April 2003), no. 2620 in LNCS, Springer, pp. 103–119.

8. Bergstra, J. A., Ponse, A., and Smolka, S. A., Eds. Handbook of Process
Algebra. Elsevier, 2001.

9. Börger, E., and Stärk, R. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer, 2003.

10. Carbone, M., and Maffeis, S. On the expressive power of polyadic synchroni-
sation in pi-calculus. In Proc. EXPRESS’02 (2002), vol. 68 of ENTCS.

11. Cardelli, L., and Gordon, A. Mobile ambients. TCS 240 (2000).
12. Fournet, C., and Gonthier, G. A hierarchy of equivalences for asynchronous

calculi. In Proc. ICALP’98 (1998), no. 1443 in LNCS.
13. Fournet, C., Gonthier, G., Lévy, J.-J., Maranget, L., and Rémy, D. A

Calculus of Mobile Agents. In Proc. CONCUR (1996), vol. 1119 of LNCS.
14. Hennessy, M. Timed process algebras: a tutorial. Tech. Rep. CS 1993:02, Uni-

versity of Sussex, Computer Science Department, 1993.
15. Honda, K. Two bisimilarities in ν-calculus. Tech. Rep. 92-002, Keio University,

Department of Computer Science, 1992.

16. Honda, K., and Tokoro, M. On asynchronous communication semantics. In
Object-Based Concurrent Computing (1992), no. 612, in LNCS.

17. Honda, K., and Yoshida, N. On reduction-based process semantics. TCS 151
(1995).

18. Honda, K., and Yoshida, N. A uniform type structure for secure informa-
tion flow. In POPL’02 (2002), ACM Press, pp. 81–92. Full version available at
www.doc.ic.ac.uk/̃ yoshida, Revised in June 2004, 84 pages.

19. Mills, D. Time synchronization server. URL http://www.eecis.udel.edu/̃ ntp/.
20. Milner, R., Parrow, J., and Walker, D. A calculus of mobile processes, parts

I and II. Info. & Comp. 100, 1 (1992).
21. Milner, R., and Sangiorgi, D. Barbed bisimulation. In Proc. ICALP’92 (1992),

vol. 623 of LNCS.
22. Riely, J., and Hennessy, M. Distributed processes and location failures. TCS

226 (2001).
23. Sangiorgi, D., and Walker, D. The π-Calculus: a Theory of Mobile Processes.

Cambridge University Press, 2001.
24. Sewell, P. Global/local subtyping and capability inference for a distributed pi-

calculus. In Proc. ICALP’98 (1998), vol. 1442 of LNCS.
25. Wojciechowski, P. Nomadic Pict: Language and Infrastructure Design for Mo-

bile Computation. PhD thesis, University of Cambridge, 2000.
26. Yoshida, N., Berger, M., and Honda, K. Strong Normalisation in the π-

Calculus. In Proc. LICS’01 (2001), IEEE, pp. 311–322. The full version to appear
in Journal of Inf. & Comp..

