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Abstract. This paper studies types and probabilistic bisimulations for a timed
π-calculus as an effective tool for a compositional analysis of probabilistic dis-
tributed behaviour. The types clarify the role of timers as interface between non-
terminating and terminating communication for guaranteeing distributed liveness.
We add message-loss probabilities to the calculus, and introduce a notion of ap-
proximate bisimulation that discards transitions below a certain specified prob-
ability threshold. We prove this bisimulation to be a congruence, and use it for
deriving quantitative bounds for practical protocols in distributed systems, includ-
ing timer-driven message-loss recovery and the Two-Phase Commit protocol.

1 Introduction

Designing formalisms for the development and verification of distributed systems (DS),
understood as computation in the presence of partial failures and malevolent adversaries
[26], is challenging: DS are often written in semantically rich high-level languages with
expressive typing systems. Failures in DS (e.g. message-loss) are typically detected by
timing. Hence programming environments for DS feature sophisticated timer mecha-
nisms. State explosion, the key problem in verification, is worse in DS because timing
and partial failures increase dramatically the space of possible system behaviour. Fi-
nally, although DS operate in adversarial environments, the behaviour of adversaries
and the occurrences of failures is nevertheless structured: for example message-loss in
the Internet can be assumed to occur only rarely, and cryptography is based on similar
frequentist suppositions about attackers guessing passwords correctly. Such structural
assumptions are usually phrased in probabilistic terms. We propose a type-based anal-
ysis for DS that addresses these points using a distributed, timed and probabilistic π-
calculus: our formalism is not intended as an ultimate model for all issues pertaining
to DS, but a good starting point for further investigations, capturing the above central
elements in DS.

Following [3], we turn the π-calculus into a model for DS by adding locations and
allowing messages travelling between locations (but not within a location) to be lost.
This notion of failure exhibits a key feature of DS (as timers usually are provided to
handle message-loss), and is a stepping stone towards more advanced forms of fail-
ure. As timed computation is not known to be reducible to untimed computation, we
introduce (discrete) timing directly into our model via timers.

To allow compositional verification, to reduce the state space of checking distributed
process behaviour and to aid programming DS, we use types. Types constrain processes
and their contexts, leading to a marked reduction of possible behaviour. In this paper,
we focus on the linear type discipline studied and extended for various purposes since
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[18, 23]. One of the key concepts of this discipline is to handle a combination of ter-
minating and (potentially) non-terminating communication channels [19] (often called
deadlock-freedom [20, 22]). This distinction is highly useful in DS, where exchanges
on (potentially) non-terminating channels correspond to remote communication, while
termination is restricted to local interaction. For example loss of liveness due to failure
is counteracted in DS by aborting distributed invocations that do not respond within
some expected time. We model this situation with typing rules for timers such that a
timer is a converter from (potential) non-terminating to terminating channels. Timers
thus offer channel-based distributed liveness where an output at a certain channel can
eventually happen, despite failures, thus guaranteeing transparency between remote and
local invocations in the presence of message-loss. In addition, the linear type discipline
has the capability to model DS with failures and timers where applications written in
typed high-level languages run inside distributed locations, without losing expressiv-
ity and usability. For example it can be extended to type-based programming analyses
such as secure information flow [19, 21], embeds various higher-order programming
languages fully abstractly [6, 19, 32] and models distributed Java [1] and web services
[8]. The main contribution of this paper is to show that the linear type discipline gen-
eralises smoothly to distributed computation: no new types have to be invented and all
existing typing rules stay unchanged.

To demonstrate the stability and applicability of our types, we add message-loss
probabilities to reason about fine-grained behaviours of distributed processes. We use
probabilistic automata [28] so non-determinism and probabilities can coexist. We define
a new form of approximate bisimulation that expresses that two processes are equiva-
lent, except that some of their transitions are allowed not to be matched, as long the
probability of those unmatched transitions is below some factor ε ∈ [0,1]. Because the
typing system works for non-deterministic message loss, it is also sound when message-
loss is governed by probabilities, justifying our typing system. We prove our approxi-
mate bisimulation to be a congruence, allowing compositional reasoning for DS. We
then use this approximate bisimulation to analyse message failure recovery mecha-
nisms. An RPC protocol (similar to a concurrent alternating bit protocol in [2], but
extended with timers and message forwarding), distributed leases [16] and the Two-
Phase Commit protocol (2PCP) with probabilistic message-loss are specified in our
timed π-calculus and reasoned about with the approximate bisimulation. Types and
their liveness property reduce the number of transitions to be compared in proofs for
DS. Omitted definitions and proofs are in [7]. We close with a summary of our results.

– We present the first typing for timers as a smooth generalisation of the linear type
disciplines. This clarifies the behavioural status of timers as a converter from non-
terminating to terminating behaviour. As a simple instance, we use the linear/affine
typing system from [19] where linear and affine stand for termination and (poten-
tial) non-termination, respectively. This extension is achieved without additional
types. All existing typing rules are unchanged on processes. The usefulness of the
typing system is demonstrated by examples.

– We introduce approximate bisimulation for the distributed π-calculus and prove
congruency. As far as we know, this is the first congruency result for probabilistic
bisimulations of the π-calculus.
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– We offer convenient verification of quantitative bounds for probabilistic processes.
We reason about some distributed protocols, and demonstrate the use of types for
reducing the burden of checking for bisimilarity of probabilistic processes.

2 Distributed Timed Processes

The syntax of processes (P,Q, ...) and networks (M,N, ...) is given by the following
grammar where a,b,x,y,v, ... range over a countably infinite set of names.

P ::= 0 || a〈ṽ〉 || a(x̃).P || !a(x̃).P || P |Q || (νa)P || timert〈a(x̃).P, Q〉
M ::= 0 || [P] || M | N || (νa)M

In applications we often also communicate values in outputs, e.g. x〈3〉. We often abbre-
viate x〈〉 to x and x().P to x.P. We write x(c̃)P for (νc̃)(x〈c̃〉|P) when x /∈ c̃. Free names
fn(·) are defined as usual, except that fn(timert〈a(x̃).P, Q〉) = fn(a(x̃).P)∪ fn(Q) and
fn([P]) def= fn(P). The structural congruence ≡ is defined as usual, but over our extended
syntax: for example, we have [(νa)P]≡ (νa)[P]. The timer construct timert〈a(x̃).P, Q〉,
with t > 0 being an integer, supports two operations: (1) timeout which means that af-
ter t steps it turns into Q, unless (2) it has been stopped, i.e. that a message has been
received by the timer at a. It is easy to modify timers so they can be stopped at multiple
channels.

STOP
timert+1〈a(x̃).P, Q〉 | a〈ṽ〉 → P{ṽ/x̃}

The flow of time is communicated at each step in the computation by a timestepper
function φ, which acts on processes. It models the implicit broadcast of time passing.
The main two rules are:

φ(timert+1〈P, Q〉) = timert〈P, Q〉 φ(timer1〈P, Q〉) = Q

The others are: φ(P | Q) = φ(P) | φ(Q), φ((νa)P) = (νa)φ(P) and otherwise φ(P) = P.
The remaining reduction rules for processes are given as follows:

PAR
P → Q

P|R → Q|φ(R) COM a〈ṽ〉|a(x̃).P → P{ṽ/x̃} REP a〈ṽ〉|!a(x̃).P → P{ṽ/x̃}|!a(x̃).P

RES
P → Q

(νa)P → (νa)Q IDLE P → φ(P) CONG
P ≡ P′ → Q′ ≡ Q

P → Q

Note that we have φ(R) in the conclusion of [PAR]: this ensures that each active timer,
that is any timer not under a prefix, is ticked one unit at each interaction. [IDLE] prevents
the flow of time from ever being halted by deadlocked processes. The reduction relation
of the networks, →, is defined as:

INTRA
P → Q

[P]→ [Q] PAR M → N
M|L → N|L RES M → N

(νa)M → (νa)N CONG M ≡ M′ → N′ ≡ N
M → N

LOSS [P|a〈ṽ〉] | [Q|a(ỹ).R]→ [φ(P)] | [Q|a(ỹ).R] COM [P|a〈ṽ〉]|[Q|a(ỹ).R]→ [φ(P)]|[φ(Q)|R{ṽ/ỹ}]

Rules for replicated input or timer input corresponding to [LOSS, COM] have been omit-
ted. We define: →→def= (≡∪→)∗. [PAR] at the network level prevents the synchronisation
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of clocks between sites: this models that over the Internet, clock-synchronisation bet-
ter than about 100 milliseconds (which is several orders of magnitude coarser than the
temporal resolution available within CPU) is not currently achievable [25].

Example 1. The remote invoker a〈ṽ〉; (x̃).P�t Q sends a message on a to a remote site
and awaits a reply for t ticks on a private channel.

a〈ṽ〉; (x̃).P�t Q def= (νr)(a〈ṽr〉 | timert〈r(x̃).P, (r(x̃).0 | Q)〉)

(Note that r(x̃).0 in the timeout continuation is necessary only for the typing to be
introduced in §3.) While the remote invoker can be used locally, its intended use can be
seen in the network M def= [!a(ỹr).r〈b̃〉] | [a〈ṽ〉; (x̃).P�t Q] which has two reductions:

M →→ [!a(ỹr).r〈b̃〉] | [P{b̃/x̃}] M →→ [!a(ỹr).r〈b̃〉] | [Q | (νr)r(x̃).0]

Often such invocations are iterated: if the server does not reply within time t, we assume
message-loss to have occurred and resend the invocation a bounded number of times n
before giving up. This recovery mechanism can be defined inductively.

a〈ṽ〉n; (x̃).P�t Q def= a〈ṽ〉; (x̃).P�t Qn−1 with Q0
def= Q, Qk+1

def= a〈ṽ〉; (x̃).P�t Qk

For example, we can model a remote arithmetic operation (using an extended syntax
with numbers and their operations).

[!a(yr).r〈y×3〉] | [(νb)(a〈10〉100; (x̃).b〈x+7〉�5 b〈0〉 | b(z).R)] (1)

This remote invoker tries to get 3×10 evaluated remotely and if there is no reply within
5 timesteps, it re-sends a request again. This routine is repeated until success or until
100 tries have been fruitless, when the invoker gives up and emits an exception (here in
form of a value 0): this is in essence what real DS do to deal with message failure.

3 A Typing System for Distribution and Timer

Our typing system is based on the linear/affine typing [19] but without a sequentiality
constraint (i.e. multiple threads of control are permitted) and augmented for timers and
message-loss. This system is a proper generalisation of [5, 6, 19] and a simple instance
of various linearity-based typing systems which ensure that interactions at certain chan-
nels will eventually succeed. [32] is the most accessible introduction to the key ideas
behind linear typing. Our aim is for the extension to DS to preserve the ability to embed
high-level sequential and concurrent multi-threaded languages [6, 19, 32].

3.1 Linear/Affine Typing System: Basic Idea

The linear/affine typing system introduced in [19] assigns types to free channels, which
constrain the direction of information flow, the kind of information that flows on a
channel, and how often a channel may be used: linear (exactly once), affine (at most
once) or replicated (an unlimited number of times, including not at all).
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This is achieved with the following basic constraints: first, each channel is classified
as either linear, affine, replicated-linear or replicated-affine; orthogonally, each channel
is either input or output. Affinity denotes possibly diverging behaviour in which a ques-
tion is given an answer at most once. Linearity means terminating behaviour in which
a question is always given an answer precisely once. Replicated-linear channels stand
for servers that are guaranteed to return an answer, while replicated-affine channels are
for servers that may exhibit divergence. Syntactically, typing enforces the following
constraints:

1. For each replicated name there is a unique replicator with zero or more outputs
2. For each linear or affine name there is a unique input with a unique output
3. Linear channels have no circular dependency
4. Affine input channels cannot prefix linear channels
5. Replicators cannot prefix linear or affine channels

Under (1) above, P1
def= !b.a | !b.c is not typable because b is associated with two repli-

cators, but P2
def= !b.a | b | !c.b is typable since, while the output at b appears twice, there

is just one replicator at b. As an example for (2), P3
def= b.a | c.a is untypable with a

being linear, as a appears twice as output. P4
def= b.a | c.b | a.(c | e) is typable since each

channel appears at most once as input and output. By (3), we can ensure termination
behaviour over linear channels. For example, P5

def= !b.a | !a.b is untypable under this
constraint: if we compose it with a, then the computation does not terminate. P4 is also
untypable under (3). As given above, “linearity” means more than just termination: it
indicates a process always returns an answer if it is asked for, which we call liveness.
(4) ensures liveness at linear channels in the presence of termination: P6 = a.b where
a is affine and b is linear should be untypable since we do not know the input a surely
happens. (5) is a standard constraint for affinity/linearity, by which !a.b where b is either
linear or affine output is untypable.

Linear and Affine Types. We outline the formal definitions of types and the typing sys-
tem, introducing the minimum definitions needed. Action modes (ranged over p, p′, ...)
[5, 32] prescribe different modes of interaction at each channel. The L-modes corre-
spond to linear [32] while the A-modes to affine [5]. The last line denotes the grammar
of types.

↓L Linear input ↑L Linear output ↓A Affine input ↑A Affine output
!L Linear server ?L Client request to !L !A Affine server ?A Client request to !A

τ ::= (τ̃)p | l

The modes in the first and third columns are input while the second and forth are output.
The input and output modes in each row are dual to each other, writing p for the dual
of p. In types, τ̃ is a vector of types. l indicates that a channel is no longer available
for further composition with the outside; for example, if x.0 has a ↓L-mode and x has
a ↑L-mode, then x.0 | x has l-mode at x. The l-mode at x indicates that the process
x.0 | x cannot be composed with any process that has x as a free name. l’s mode is
l. We assume a replicated affine input does not carry linear output (and dually). This
condition ensures an invocation at linear replication will eventually terminate, firing
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an associated linear output [19]. We write md(τ) for the outermost mode of τ; τp also
indicates that p is the (outermost) mode of τ. The dual of τ, written τ, is the result
of dualising all action modes. Then the least commutative partial operation, �, which
controls the composition of channels is defined as:

(a) τ� τ = τ and τ� τ = τ with md(τ) = ? (b) τ� τ =l with md(τ) =↑

(a) and (b) ensure the two constraints (1) and (2) in the list of § 3.1.
An action type, denoted A,B, . . ., is a finite directed graph with nodes of the form x : τ,
such that no names occur twice; and causality edge x : τ → y : τ′ is of the form: from a
linear input ↓L to a linear output ↑L; or from a linear replication !L to a linear client ?L.
A dualises all types in A. We write A(x) for the channel type assigned to x occurring in
A. The partial operator A�B is defined iff channel types with common names compose
and the adjoined graph does not have a cycle. This avoids divergence on linear channels.
For example, a :τ1→b :τ2 and b :τ2→a :τ1 are not composable, hence a process such as
P5

def=!a.b | !b.a is untypable. We write A1 �A2 when such composition is possible, while
the result of composition is written A1�A2 (see [7] for details). By this operation, we
can guarantee the condition (3) in § 3.1 for the linear channels. Non-circular causality
between linear channels guarantees liveness at linear output channels, resulting in the
distributed liveness theorem below.

3.2 Typing Systems for Message-loss and Timers

The typing judgements for processes forms P ` A (a process P has an action type A)
and networks forms N ` A (a network N has an action type A). We list the selected rules
below.

LOC

P ` A
A distributable

[P] ` A TIMER

x(ỹ).P ` A
Q ` A

timert〈x(ỹ).P, Q〉 ` A
TIMERc

x(ỹ).P ` (x :(τ̃)↓L →A),B
Q ` x :(τ̃)↓A ,A,B

timert〈x(ỹ).P, Q〉 ` x :(τ̃)↓A ,A,B

It is worth pointing out that the types and the rules for non-distributed processes are
identical with those in [19].

Typing Networks. The key difficulty in typing networks is that messages can get lost,
but we must ensure that linear inputs and outputs do not get lost, i.e. linear names must
never be sent to remote sites. We achieve this by imposing that free names observable at
the network level cannot be linear input or linear output, and cannot carry such names
recursively: we say type τ is distributable if τ does not contain either linear input or lin-
ear output in its subexpressions. For example, neither ()↑L nor (()↓L)?L is distributable.
We say A is distributable if A(x) is distributable for all x. Then by [LOC], we transfer
a process P which has a distributable type to the network level as [P]. Note that lin-
ear names can also exist hidden by a restriction or bound by prefixes. But because by
construction distributable types cannot carry linear names, no hidden linear name can
escape to the network, thus preserving linearity.
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Typing Timers. Timers can be seen as a form of mixed choice (ignoring timing,
timert〈x(ṽ).P, Q〉 can be translated as x(ṽ).P + τ.Q) where one branch is chosen by
the environment while the other can be triggered internally. Hence, if both branches can
be given the same type A, then the timer also has type A, thus explaining [TIMER].

While natural, this rule is not expressive enough: the most important use of timers,
detection of message-loss is not typable. To see why, consider

[!x(vr).P] | [(νr)(x〈ar〉 | timert〈r(ṽ).Q, R〉|...)]

a simplified version of the remote invoker from Example 1 where the timer triggers
some recovery action in R if the remote action does not reply in time. For this process
to be typable, x must not carry linear names, hence r must be affine. (4) in §3.1 does
not allow to suppress linear names under an affine input, hence r(ṽ).Q would not have
any linear (liveness) behaviour. Timers are used to make liveness guarantees so that a
computation does not hang forever, even if messages get lost or servers do not reply.

To overcome this lack of expressivity, we introduce the second rule [TIMERc] that
allows to suppress linear names under an affine output without breaking the typing
system. We can use timers to ensure distributed liveness, i.e. “the result of an invocation
will always eventually be returned”, but refining the concept of liveness to “either a
result or an indication of error will be returned”. Formally, [TIMERc] first types x(ṽ).P
assuming x is a linear input x :(τ̃)↓L , hence permitting to suppress linear outputs A (here
x : (τ̃)↓L →A is a type which is obtained by adding edges from x : (τ̃)↓L to A). Notice
that we cannot apply the same method for Q since after t-ticks, when Q is launched, it
may wait forever on x (see Example 2 below). Hence, the second premise assumes that
x is an affine input, and no linear names can depend causally on x, linear names must
be available without external interaction (and are hence guaranteed to fire eventually).
This means Q will be of the form (νz̃)(R|x(ṽ).Q′),x /∈ z̃, with all the free linear names
being in R. The conclusion of [TIMERc] then gives the timer the type of its timeout
continuation. Note that the typing rules for timers do not depend on the concrete details
of the timing model (e.g. discrete or continuous), but rather apply to all.

Theorem 1. If P ` A and P → Q then Q ` A, and likewise for networks.

Next we formulate a distributed liveness property which states that linear local outputs
always fire (under the usual implicit fairness assumptions that each process that is not
deadlocked or terminated will eventually be scheduled). Write P ⇓a if there exist b̃,R, ṽ
s.t. P →→ (νb̃)(R | a〈ṽ〉) with a 6∈ {b̃}.

Definition 1. 1. (local liveness) We say A is closed if md(A) ∈ {!A, !L,l}. Suppose
P ` A,a : τ with A closed and md(τ) = ↑L. Then we say P satisfies liveness at a if
whenever P →→ P′, P′ ⇓a.

2. (distributed liveness) We say network N satisfies distributed liveness, if, for all P
such that N ≡ (νã)([P |Q] |M) which is derived from P ` A,a :τ with A closed and
md(τ) = ↑L, P has a local liveness at a.

The following is proved from Theorem 1 as stated in [19].

Theorem 2. For all N such that N ` A, N satisfies distributed liveness.



8 Martin Berger and Nobuko Yoshida

Example 2. Suppose that a,b are linear names and c,u are affine.

1. a.b, b.c and c.0 | b are typable as a.b ` a : ()↓L →b : ()↑L , b.c ` b : ()↓L ,c :()↑A and
c.0 | b ` c :()↓A ,b :()↑L , respectively. But c.b is not typable.

2. Let Ωu
def= (νy)(fwuy|fwyu) with fwxy

def=!x(z).y〈z〉. fwxy is called a forwarder, while
Ωu is an omega which diverges with a message as: Ωu|u〈e〉 → Ωu|u〈e〉 → .... It is
typed as Ωu ` u : (()↑A)?A .

3. timer5〈a.b, a.b〉, timer5〈c.0, c.0〉 and P def= timer5〈c.b, (c.0 | b)〉 are typable but
Q def= timer5〈c.b, c.b〉 is not typable. The first two are by [TIMER], and P is by
[TIMERc]. We shall see how the liveness at b is guaranteed in P by dividing into
the two cases. The first case is when c is returned within the time limit 5 because
the call between the first and second processes terminates.

!e(y).y | (νx)(e〈x〉 | x.c) | P →→!e(y).y | c | φ
2(P)→!e(y).y | b

The second case is a time-out due to non-termination of the call.

Ωu | (νx)(e〈x〉 | x.c) |P→5
Ωu | (νx)(e〈x〉 | x.c) | φ5(P)≡Ωu | (νx)(e〈x〉 | x.c) | c.0 | b

This shows if we replace P by Q, we cannot guarantee the liveness at b.
4. We show typing of the remote invoker from (1) in Example 1. First we type the

server as: [!a(yr).r〈y×3〉] ` a :τ with τ = (nat(nat)↑A)!A Then the remote invoker
has type a〈10〉100; (x̃).b〈x+7〉�5 b〈0〉 ` a:τ,b:(nat)↑L . Here we assume nat is the
type of natural numbers. Note that b has a linear output, hence ensuring liveness.
By hiding b, the client location can also have a distributable type.

4 Probabilistic Distributed Timed Processes and Bisimulation

We refine our model by replacing non-deterministic message-loss with a probabil-
ity r ∈ [0,1] which structures all message-loss globally and independently (i.e. the
message-loss probability does not change throughout the course of a computation, and
the events that two different messages get lost are independent). More general forms
of probability like having different message-loss probabilities for different channels, or
having probabilities change over time, are easily expressible in our framework, but have
been omitted for brevity. Our approach to adding probabilities, inspired by [11, 12], is
classical in that we use probabilistic automata [28].

Definition 2. Let A be a discrete set (i.e. finite or countably infinite). A formal quantity
over A is a relation R ⊆ A×R+, where R+ denotes the non-negative real numbers. The
support of R is support(R ) def= {a ∈ A | (a,r) ∈ R ,r > 0}. We often omit A. We can
add formal quantities, and multiply them with scalars: if r ∈ R+ then r ·R def= {(a,r ·
a) | (a,r) ∈ R }. Likewise Σi∈IRi

def=
S

i∈I Ri. We often write Σ(a,r)∈R r ·a for R . If R is
a function, we call R a quantity over A. An important example of a quantity over A is
a def= {(a,1)}∪{(a′,0) | a′ 6= a}. We call a the Dirac-distribution for a (in A), and often
write simple a for a. Many formal quantities R can be flattened into a quantity [(R )
which is the map a 7→ Σ(a,r)∈R r, assuming that the sum in this expression converges
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for every a. Hence [(·) is a partial operation. Scalar multiplication of quantities is that
of formal quantities, whereas summation on quantities is given by Σi∈I fi

def= [(
S

i∈I fi),
which is only defined where [(·) is defined.

A subprobability distribution, ranged over by ∆, ..., over a discrete set A is a quantity
over A such ∆ : A → [0,1] such that ∑a∈A ∆(a)≤ 1. We often call subprobability distri-
butions just distributions. A subprobability distribution ∆ is a probability distribution if
∑a∈A ∆(a) = 1. We write ∆1|∆2 for the distribution ∆ such that ∆(M) = ∆1(N) ·∆2(L),
provided that M = N|L, and ∆(M) = 0 otherwise. ∆|M is short for ∆|M. Similarly,
(νx)∆ is the distribution ∆′ such that ∆′(N) is ∆(M) if N = (νx)M and 0 otherwise. If
support(∆) = {M1, ...,Mn} and ∆(Mi) = pi, we also write (M1 : p1, ...,Mn : pn) or just
M̃ : p̃ for ∆. We write () for the subprobability distribution that is 0 everywhere, and
often do not specify 0 probabilities. We call a formal quantity R such that [(R ) is a
subprobability distribution a formal subprobability distribution. We write ∆1 ≡ ∆2 pro-
vided ∆i = (Mi

1 : p1, ...,Mi
n : pn) for i = 1,2 and for all j: M1

j ≡ M2
j . If R is a relation

on networks, its lifting to subprobability distributions is: [(M̃ : r̃)R [(Ñ : r̃) iff for all i:
Mi R Ni. By ∼ we denote the usual probabilistic strong bisimilarity and also its lifiting.

Reductions and Transitions. We define probabilistic reductions on networks by the
rules below. Reductions are of the form M → ∆ where ∆ is a probability distribution
over networks. ∆(N) expresses the probability that M can evolve into N in one step.
Probabilistic choices are made only about loosing messages in remote communication.
All other choices relating are resolved non-deterministically.

INTRA
P → Q

[P]→1 [Q] PAR M → ∆

M|N → ∆|N RES M → ∆

(νa)M → (νa)∆ CONG M ≡ M′ → ∆
′ ≡ ∆

M → ∆

COM

[P|x〈ỹ〉] | [Q|x(ṽ).R]→

{
[φ(P)]|[Q|x(ṽ).R] : r

[φ(P)]|[φ(Q)|R{ỹ/ṽ}] : 1− r

}

REP

[P|x〈ỹ〉] | [Q|!x(ṽ).R]→

{
[φ(P)]|[Q|!x(ṽ).R] : r

[φ(P)]|[φ(Q)|R{ỹ/ṽ}|!x(ṽ).R] : 1− r

}

Again, the corresponding reductions for replicated input and timed input are omitted.
Reductions on processes are unchanged. We write M →1 N to mean M → N. Network
transitions are of the form P l−→ ∆ where ∆ is a probability distribution, and l is a label
generated as usual by l ::= τ | x(ỹ) | x〈(νỹ)z̃〉. The process transitions are standard [4],

non-probabilistic and listed in [7]. We write M l−→1 N for M l−→ N. The transition
system is given by the rules:

P l−→ Q

[P] l−→1 [Q]
LOC

M l−→ ∆ fn(N)∩bn(l) = /0

M|N l−→ ∆|N
PAR

M l−→ ∆ x /∈ n(l)

(νx)M l−→ (νx)∆
RES
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M
x〈(νỹ)z̃〉−→ ∆1 N

x(z̃)−→ ∆2 ỹ∩ fn(N) = /0

M|N τ−→ r · (νỹ)(∆1|N)+(1− r)(νỹ)(∆1|∆2)
COM

M
x〈(νỹ)z̃〉−→ ∆ a ∈ z̃\ (ỹ∪{x})

(νa)M
x〈(νaỹ)z̃〉−→ ∆

OPEN M ≡α M′ M′ l−→ ∆

M l−→ ∆

ALPHA

It is easy to show that M → ∆ iff M′ ≡M τ−→ ∆′ ≡ ∆. Clearly, whenever M l−→ ∆ then
|support(∆)| < 3 and ∆ is a probability distribution. Next we prepare for defining our
notion of bisimilarity. For this we need to abstract from τ-transitions with transitions

M l̂−→ ∆ and ∆
l̂=⇒ ∆′ where ∆ and ∆′ are subprobability distributions. The need for

subprobability distributions is explained below.

Definition 3. The auxiliary transitions l
 are defined by: (1) M l−→ ∆ implies M l

 ∆

and (2) M l
 (). Now weak transitions M l̂−→ ∆ are defined if (1) M l

 ∆ or (2) l = τ

and ∆ = M. This is extended to distributions as follows. We write ∆
l̂−→ ∆′ provided: (1)

∆ = Σi∈I pi ·Mi, (2) for all i ∈ I with pi > 0: Mi
l̂−→ ∆i, (3) ∆′ = Σi∈I pi ·∆i. Now we set

∆
τ̂=⇒ ∆′ whenever ∆( τ̂−→)∗∆′. We define ∆

l̂=⇒ ∆′ when ∆
τ̂=⇒ l−→ τ̂=⇒ ∆′. Similarly,

for l 6= τ, we also write ∆
l̂=⇒ ∆′ for ∆

l=⇒ ∆′. M l̂=⇒ ∆ stands for M l̂=⇒ ∆.

Example 3. Let M def= [x〈y〉]|[x(v).v], ∆ =([0]|[x(v).v] : r, [0]|[y] : 1−r),∆′ def=([0]|[x(v).v] :
0, [0]|[0] : 1−r). Note that ∆′ is a subprobability distribution. Then M’s (auxiliary/weak)
transitions and reductions include:

M → ∆ M τ
 ∆ M τ̂

 M M τ̂
 ∆ M

ŷ
=⇒ ∆

′

Weak transitions have a proper subprobability distribution as target. It is inferred as

M τ̂
 ∆

ŷ
=⇒ ∆′. Then ∆

ŷ
=⇒ ∆′ is inferred as the combination of [0]|[y] ŷ

 [0]|[0] and

[0]|[x(v).v] ŷ
 (). Note that this last transition uses () only to specify that [0]|[x(v).v]

does not in fact have a transition labelled y. Presenting the absence of a transition this
way simplifies defining bisimulations.

4.1 Approximate Bisimulation

We introduce probabilistic approximate bisimulations. They are useful in the study of
DS where we often want to give erroneous behaviour a different status from normal
operation. To explain the issue, consider:

M def= (νx)([x〈y〉] | [x(v).P]) N def= [P{y/v}]

Assuming x /∈ fn(P) and no message-loss, we expect M≈N, where≈ is a chosen notion
of weak equivalence. However, if r > 0 is the global message-loss probability, such an
equality can no longer hold, irrespective of how negligible r may be. This often stands
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in the way of reasoning, because we want to abstract away from negligible probabilities.
Now consider

Mn def= (νx)([Πn
i=1x〈y〉] | [x(v).P]) (n > 0)

In general, with x /∈ fn(P), Mn can only be distinguished from N if that all n outputs
x〈y〉 get lost. The probability of this happening is rn. We would like to have a notion
of equality ≈ε such that Mn ≈rn

N, i.e. ε ∈ [0,1] gives a quantitative bound on how
much the processes compared by ≈ε are allowed to mismatch. Approximate notions
of equality are of prime importance in cryptography where one usually demonstrates
the safety of a cryptographic protocol by showing that the probability that it can be
broken vanishes exponentially quickly in a chosen system parameter (like password
length). Approximate bisimulations are intended to generalise this style of verification
and connect it with standard methods in concurrency theory.

Definition 4. An approximate bisimulation is a family {R ε}ε∈B where B ⊆ [0,1] of

relations on networks such that M R ε N implies: whenever M l−→ ∆ then also N l̂=⇒ ∆′

for some ∆′ with ∆ R ε ∆′, and vice versa. Here ∆ R ε ∆′ means that we can find two
formal subprobability distributions M̃ : r̃,M̃′ : s̃ and Ñ : r̃, Ñ′ : t̃ such that: (1) ∆ =
[(M̃ : r̃,M̃′ : s̃); (2) ∆′ = [(Ñ : r̃, Ñ′ : t̃); (3) 1−Σiri ≤ ε; (4) for all i: Mi R ε′i Ni for
some ε′i ≤ ε

ri
. We call ε the discount of R ε and R ε on distributions the ε-lift. Strong

approx. bisimulations are defined similarly.

This definition refines [15] by weighting discounts through clause (4). Similar tech-
niques can be used to produce approx. forms of other equivalence (e.g. traces). Without
refinement, one cannot prove, e.g. Mn≈rn

N, only the weaker Mn≈r N.

Lemma 1. 1. {≡0} is an approx. bisimulation.
2. {R 1} is an approx. bisimulation for every R .
3. If {R εi}i∈I is an approx. bisimulation and εi ≤ ε′i for all i then {R ε′i}i∈I is an

approx. bisimulation.
4. If {R ε

j }ε∈B j is an approx. bisimulation for each j then so is {S ε | ε ∈
S

j B j} where

S ε def= {(M,N) | ∃ j.(M,N) ∈ R ε
j }.

5. {R 0} is an approx. bisimulation, where R def= {([P], [Q]) | P≈Q} with ≈ being the
usual bisimulation on processes [4, 19].

Lemma 1.5 transfers the chosen equivalence on processes to networks.

Definition 5. M and N are ε-bisimilar if M R ε N for some approx. bisimulation {R εi}i.
In this case we also write M≈ε N.

To aid reasoning about approx. bisimulations one can use up-to techniques.

Definition 6. {R εi}i is an approx. bisimulation up to ∼ (resp. up to restriction) if

M R ε N implies that whenever M l−→ ∆ there is N l̂=⇒ ∆′ such that ∆ (∼◦R ε ◦∼) ∆′

(resp. ∆0 R ε ∆′0 with ∆ = (νx̃)∆0,∆
′ = (νx̃)∆′), and vice versa.

The main result follows.
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Theorem 3 (congruency). ≈ε is a congruence.

The following theorem offers compositional and tractable verification tools for ap-
prox. bisimulations.

Theorem 4. 1. If {R ε}ε∈B is an ε-bisimulation up to∼ or up to restriction then R ε ⊆
≈ε for all ε ∈ B.

2. If M≈r N and N≈s L then M≈min(r+s,1) L.
3. With r being the global message-loss probability, (νx̃)([P|Q])≈r (νx̃)([P]|[Q]) for

all x̃ and all timer-free P,Q.

The restriction to timer-free processes in (3) is vital because the relative timing between
P and Q is very different if these processes run in a single location rather than in two.

We can now motivate subprobability distributions and the shape of auxiliary transi-
tions: consider (νx)M with M as in Example 3. If we want to show that (νx)M≈r [y], we

need to match [y]
y−→ [0]. But (νx)M can do an output on y only if the internal message

on x is not lost. This is expressed by the subprobability appearing in the matching weak

transition (νx)M τ̂−→ (νx)∆
ŷ

=⇒ (νx)∆′. Without this definition of weak transitions, the
definition of approx. bisimulation would be more complicated.

Typed Approximate Bisimulations. We now show how types lead to more efficient
approximate reasoning. The key point [5] is that some transitions cannot be observed in
a typed setting because no well-typed observer can interact with it. E.g. P def= x〈v〉|x(y).Q
has transitions at x, but if P ` x :l,A then x is not available for further composition.
Hence we need not consider transitions at x when comparing P with another process of
the same type. Similarly from x〈v〉|!x(y).Q, we cannot observe the output at x since it
should be consumed in the unique replicator. This intuition is formalised as follows: let
A be an action type and l an action. The predicate A ` l is defined if (1) l = x〈(νỹ)z̃〉
implies md(A(x)) ∈ {↑L,↑A,?L,?A}; or (2) l = x(ỹ) implies A(x) ∈ {↓L,↓A, !L, !A}; or (3)
l = τ. A (sub)probability distribution has type A if ∆(M) > 0 implies M ` A. Typed

labelled transitions P l−→ Q ` A are defined if P ` A, A ` l and P l−→ Q. For networks
we have M l−→ ∆ ` A provided M ` A, A ` l and M l−→ ∆.

Definition 7. A typed approximate bisimulation is a family {R ε}ε∈B where B ⊆ [0,1]
of binary relations on typed networks, relating only terms of the same type, such that

M R ε N implies that whenever M l−→∆`A then also N l̂=⇒∆′ for some ∆′ with ∆R ε ∆′,
and vice versa. The definition of ∆ R ε ∆′ is similarly adapted.

We note that Theorems 3 and 4 also hold for the typed bisimilarity.

4.2 Examples of Distributed Protocols

Verifying an RPC Protocol with Message Recovery. We show how to use approx. bi-
simulations to reason about remote procedure calls (RPCs), an important distributed
algorithm that uses timers to increase the reliability of remote communication. In this
subsection, we assume that [IDLE] is only used when no other rules apply. This standard
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assumption is called maximal progress in the literature and prevents the timer aborting
by itself even when communication is possible. Consider:

P def=!x(mv).v〈m+2〉 Q def= (νy)(x〈5y〉|y(m).a〈m+1〉)

We type: P|Q ` A with A def= x : (nat(nat)↑A)!A ,a : (nat)↑L . It is easy to show that P|Q≈
P|a〈8〉 (where ≈ is the typed bisimilarity on processes [19]), hence by Theorem 4 and
Lemma 1, we have:

[P|a〈8〉|a(z).R] ≈0 [P|Q|a(z).R] ≈r [P] | [Q|a(z).R]

Theorem 4 is thus useful because it gives a straightforward upper bound on how differ-
ent (untimed) processes can be when distributed. But since it does so without assump-
tions on P and Q, the bounds are weak. To improve on the right bound, we can use the
remote invoker from Example 1:

Qn def= x〈5〉n;(m).a〈m+1〉�t a〈0〉

The timer is used to amplify the reliability of communication over an unreliable channel
x. It uses a hidden name, generated at the client, to get the acknowledgement. The timer
re-sends the invocation repeatedly, if the acknowledgement is not received within time
t. The receiver a(z).R at the server side knows whether it was correctly delivered a
datum or whether a timeout happened, because a〈0〉 signals n-ary timeout, which can
be taken as indicating failure. Assuming that r is the global message-loss probability,
we want to establish that

[P] | [Qn | a(z).R] ≈rn
[P] | [a〈8〉 | a(z).R] (2)

provided t > 1 and x /∈ fn(R). Note that a in (2) has type x :l. Establishing (2) is
straightforward by induction. The base case is trivial. For the inductive step note that

[P]|[a〈8〉 | a(z).R] τ̂−→1 [P]|[0 | R{8/z}]. This can be matched in several ways: either
the first invocation attempt already succeeds with probability 1− r, or the first fails
but the second succeeds (probability r · (1− r)) and so on, giving the weak transition

[P]|[Qn | a(z).R] τ̂=⇒ ([P]|[0 | R{8/z}] : 1− rn). The other remaining transitions can be
matched exactly since linear liveness at a guarantees that the interaction with a(z).R
will always happen. Due to typing, we do not need to consider output transitions of Qn

because no typable observer can interact with them. This way, typing reduces the num-
ber of transitions to be matched in approx. bisimulations. Overall we easily establish
(2) which means that n-ary remote invokers are an effective error recovery technique,
reducing the possibility of message failures exponentially quickly in the parameter n.

Next we show that conversely, the more a DS relies on networked communication,
the more error-prone it becomes. To this end, define

Mn+1 def= (νx̃)([x1〈v〉] | Π
n−1
i=1 [xi(y).xi+1〈y〉] | [xn(y).y]) M0 def= [v]

As in the previous examples one can then show that Mn≈1−(1−r)n
[v]. This says that the

chance of Mn behaving like [v] diminishes exponentially quickly.
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Leases. Another important example for fault-tolerant DS are leases [16] which allow
clients to access a remote service for a limited amount of time. Once that time has ex-
pired without the client renewing the lease, access is denied to the client, and the server
holding the service is free to close it, to make it available to others, or to withdraw it
completely. In our setting, leases are naturally expressed using typed, timed forwarders.
A timed forwarder tfwt·P

xy does the same, but only for t units of time, and after expiry of
the lease executes the ’clean-up process’ P.

tfw0·P
xy

def= P|x(ṽ).0 tfwt+1·P
xy

def= timer1〈x(ṽ).(y〈v〉 | tfwt·0
xy ), tfwt·P

xy 〉

where x,y are affine input and output. This is vital for consistent usage of the clean-up
process P. Timed forwarders can be typed in two easy ways: (1) with the tailor-made
rules below, or (2) in the system that replaces replication with general recursion, given
in [7].

IGN
a(x̃).P ` a :(τ̃)↓A ,A-a

a(x̃).(P | !a(x̃).0) ` a :(τ̃)!A ,A
TFW0

P ` A-xy

tfw0·P
xy ` x :(τ̃)↓A ,y :(τ̃)↑A ,A

TFWt
tfwt+1·P

xy ` A
tfwt+2·P

xy ` A

Now tfwt·P
xy is typable as tfwt·P

xy ` x : τ,y : τ,A assuming τ is an distributable affine output,
A is a type of P, and x,y do not occur in A. We now consider a simple use of leases. Let
the resource in question be y.a: all we can do with it is to close it by sending a message
to the affine name y. Clearly (νy)[y.a | y]≈0 [a]. When we access the resource over the
net, message loss may leave the resource unclosed: (νy)([y.a] | [y])→ (νy)[y.a]. Now we
employ a lease P def=!b(r).r(x)tfwt·y

xy to ensure that the resource gets closed automatically
if the leaseholder does not close it explicitly.

M def= (νyb)([P|y.a] | [b(r)r(x).x])

Then we show that message-loss does not affect closing the resource: M≈0 [a].

Verifying the 2PCP. The Two-Phase Commit protocol (2PCP) is a ubiquitous dis-
tributed algorithm [3]. It is a network of the form

2PCP
def= (νd̃ṽ)([P1] | ... | [Pn] | [C])

It has a coordinator C and n participants Pi, all of which can decide to commit or abort.
If all processes decide to commit and the coordinator receives all the votes towards
commitment in time, then every participant will commit, otherwise they will all abort.
We shall verify this property using our formalism. The protocol is described as follows:

Pi
def= Pa

i ⊕Pc
i Pa

i
def= vi

k〈true〉|ai|!di(b).0 Pc
i

def= vi
k〈false〉 | !di(b).if b then ai else ci

C def= (νac̃)(Cwait|Cand|Cab) Cwait
def= Πivi(b).if b then ei〈d̃〉 else a〈d̃〉

Cand
def= e1(d̃). ... en(d̃).Πidi

k〈false〉 Cab
def= a(d̃).(Πidi

k〈true〉 | !a(d̃).0)

Here we use standard extended syntax P⊕Q (internal choice) and if-branch (see [7]
for their straightforward typing rules). Pi makes a non-deterministic choice between
aborting (Pa

i ) and committing (Pc
i ). Pa

i does two things: it signals its decision to abort



Timed, Distributed, Probabilistic, Typed Processes 15

to the outside world by sending an ai. At the same time, the coordinator is informed
of its choice, by sending a vote vi〈true〉 on the internal voting channel vi. Pc

i is similar
in that it sends its vote to the coordinator, but it externalises its decision only after
having received back the overall decision from the coordinator. The coordinator has
a subprocess Cwait that awaits the votes from all participants. Communication between
participants and the coordinator happens on vi, where the votes are cast, and di where the
coordinator returns its decision back to the participants. This protocol guarantees that
either all participants will commit or all participants will abort, assuming that eventually
all sent messages will be delivered with high probability. In Pi, xk〈ỹ〉 with k > 0 is
a simpler version of the remote invoker in Example 1 with the following semantics:
φ(xk〈ỹ〉) = xk〈ỹ〉 and, writing x0〈ỹ〉 for 0,

[P|xk〈ỹ〉] | [x(ṽ).Q|R]→

{
[φ(P)|xk−1〈ỹ〉] | [x(ṽ).Q|R] : r
[φ(P)] | [Q{ỹ/ṽ}|R] : 1− r

}
.

Here x is of affine type (τ̃)↑A with yi typed by τi. The detailed types of this protocol,
including the choice and if-branch are given in [7].

Next we state the main result of this subsection that the probability this protocol
fails vanishes exponentially quickly in the parameter k.

Theorem 5. Recall that r is the global message-loss probability. Then:

2PCP ≈e(k) (Πi[ai])⊕ (Πi[ci]) with e(k) def= 1− (1− rk ·n)n

Here ≈e(k) is the typed approx. bisimulation.

This theorem states that the probability that the protocol does not reach a consensus
is negligible in k. This result improves on [3] in that precise quantities for failure of
the protocol are derived. The types are also useful in compositional and quick rea-
soning about this 2PCP. First the protocol is typed as 2PCP ` ã : ()?A , c̃ : ()?A where
c̃ : τ means c1 : τ, ..,cn : τ. Then, for example when considering C we use the fact that
C ` ṽ:(bool)↓A , d̃ :(bool)?A , ẽ:l. This means we do not have to consider input or output
actions happening on a or ei in the external environment. Likewise, we do not observe
non-τ actions from [P1] | ... | [Pn] | [C] by types. This significantly reduces a number of
transitions needed to be considered in reasoning.

5 Conclusion and Related Work

We introduced a convenient typing system for a timed, distributed π-calculus that gener-
alises the existing linear/affine typing discipline [19] for the asynchronous π-calculus.
We refined some of the non-determinism in our calculus into probabilities and pro-
posed a notion of typed approximate bisimulation to discard behaviour under a prob-
ability threshold. The timed calculus was originally introduced in [3, 4]; [10, 27] pro-
pose different timed π-calculi without distribution. Neither alternative considers typing
or probabilities. Probabilistic π-calculi are investigated in [9, 11, 12, 17, 30]. None of
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these works considers types, timing or distribution, except that [30] uses the affine typ-
ing system [5] to prove a correspondence between probabilistic automata, confusion-
free event structures and a typed probabilistic π-calculus. The notions of equivalence
studied in these works are not directly applicable to our setting because they are not ap-
proximate (i.e. they do not allow to quantify parts of the computation that is discarded
when considering equality), hence it is not possible to verify the examples in § 4.2.

Our work can be extended in several dimensions. One topic is to investigate our
approximate bisimulation, for example by asking how to axiomatise it. We believe the
techniques developed for axiomatising weak bisimilarity in [32] to be applicable to
the present probabilistic extension, leading to a tractable transformation for reasoning
about liveness at each location. It would also be fruitful to use probabilities for con-
straining other forms of non-determinism. A starting point would be the [IDLE] rule:
rather than requiring maximal progress, we could have probabilistic idling. More ambi-
tiously, timer behaviour could be guided by a probability distribution: the key technical
challenge here is to find a tractable way of expressing the correlations between different
probabilistic timers running in parallel.

The paper proposes a general way to integrate the timer with linearity, offering
extensibility of various type-based analyses of processes [1, 5, 6, 8, 20, 22, 32] to timing
and distribution. First, the secure information flow analysis (SIF) from [19, 21] can be
adapted to study timing attacks [24] in distribution. Following [20, 22] an extension
of types that accounts of usage numbers of linear channels can lead to more precise
type-based SIF analysis in the presence of timers. Secondly, more complicated forms
of failure can be considered, like message duplication, correlations between message
failures (e.g. if a channel looses a message, the probability of subsequent message-
losses increases), site failure [3] or byzantine message corruption [31]. It would also be
fruitful to use probabilities for constraining other forms of non-determinism such as the
permissible amount of idling. Finally, there is much recent work on (pseudo-)metrics
for probabilistic automata [13, 14, 29]. These works do not feature distribution or types,
but forging connections with the present approach would be very interesting.
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