
Compilers and computer architecture
Code-generation (2): register-machines

Martin Berger 1

November 2019

1Email: M.F.Berger@sussex.ac.uk, Office hours: Wed 12-13 in
Chi-2R312

1 / 1

M.F.Berger@sussex.ac.uk

Recall the function of compilers

2 / 1

Plan for this week

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

In the previous section we introduced the
stack machine architecture, and then
investigated a simple syntax-directed
code-generator for this architecture.

This week we continue looking at code
generation, but for register machines, a
faster CPU architecture. If time permits,
we’ll also look at accumulator machines.

3 / 1

Plan for this week

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

In the previous section we introduced the
stack machine architecture, and then
investigated a simple syntax-directed
code-generator for this architecture.

This week we continue looking at code
generation, but for register machines, a
faster CPU architecture. If time permits,
we’ll also look at accumulator machines.

4 / 1

Plan for this week

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

In the previous section we introduced the
stack machine architecture, and then
investigated a simple syntax-directed
code-generator for this architecture.

This week we continue looking at code
generation, but for register machines, a
faster CPU architecture. If time permits,
we’ll also look at accumulator machines.

5 / 1

Memory wall

From: https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

6 / 1

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Memory wall

From: https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

7 / 1

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Recall: stack machine architecture

...

...

...

...
Add
13

PushAbs
12

PushAbs
...
3

Jump0

1
2
3

5
6
7
8
9

10
11

4

66
2212

13

...

...14
15

PC

SP

Current instruction = Jump

Temporary register = 12

8 / 1

Recall: stack machine architecture

...

...

...

...
Add
13

PushAbs
12

PushAbs
...
3

Jump0

1
2
3

5
6
7
8
9

10
11

4

66
2212

13

...

...14
15

PC

SP

Current instruction = Jump

Temporary register = 12

9 / 1

Recall: stack machine language

Nop Pop x
PushAbs x PushImm n
CompGreaterThan CompEq
Jump l JumpTrue l
Plus Minus
Times Divide
Negate

Important: arguments (e.g. to Plus) are always on top of the
stack, and are ’removed’ (by rearranging the stack pointer
(SP)). The result of the command is placed on the top of the
stack.

10 / 1

Recall: stack machine language

Nop Pop x
PushAbs x PushImm n
CompGreaterThan CompEq
Jump l JumpTrue l
Plus Minus
Times Divide
Negate

Important: arguments (e.g. to Plus) are always on top of the
stack, and are ’removed’ (by rearranging the stack pointer
(SP)). The result of the command is placed on the top of the
stack.

11 / 1

Recall: stack machine language

Nop Pop x
PushAbs x PushImm n
CompGreaterThan CompEq
Jump l JumpTrue l
Plus Minus
Times Divide
Negate

Important: arguments (e.g. to Plus) are always on top of the
stack, and are ’removed’ (by rearranging the stack pointer
(SP)). The result of the command is placed on the top of the
stack.

12 / 1

Register machines

The problem with the stack machine is that memory access (on
modern CPUs) is very slow in comparion with CPU operations,
approx. 20-100 times slower.

The stack machine forces us constantly to access memory,
even for the simplest operations. It would be nice if the CPU let
us store, access and manipulate data directly, rather than only
work on the top elements of the stack.

Registers are fast (in comparison with memory), temporary,
addressable storage in the CPU, that let us do this, whence
register machines.

But compilation for register machines is more complicated than
compilation for stack machines. Can you guess why?

13 / 1

Register machines

The problem with the stack machine is that memory access (on
modern CPUs) is very slow in comparion with CPU operations,
approx. 20-100 times slower.

The stack machine forces us constantly to access memory,
even for the simplest operations. It would be nice if the CPU let
us store, access and manipulate data directly, rather than only
work on the top elements of the stack.

Registers are fast (in comparison with memory), temporary,
addressable storage in the CPU, that let us do this, whence
register machines.

But compilation for register machines is more complicated than
compilation for stack machines. Can you guess why?

14 / 1

Register machines

The problem with the stack machine is that memory access (on
modern CPUs) is very slow in comparion with CPU operations,
approx. 20-100 times slower.

The stack machine forces us constantly to access memory,
even for the simplest operations. It would be nice if the CPU let
us store, access and manipulate data directly, rather than only
work on the top elements of the stack.

Registers are fast (in comparison with memory), temporary,
addressable storage in the CPU, that let us do this, whence
register machines.

But compilation for register machines is more complicated than
compilation for stack machines. Can you guess why?

15 / 1

Register machines

The problem with the stack machine is that memory access (on
modern CPUs) is very slow in comparion with CPU operations,
approx. 20-100 times slower.

The stack machine forces us constantly to access memory,
even for the simplest operations. It would be nice if the CPU let
us store, access and manipulate data directly, rather than only
work on the top elements of the stack.

Registers are fast (in comparison with memory), temporary,
addressable storage in the CPU, that let us do this, whence
register machines.

But compilation for register machines is more complicated than
compilation for stack machines. Can you guess why?

16 / 1

Register machines

The problem with the stack machine is that memory access (on
modern CPUs) is very slow in comparion with CPU operations,
approx. 20-100 times slower.

The stack machine forces us constantly to access memory,
even for the simplest operations. It would be nice if the CPU let
us store, access and manipulate data directly, rather than only
work on the top elements of the stack.

Registers are fast (in comparison with memory), temporary,
addressable storage in the CPU, that let us do this, whence
register machines.

But compilation for register machines is more complicated than
compilation for stack machines. Can you guess why?

17 / 1

Compilation for register machines

Each CPU has only a small finite number of registers (e.g. 16,
32, 128). That can be a problem. Why?

Because for small expressions, we can fit all the relevant
parameters into the registers, but for the execution of larger
expressions this is no longer the case. Moreover, what
registers are available at each point in the computation
depends on what other code is being executed. Hence a
compiler must be able to do the following things.
I Generate code that has all parameters in registers.
I Generate code that has some (or most) parameters in

main memory.
I Detect which of the above is the case, and be able

seamlessly to switch between the two.

All of this makes compilers more difficult. Let’s look at register
machines.

18 / 1

Compilation for register machines
Each CPU has only a small finite number of registers (e.g. 16,
32, 128). That can be a problem. Why?

Because for small expressions, we can fit all the relevant
parameters into the registers, but for the execution of larger
expressions this is no longer the case. Moreover, what
registers are available at each point in the computation
depends on what other code is being executed. Hence a
compiler must be able to do the following things.
I Generate code that has all parameters in registers.
I Generate code that has some (or most) parameters in

main memory.
I Detect which of the above is the case, and be able

seamlessly to switch between the two.

All of this makes compilers more difficult. Let’s look at register
machines.

19 / 1

Compilation for register machines
Each CPU has only a small finite number of registers (e.g. 16,
32, 128). That can be a problem. Why?

Because for small expressions, we can fit all the relevant
parameters into the registers, but for the execution of larger
expressions this is no longer the case. Moreover, what
registers are available at each point in the computation
depends on what other code is being executed. Hence a
compiler must be able to do the following things.

I Generate code that has all parameters in registers.
I Generate code that has some (or most) parameters in

main memory.
I Detect which of the above is the case, and be able

seamlessly to switch between the two.

All of this makes compilers more difficult. Let’s look at register
machines.

20 / 1

Compilation for register machines
Each CPU has only a small finite number of registers (e.g. 16,
32, 128). That can be a problem. Why?

Because for small expressions, we can fit all the relevant
parameters into the registers, but for the execution of larger
expressions this is no longer the case. Moreover, what
registers are available at each point in the computation
depends on what other code is being executed. Hence a
compiler must be able to do the following things.
I Generate code that has all parameters in registers.

I Generate code that has some (or most) parameters in
main memory.

I Detect which of the above is the case, and be able
seamlessly to switch between the two.

All of this makes compilers more difficult. Let’s look at register
machines.

21 / 1

Compilation for register machines
Each CPU has only a small finite number of registers (e.g. 16,
32, 128). That can be a problem. Why?

Because for small expressions, we can fit all the relevant
parameters into the registers, but for the execution of larger
expressions this is no longer the case. Moreover, what
registers are available at each point in the computation
depends on what other code is being executed. Hence a
compiler must be able to do the following things.
I Generate code that has all parameters in registers.
I Generate code that has some (or most) parameters in

main memory.

I Detect which of the above is the case, and be able
seamlessly to switch between the two.

All of this makes compilers more difficult. Let’s look at register
machines.

22 / 1

Compilation for register machines
Each CPU has only a small finite number of registers (e.g. 16,
32, 128). That can be a problem. Why?

Because for small expressions, we can fit all the relevant
parameters into the registers, but for the execution of larger
expressions this is no longer the case. Moreover, what
registers are available at each point in the computation
depends on what other code is being executed. Hence a
compiler must be able to do the following things.
I Generate code that has all parameters in registers.
I Generate code that has some (or most) parameters in

main memory.
I Detect which of the above is the case, and be able

seamlessly to switch between the two.

All of this makes compilers more difficult. Let’s look at register
machines.

23 / 1

Compilation for register machines
Each CPU has only a small finite number of registers (e.g. 16,
32, 128). That can be a problem. Why?

Because for small expressions, we can fit all the relevant
parameters into the registers, but for the execution of larger
expressions this is no longer the case. Moreover, what
registers are available at each point in the computation
depends on what other code is being executed. Hence a
compiler must be able to do the following things.
I Generate code that has all parameters in registers.
I Generate code that has some (or most) parameters in

main memory.
I Detect which of the above is the case, and be able

seamlessly to switch between the two.

All of this makes compilers more difficult.

Let’s look at register
machines.

24 / 1

Compilation for register machines
Each CPU has only a small finite number of registers (e.g. 16,
32, 128). That can be a problem. Why?

Because for small expressions, we can fit all the relevant
parameters into the registers, but for the execution of larger
expressions this is no longer the case. Moreover, what
registers are available at each point in the computation
depends on what other code is being executed. Hence a
compiler must be able to do the following things.
I Generate code that has all parameters in registers.
I Generate code that has some (or most) parameters in

main memory.
I Detect which of the above is the case, and be able

seamlessly to switch between the two.

All of this makes compilers more difficult. Let’s look at register
machines.

25 / 1

Goal: add registers

...

...

...

...
Add
13

PushAbs
12

PushAbs
...
3

Jump0

1
2
3

5
6
7
8
9

10
11

4

66
2212

13

...

...14
15

PC

SP

Cur. instr. = Jump
...
...
...
...

Add
13

PushAbs
12

PushAbs
...
3

Jump0

1
2
3

5
6
7
8
9

10
11

4

66
2212

13

...

...14
15

PC

SP

Cur. instr. = Jump

R1= 42
R2 = 33
R3 =12
R4 = 20
R5= 25
R6 = 116
R7 = 123

R0 = 2

26 / 1

A simple register machine

...

...

...

...
Add
13

PushAbs
12

PushAbs
...
3

Jump0

1
2
3

5
6
7
8
9

10
11

4

66
2212

13

...

...14
15

PC
SP

Cur. instr. = Jump

R1= 42
R2 = 33
R3 =12
R4 = 20
R5= 25
R6 = 116
R7 = 123

R0 = 2
Quite similar to the stack machine,
but we have additional registers.
Important: operations like add,
multiply operate on registers, no
longer on the top of the stack

How to generate code for register machines?

27 / 1

A simple register machine

...

...

...

...
Add
13

PushAbs
12

PushAbs
...
3

Jump0

1
2
3

5
6
7
8
9

10
11

4

66
2212

13

...

...14
15

PC
SP

Cur. instr. = Jump

R1= 42
R2 = 33
R3 =12
R4 = 20
R5= 25
R6 = 116
R7 = 123

R0 = 2

Quite similar to the stack machine,
but we have additional registers.
Important: operations like add,
multiply operate on registers, no
longer on the top of the stack

How to generate code for register machines?

28 / 1

A simple register machine

...

...

...

...
Add
13

PushAbs
12

PushAbs
...
3

Jump0

1
2
3

5
6
7
8
9

10
11

4

66
2212

13

...

...14
15

PC
SP

Cur. instr. = Jump

R1= 42
R2 = 33
R3 =12
R4 = 20
R5= 25
R6 = 116
R7 = 123

R0 = 2
Quite similar to the stack machine,
but we have additional registers.
Important: operations like add,
multiply operate on registers, no
longer on the top of the stack

How to generate code for register machines?

29 / 1

A simple register machine

...

...

...

...
Add
13

PushAbs
12

PushAbs
...
3

Jump0

1
2
3

5
6
7
8
9

10
11

4

66
2212

13

...

...14
15

PC
SP

Cur. instr. = Jump

R1= 42
R2 = 33
R3 =12
R4 = 20
R5= 25
R6 = 116
R7 = 123

R0 = 2
Quite similar to the stack machine,
but we have additional registers.
Important: operations like add,
multiply operate on registers, no
longer on the top of the stack

How to generate code for register machines?

30 / 1

Dealing with registers by ’divide-and-conquer’

In order to explain the difficult problem of generating efficient
code for register machines, we split the problem into three
simpler sub-problems.
I Generate code assuming an unlimited supply of registers.
I Modify the translator to evaluate expressions in the order

which minimises the number of registers needed, while still
generating efficient code.

I Invent a scheme to handle cases where we run out of
registers.

Let’s start by looking at register machines with an unlimited
number of registers.

31 / 1

Dealing with registers by ’divide-and-conquer’

In order to explain the difficult problem of generating efficient
code for register machines, we split the problem into three
simpler sub-problems.

I Generate code assuming an unlimited supply of registers.
I Modify the translator to evaluate expressions in the order

which minimises the number of registers needed, while still
generating efficient code.

I Invent a scheme to handle cases where we run out of
registers.

Let’s start by looking at register machines with an unlimited
number of registers.

32 / 1

Dealing with registers by ’divide-and-conquer’

In order to explain the difficult problem of generating efficient
code for register machines, we split the problem into three
simpler sub-problems.
I Generate code assuming an unlimited supply of registers.

I Modify the translator to evaluate expressions in the order
which minimises the number of registers needed, while still
generating efficient code.

I Invent a scheme to handle cases where we run out of
registers.

Let’s start by looking at register machines with an unlimited
number of registers.

33 / 1

Dealing with registers by ’divide-and-conquer’

In order to explain the difficult problem of generating efficient
code for register machines, we split the problem into three
simpler sub-problems.
I Generate code assuming an unlimited supply of registers.
I Modify the translator to evaluate expressions in the order

which minimises the number of registers needed, while still
generating efficient code.

I Invent a scheme to handle cases where we run out of
registers.

Let’s start by looking at register machines with an unlimited
number of registers.

34 / 1

Dealing with registers by ’divide-and-conquer’

In order to explain the difficult problem of generating efficient
code for register machines, we split the problem into three
simpler sub-problems.
I Generate code assuming an unlimited supply of registers.
I Modify the translator to evaluate expressions in the order

which minimises the number of registers needed, while still
generating efficient code.

I Invent a scheme to handle cases where we run out of
registers.

Let’s start by looking at register machines with an unlimited
number of registers.

35 / 1

Dealing with registers by ’divide-and-conquer’

In order to explain the difficult problem of generating efficient
code for register machines, we split the problem into three
simpler sub-problems.
I Generate code assuming an unlimited supply of registers.
I Modify the translator to evaluate expressions in the order

which minimises the number of registers needed, while still
generating efficient code.

I Invent a scheme to handle cases where we run out of
registers.

Let’s start by looking at register machines with an unlimited
number of registers.

36 / 1

Commands for register machines

We assume an unlimited supply of registers R0, R1, R2, ...
ranged over by r, r’ We call these general purpose registers (as
distinct from PC, SP).

Nop Does nothing
Pop r removes the top of the stack and stores it

in register r
Push r Pushes the content of the register r on

stack
Load r x Loads the content of memory location x

into register r
LoadImm r n Loads integer n into register r
Store r x Stores the content of register r in memory

location x
CompGreaterThan r r’ Compares the content of register r with the

content of register r’. Stores 1 in r if former
is bigger than latter, otherwise stores 0

37 / 1

Commands for register machines
We assume an unlimited supply of registers R0, R1, R2, ...
ranged over by r, r’ We call these general purpose registers (as
distinct from PC, SP).

Nop Does nothing
Pop r removes the top of the stack and stores it

in register r
Push r Pushes the content of the register r on

stack
Load r x Loads the content of memory location x

into register r
LoadImm r n Loads integer n into register r
Store r x Stores the content of register r in memory

location x
CompGreaterThan r r’ Compares the content of register r with the

content of register r’. Stores 1 in r if former
is bigger than latter, otherwise stores 0

38 / 1

Commands for register machines
We assume an unlimited supply of registers R0, R1, R2, ...
ranged over by r, r’ We call these general purpose registers (as
distinct from PC, SP).

Nop Does nothing
Pop r removes the top of the stack and stores it

in register r
Push r Pushes the content of the register r on

stack
Load r x Loads the content of memory location x

into register r
LoadImm r n Loads integer n into register r
Store r x Stores the content of register r in memory

location x
CompGreaterThan r r’ Compares the content of register r with the

content of register r’. Stores 1 in r if former
is bigger than latter, otherwise stores 0

39 / 1

Commands for register machines

CompEq r r’ Compares the content of register r with the
content of register r. Stores 1 in r if both are equal,
otherwise stores 0

Jump l Jumps to l
JumpTrue r l Jumps to address/label l if the content of register r

is not 0
JumpFalse r l Jumps to address/label l if the content of register r

is 0
Plus r r’ Adds the content of r and r’, leaving the result in r
... Remaining arithmetic operations are similar

Some commands have arguments (called operands). They
take two (if the command has one operand) or three units of
storage, the others only one. These operands need to be
specified in the op-code, unlike with the stack machine. (Why?)

40 / 1

Commands for register machines

CompEq r r’ Compares the content of register r with the
content of register r. Stores 1 in r if both are equal,
otherwise stores 0

Jump l Jumps to l
JumpTrue r l Jumps to address/label l if the content of register r

is not 0
JumpFalse r l Jumps to address/label l if the content of register r

is 0
Plus r r’ Adds the content of r and r’, leaving the result in r
... Remaining arithmetic operations are similar

Some commands have arguments (called operands). They
take two (if the command has one operand) or three units of
storage, the others only one. These operands need to be
specified in the op-code, unlike with the stack machine. (Why?)

41 / 1

Commands for register machines

Question: Why do we bother with stack operations at all?

Important for e.g. procedure/method invocation. We’ll talk
about that later.

42 / 1

Commands for register machines

Question: Why do we bother with stack operations at all?

Important for e.g. procedure/method invocation. We’ll talk
about that later.

43 / 1

Commands for register machines

Question: Why do we bother with stack operations at all?

Important for e.g. procedure/method invocation. We’ll talk
about that later.

44 / 1

Source language

Our source language is unchanged: a really simple imperative
language.

M ::= M;M || for x = E to E {M} || x := E
E ::= n || x || E + E || E − E || E ∗ E || E/E || −E

Everything that’s difficult to compile, e.g. procedures, objects, is
left out. We come to that later.

45 / 1

Source language

Our source language is unchanged: a really simple imperative
language.

M ::= M;M || for x = E to E {M} || x := E
E ::= n || x || E + E || E − E || E ∗ E || E/E || −E

Everything that’s difficult to compile, e.g. procedures, objects, is
left out. We come to that later.

46 / 1

Code generation for register machines

def codegen (s : AST, target : Register)
: List [Instruction]

def codegenExpr (exp : Expr, target : Register)
: List [Instruction]

Important convention 1: The result of evaluating the expression
is returned in register target.

Important convention 2: The code generated by
codegenExpr(e, i) can use registers Ri, Ri+1, ...
upwards, but must leave the other registers R0 ... Ri-1
unchanged!

One way of thinking about this target is that it is used to track
where the stack pointer would point.

Similar conventions for codegen for statements.

47 / 1

Code generation for register machines
def codegen (s : AST, target : Register)

: List [Instruction]

def codegenExpr (exp : Expr, target : Register)
: List [Instruction]

Important convention 1: The result of evaluating the expression
is returned in register target.

Important convention 2: The code generated by
codegenExpr(e, i) can use registers Ri, Ri+1, ...
upwards, but must leave the other registers R0 ... Ri-1
unchanged!

One way of thinking about this target is that it is used to track
where the stack pointer would point.

Similar conventions for codegen for statements.

48 / 1

Code generation for register machines
def codegen (s : AST, target : Register)

: List [Instruction]

def codegenExpr (exp : Expr, target : Register)
: List [Instruction]

Important convention 1:

The result of evaluating the expression
is returned in register target.

Important convention 2: The code generated by
codegenExpr(e, i) can use registers Ri, Ri+1, ...
upwards, but must leave the other registers R0 ... Ri-1
unchanged!

One way of thinking about this target is that it is used to track
where the stack pointer would point.

Similar conventions for codegen for statements.

49 / 1

Code generation for register machines
def codegen (s : AST, target : Register)

: List [Instruction]

def codegenExpr (exp : Expr, target : Register)
: List [Instruction]

Important convention 1: The result of evaluating the expression
is returned in register target.

Important convention 2: The code generated by
codegenExpr(e, i) can use registers Ri, Ri+1, ...
upwards, but must leave the other registers R0 ... Ri-1
unchanged!

One way of thinking about this target is that it is used to track
where the stack pointer would point.

Similar conventions for codegen for statements.

50 / 1

Code generation for register machines
def codegen (s : AST, target : Register)

: List [Instruction]

def codegenExpr (exp : Expr, target : Register)
: List [Instruction]

Important convention 1: The result of evaluating the expression
is returned in register target.

Important convention 2:

The code generated by
codegenExpr(e, i) can use registers Ri, Ri+1, ...
upwards, but must leave the other registers R0 ... Ri-1
unchanged!

One way of thinking about this target is that it is used to track
where the stack pointer would point.

Similar conventions for codegen for statements.

51 / 1

Code generation for register machines
def codegen (s : AST, target : Register)

: List [Instruction]

def codegenExpr (exp : Expr, target : Register)
: List [Instruction]

Important convention 1: The result of evaluating the expression
is returned in register target.

Important convention 2: The code generated by
codegenExpr(e, i) can use registers Ri, Ri+1, ...
upwards, but must leave the other registers R0 ... Ri-1
unchanged!

One way of thinking about this target is that it is used to track
where the stack pointer would point.

Similar conventions for codegen for statements.

52 / 1

Code generation for register machines
def codegen (s : AST, target : Register)

: List [Instruction]

def codegenExpr (exp : Expr, target : Register)
: List [Instruction]

Important convention 1: The result of evaluating the expression
is returned in register target.

Important convention 2: The code generated by
codegenExpr(e, i) can use registers Ri, Ri+1, ...
upwards, but must leave the other registers R0 ... Ri-1
unchanged!

One way of thinking about this target is that it is used to track
where the stack pointer would point.

Similar conventions for codegen for statements.

53 / 1

Code generation for register machines
def codegen (s : AST, target : Register)

: List [Instruction]

def codegenExpr (exp : Expr, target : Register)
: List [Instruction]

Important convention 1: The result of evaluating the expression
is returned in register target.

Important convention 2: The code generated by
codegenExpr(e, i) can use registers Ri, Ri+1, ...
upwards, but must leave the other registers R0 ... Ri-1
unchanged!

One way of thinking about this target is that it is used to track
where the stack pointer would point.

Similar conventions for codegen for statements.
54 / 1

Code generation for constants

def codegenExpr (exp : Expr, target : Register) = {
if exp is of shape

...
Const (n) then

List (I_LoadImm (target, n)) } }

55 / 1

Code generation for constants

def codegenExpr (exp : Expr, target : Register) = {
if exp is of shape

...
Const (n) then

List (I_LoadImm (target, n)) } }

56 / 1

Code generation for variables

def codegenExpr (exp : Expr, target : Register) = {
if exp is of shape

...
Ident (x) then

List (I_Load (target, x))

57 / 1

Code generation for variables

def codegenExpr (exp : Expr, target : Register) = {
if exp is of shape

...
Ident (x) then

List (I_Load (target, x))

58 / 1

Code generation for binary expressions

def codegenExpr (exp : Expr, target : Register) = {
if exp is of shape

...
Binop (lhs, op, rhs) then {

codegenExpr (rhs, target) ++
codegenExpr (lhs, target+1) ++
codegenBinop (op, target, target+1) }

where

def codegenBinop (op : Op, r1 : Register,
r2 : Register) = {

if op is of shape
Plus then List (I_Plus (r1, r2))
Minus then List (I_Minus (r1, r2))
Times then List (I_Times (r1, r2))
Divide then List (I_Divide (r1, r2)) } }

59 / 1

Code generation for binary expressions

def codegenExpr (exp : Expr, target : Register) = {
if exp is of shape

...
Binop (lhs, op, rhs) then {

codegenExpr (rhs, target) ++
codegenExpr (lhs, target+1) ++
codegenBinop (op, target, target+1) }

where

def codegenBinop (op : Op, r1 : Register,
r2 : Register) = {

if op is of shape
Plus then List (I_Plus (r1, r2))
Minus then List (I_Minus (r1, r2))
Times then List (I_Times (r1, r2))
Divide then List (I_Divide (r1, r2)) } }

60 / 1

Code generation for binary expressions

Note that the call codegenExpr(lhs, target+1) in

Binop (lhs, op, rhs) then {
codegenExpr (rhs, target) ++
codegenExpr (lhs, target+1) ++
codegenBinop (op, target, target+1) }

leaves the result of the first call codegenExpr(rhs,
target) in the register target unchanged by our
assumptions that codegenExpr never modifies registers
below its second argument.

Please convince yourself that each clause of codegenExpr
really implements this guarantee!

61 / 1

Code generation for binary expressions

Note that the call codegenExpr(lhs, target+1) in

Binop (lhs, op, rhs) then {
codegenExpr (rhs, target) ++
codegenExpr (lhs, target+1) ++
codegenBinop (op, target, target+1) }

leaves the result of the first call codegenExpr(rhs,
target) in the register target unchanged by our
assumptions that codegenExpr never modifies registers
below its second argument.

Please convince yourself that each clause of codegenExpr
really implements this guarantee!

62 / 1

Example (x*3)+4

Compiling the expression (x*3)+4 (to target register r17, say)
gives:

LoadImm r17 4
LoadImm r18 3
Load r19 x
Times r18 r19
Plus r17 r18

63 / 1

Example (x*3)+4

Compiling the expression (x*3)+4 (to target register r17, say)
gives:

LoadImm r17 4
LoadImm r18 3
Load r19 x
Times r18 r19
Plus r17 r18

64 / 1

Example (x*3)+4

Compiling the expression (x*3)+4 (to target register r17, say)
gives:

LoadImm r17 4
LoadImm r18 3
Load r19 x
Times r18 r19
Plus r17 r18

65 / 1

How can this be improved (1)?

Let’s use commutativity of addition (a+b = b+a) and compile
4+(x*3)! When we compile it, we obtain:

LoadImm r17 3
Load r18 x
Times r17 r18
LoadImm r18 4
Plus r17 r18

How is this better?

66 / 1

How can this be improved (1)?

Let’s use commutativity of addition (a+b = b+a) and compile
4+(x*3)! When we compile it, we obtain:

LoadImm r17 3
Load r18 x
Times r17 r18
LoadImm r18 4
Plus r17 r18

How is this better?

67 / 1

How can this be improved (1)?

Let’s use commutativity of addition (a+b = b+a) and compile
4+(x*3)! When we compile it, we obtain:

LoadImm r17 3
Load r18 x
Times r17 r18
LoadImm r18 4
Plus r17 r18

How is this better?

68 / 1

Side by side

Compilation of (x*3)+4

LoadImm r17 4
LoadImm r18 3
Load r19 x
Times r18 r19
Plus r17 r18

Compilation of 4+(x*3)

LoadImm r17 3
Load r18 x
Times r17 r18
LoadImm r18 4
Plus r17 r18

The translation on the left uses 3 registers, while the right only
two. We are currently assuming an unbounded number of
registers, so who cares ... For realistic CPUs the number of
registers is small, so smart translation strategies that save
registers are better. More on this later!

69 / 1

Side by side

Compilation of (x*3)+4

LoadImm r17 4
LoadImm r18 3
Load r19 x
Times r18 r19
Plus r17 r18

Compilation of 4+(x*3)

LoadImm r17 3
Load r18 x
Times r17 r18
LoadImm r18 4
Plus r17 r18

The translation on the left uses 3 registers, while the right only
two. We are currently assuming an unbounded number of
registers, so who cares ... For realistic CPUs the number of
registers is small, so smart translation strategies that save
registers are better. More on this later!

70 / 1

Side by side

Compilation of (x*3)+4

LoadImm r17 4
LoadImm r18 3
Load r19 x
Times r18 r19
Plus r17 r18

Compilation of 4+(x*3)

LoadImm r17 3
Load r18 x
Times r17 r18
LoadImm r18 4
Plus r17 r18

The translation on the left uses 3 registers, while the right only
two. We are currently assuming an unbounded number of
registers, so who cares ...

For realistic CPUs the number of
registers is small, so smart translation strategies that save
registers are better. More on this later!

71 / 1

Side by side

Compilation of (x*3)+4

LoadImm r17 4
LoadImm r18 3
Load r19 x
Times r18 r19
Plus r17 r18

Compilation of 4+(x*3)

LoadImm r17 3
Load r18 x
Times r17 r18
LoadImm r18 4
Plus r17 r18

The translation on the left uses 3 registers, while the right only
two. We are currently assuming an unbounded number of
registers, so who cares ... For realistic CPUs the number of
registers is small, so smart translation strategies that save
registers are better. More on this later!

72 / 1

Translation of statements

Similar to stack machine, except that arguments and results of
expressions are held in registers. We’ll see this in detail later.

Question: Does the codegenStatement method need to be
passed a target register (as opposed to ’hard-coding’ one)?
Answer: Yes, because statements may contain expressions,
e.g. x := x*y+3.

Now we do something more interesting.

73 / 1

Translation of statements

Similar to stack machine, except that arguments and results of
expressions are held in registers. We’ll see this in detail later.

Question: Does the codegenStatement method need to be
passed a target register (as opposed to ’hard-coding’ one)?
Answer: Yes, because statements may contain expressions,
e.g. x := x*y+3.

Now we do something more interesting.

74 / 1

Translation of statements

Similar to stack machine, except that arguments and results of
expressions are held in registers. We’ll see this in detail later.

Question: Does the codegenStatement method need to be
passed a target register (as opposed to ’hard-coding’ one)?

Answer: Yes, because statements may contain expressions,
e.g. x := x*y+3.

Now we do something more interesting.

75 / 1

Translation of statements

Similar to stack machine, except that arguments and results of
expressions are held in registers. We’ll see this in detail later.

Question: Does the codegenStatement method need to be
passed a target register (as opposed to ’hard-coding’ one)?
Answer: Yes, because statements may contain expressions,
e.g. x := x*y+3.

Now we do something more interesting.

76 / 1

Translation of statements

Similar to stack machine, except that arguments and results of
expressions are held in registers. We’ll see this in detail later.

Question: Does the codegenStatement method need to be
passed a target register (as opposed to ’hard-coding’ one)?
Answer: Yes, because statements may contain expressions,
e.g. x := x*y+3.

Now we do something more interesting.

77 / 1

Bounded register numbers

It’s easy to compile to register machine code, when the number
of registers is unlimited. Now we look at compilation to register
machines with a fixed number of registers.

Let’s go to the other extreme: just one register called
accumulator. Operations take one of their arguments from the
accumulator, and store the result in the accumulator. Additional
arguments are taken from the top of the stack.

Why is this interesting? We can combine two strategies:
I While > 1 free registers remain, be ’greedy’: use the

register machine strategy discussed above for compilation.
I When the limit is reached (ie. when there is one register

left), revert to the accumulator strategy, using the last
register as the accumulator.

The effect is that most expressions get the full benefit of
registers, while unusually large expressions are handled
correctly.

78 / 1

Bounded register numbers
It’s easy to compile to register machine code, when the number
of registers is unlimited. Now we look at compilation to register
machines with a fixed number of registers.

Let’s go to the other extreme: just one register called
accumulator. Operations take one of their arguments from the
accumulator, and store the result in the accumulator. Additional
arguments are taken from the top of the stack.

Why is this interesting? We can combine two strategies:
I While > 1 free registers remain, be ’greedy’: use the

register machine strategy discussed above for compilation.
I When the limit is reached (ie. when there is one register

left), revert to the accumulator strategy, using the last
register as the accumulator.

The effect is that most expressions get the full benefit of
registers, while unusually large expressions are handled
correctly.

79 / 1

Bounded register numbers
It’s easy to compile to register machine code, when the number
of registers is unlimited. Now we look at compilation to register
machines with a fixed number of registers.

Let’s go to the other extreme: just one register called
accumulator. Operations take one of their arguments from the
accumulator, and store the result in the accumulator. Additional
arguments are taken from the top of the stack.

Why is this interesting?

We can combine two strategies:
I While > 1 free registers remain, be ’greedy’: use the

register machine strategy discussed above for compilation.
I When the limit is reached (ie. when there is one register

left), revert to the accumulator strategy, using the last
register as the accumulator.

The effect is that most expressions get the full benefit of
registers, while unusually large expressions are handled
correctly.

80 / 1

Bounded register numbers
It’s easy to compile to register machine code, when the number
of registers is unlimited. Now we look at compilation to register
machines with a fixed number of registers.

Let’s go to the other extreme: just one register called
accumulator. Operations take one of their arguments from the
accumulator, and store the result in the accumulator. Additional
arguments are taken from the top of the stack.

Why is this interesting? We can combine two strategies:

I While > 1 free registers remain, be ’greedy’: use the
register machine strategy discussed above for compilation.

I When the limit is reached (ie. when there is one register
left), revert to the accumulator strategy, using the last
register as the accumulator.

The effect is that most expressions get the full benefit of
registers, while unusually large expressions are handled
correctly.

81 / 1

Bounded register numbers
It’s easy to compile to register machine code, when the number
of registers is unlimited. Now we look at compilation to register
machines with a fixed number of registers.

Let’s go to the other extreme: just one register called
accumulator. Operations take one of their arguments from the
accumulator, and store the result in the accumulator. Additional
arguments are taken from the top of the stack.

Why is this interesting? We can combine two strategies:
I While > 1 free registers remain, be ’greedy’: use the

register machine strategy discussed above for compilation.

I When the limit is reached (ie. when there is one register
left), revert to the accumulator strategy, using the last
register as the accumulator.

The effect is that most expressions get the full benefit of
registers, while unusually large expressions are handled
correctly.

82 / 1

Bounded register numbers
It’s easy to compile to register machine code, when the number
of registers is unlimited. Now we look at compilation to register
machines with a fixed number of registers.

Let’s go to the other extreme: just one register called
accumulator. Operations take one of their arguments from the
accumulator, and store the result in the accumulator. Additional
arguments are taken from the top of the stack.

Why is this interesting? We can combine two strategies:
I While > 1 free registers remain, be ’greedy’: use the

register machine strategy discussed above for compilation.
I When the limit is reached (ie. when there is one register

left), revert to the accumulator strategy, using the last
register as the accumulator.

The effect is that most expressions get the full benefit of
registers, while unusually large expressions are handled
correctly.

83 / 1

Bounded register numbers
It’s easy to compile to register machine code, when the number
of registers is unlimited. Now we look at compilation to register
machines with a fixed number of registers.

Let’s go to the other extreme: just one register called
accumulator. Operations take one of their arguments from the
accumulator, and store the result in the accumulator. Additional
arguments are taken from the top of the stack.

Why is this interesting? We can combine two strategies:
I While > 1 free registers remain, be ’greedy’: use the

register machine strategy discussed above for compilation.
I When the limit is reached (ie. when there is one register

left), revert to the accumulator strategy, using the last
register as the accumulator.

The effect is that most expressions get the full benefit of
registers, while unusually large expressions are handled
correctly.

84 / 1

