
Compilers and computer architecture
From strings to ASTs (2):

context free grammars

Martin Berger 1

October 2019

1Email: M.F.Berger@sussex.ac.uk, Office hours: Wed 12-13 in
Chi-2R312

1 / 1

M.F.Berger@sussex.ac.uk

Recall the function of compilers

2 / 1

Recall we are discussing parsing

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

3 / 1

Introduction

Remember, we want to take a program given as a string and:
I Check if it’s syntactically correct, e.g. is every opened

bracket later closed?
I Produce an AST to facilitate efficient code generation.

4 / 1

Introduction

while(n > 0){
n--;
res *= 2; }

T_while

T_greater

T_var (n) T_num (0)

T_semicolon

T_decrement

T_var (n)

T_update

T_var (res) T_mult

T_var (res) T_num (2)

5 / 1

Introduction

We split that task into two phases, lexing and parsing. Lexing
throws away some information (e.g. how many white-spaces)
and prepares a token-list, which is used by the parser. The
token-list simplifies the parser, because some detail is not
important for syntactic correctness:

if x < 2 + 3 then P else Q

is syntactically correct exactly when

if y < 111 + 222 then P else Q

6 / 1

Introduction
The token-list simplifies the parser, because some detail is not
important for syntactic correctness:

if x < 2 + 3 then P else Q

is syntactically correct exactly when

if y < 111 + 222 then P else Q

So from the point of view of the next stage (parsing), all we
need to know is that the input is

T_if T_var T_less T_int T_plus T_int T_then ...

Of course we cannot throw away the names of variables etc
completely, as the later stages (type-checking and code
generation) need them. They are just irrelevant for syntax
checking. We keep them and our token-lists are like this

T_if T_var ("x") T_less T_int (2) T_plus ...

7 / 1

Two tasks of syntax analysis
As with the lexical phase, we have to deal with two distinct
tasks.
I Specifying that the syntactically correct programs (token

lists) are.
I Checking if an input program (token list) is syntactically

correct according to the specification, and output a
corresponding AST.

Let’s deal with specification first. What are our options? How
about using regular expressions for this purpose?

Alas not every language can be expressed in these formalisms.
Example:

Alphabet = {′(′,′)′}.

Language = all balanced parentheses (), ()(), (()),
((()(()())()(()))), ..., note: the empty string is balanced.

8 / 1

FSAs/REs can’t count

Let’s analyse the situation a bit more. Why can we not describe
the language of all balanced parentheses using REs or FSAs.

Each FSA has only a fixed number (say n) of states. But what if
we have more than n open brackets before we hit a closing
bracket?

Since there are only n states, when we reach the n open
bracket, we must have gone back to a state that we already
visited earlier, say when we processed the i-th bracket with
i < n. This means the automaton treats i as it does n, leading
to confusion.

Summary: FSAs can’t count, and likewise for REs (why?).

9 / 1

Lack of expressivity of regular expressions & FSAs

Why is it a problem for syntax analysis in programming
languages if REs and FSAs can’t count?

Because programming languages contain many bracket-like
constructs that can be nested, e.g.

begin ... end
do ... while
if (...) then { ... } else { ... }
3 + (3 - (x + 6))

But we must formalise the syntax of our language if we want to
computer to process it. So we need a formalism that can
’count’.

10 / 1

Problem

What we are looking for is something like REs, but more
powerful:

regular expression/FSA
lexer

=
???

parser

Let me introduce you to: context free grammars (CFGs).

11 / 1

Context free grammars

Programs have a naturally recursive and nested structure: A
program is e.g.:
I if P then Q else Q′, where P, Q, Q′ are programs.
I x := P, where P is a program.
I begin x := 1; begin ... end; y := 2; end

CFGs are a generalisation of regular expression that is ideal for
describing such recursive and nested structures.

12 / 1

Context free grammar

A context-free grammar is a tuple (A,V , Init ,R) where
I A is a finite set called alphabet.
I V is a finite, non-empty set of variables.
I A ∩ V = ∅.
I Init ∈ V is the initial variable.
I R is the finite set of reductions, where each reduction in R

is of the form (l , r) such that
I l is a variable, i.e. l ∈ V .
I r is a string (possibly empty) over the new alphabet A ∪ V .

We usually write l → r for (l , r) ∈ R.

Note that the alphabet are often also called terminal symbols,
reductions are also called reduction steps or transitions or
productions, some people say non-terminal symbol for
variable, and the initial variable is also called start symbol.

13 / 1

Context free grammar
Example:
I A = {a,b}.
I V = {S}.
I The initial variable is S.
I R contains only three reductions:

S → a S b
S → S S
S → ε

Recall that ε is the empty string.

Now the CFG is (A,V ,S,R).

The language of balanced brackets with a being the open
bracket, and b being the closed bracket!

To make this intuition precise, we need to say precisely what
the language of a CFG is.

14 / 1

The language accepted by a CFG
The key idea is simple: replace the variables according to
the reductions.

Given a string s over A ∪ V , ie. the alphabet and variables, any
occurrence of a variable T in s can be replaced by the string
r1...rn, provided there is a reduction T → r1...rn.

For example if we have a reduction

S → a T b

then we can rewrite the string

aaSbb

to
aaaTbbb

15 / 1

The language accepted by a CFG

How do we start this rewriting of variables? With the initial
variable.

When does this rewriting of variables stop? When the string we
arrive at by rewriting in a finite number of steps from the initial
variable contains no more variables.

16 / 1

The language accepted by a CFG

Then: the language of a CFG is the set of all strings over the
alphabet of the CFG that can be arrived at by rewriting from the
initial variable.

17 / 1

The language accepted by a CFG
Let’s do this with the CFG for balanced brackets (A,V ,S,R)
where
I A = {(,)}.
I V = {S}.
I The initial variable is S.
I Reductions R are S → (S),S → SS, and S → ε

S → (S)

→ (SS)

→ ((S)S)

→ (((S))S)

→ (((S))SS)

→ (((S))εS) = (((S))S)

→ (((ε))S) = ((())S)

→ ((())ε) = ((()))

18 / 1

Question: Why / how can CFGs count?

Why / how does the CFG (A,V ,S,R) with

S → (S)

S → S S
S → ε

count?

Because only S → (S) introduces new brackets. But by
construction it always introduces a closing bracket for each new
open bracket.

19 / 1

The language accepted by a CFG: infinite reductions
Note that many CFGs allow infinite reductions: for example with
the grammar the previous slide we can do this:

S → (S)

→ ((S))

→ (((S)))

→ ((((S))))

→ (((((S)))))

→ ((((((S))))))

...

Such infinite reductions don’t affect the language of the
grammar. Only sequences of rewrites that end in a string free
from variables count towards the language.

20 / 1

The language accepted by a CFG
If you like formal definitions ...

Given a fixed CFG G = (A,V ,S,R). For arbitrary strings
σ, σ′ ∈ (V ∪ A)∗ we define the one-step reduction relation⇒
which relates strings from (V ∪ A)∗ as follows.
σ ⇒ σ′ if and only if:
I σ = σ1lσ2 where l ∈ V , and σ1, σ2 are strings from

(V ∪ A)∗.
I There is a reduction l −→ γ in R.
I σ′ = σ1γσ2.

The language accepted by G, written lang(G) is given as
follows.

lang(G) def
= {γn || S → γ1 → · · · → γn, where γn ∈ A∗}

The sequence S → γ1 → · · · → γn is called derivation.

Note: only strings free from variables can be in lang(G).
21 / 1

Example CFG
Consider the following CFG where while, if, ; etc are
elements of the alphabet, and M is a variable.

M → while M do M
M → if M then M
M → M;M

...

If M is the starting variable, then we can derive

M → M;M
→ M;if M then M
→ M;if M then while M do M
...

We do this until we reach a string without variables.
22 / 1

Some conventions regarding CFGs

Here is a collection of conventions for making CFGs more
readable. You will find them a lot when programming languages
are discussed.

Variables are CAPITALISED, the alphabet is lower case (or vice
versa).

Variables are in BOLD, the alphabet is not (or vice versa).

Variables are written in 〈angle-brackets〉, the alphabet isn’t.

23 / 1

Some conventions regarding CFGs
Instead of multiple reductions from the same variable, like

N → r1

N → r2

N → r3

we write
N → r1 || r2 || r3

Instead of

P → if P then P || while P do P

We often write

P,Q → if P then Q || while P do Q

Finally, many write ::= instead of→.
24 / 1

Simple arithmetic expressions

Let’s do another example. Grammar:

E → E + E || E ∗ E || (E) || 0 || 1 || ...

The language contains:
I 7
I 7 ∗ 4
I 7 ∗ 4 + 222
I 7 ∗ (4 + 222) ...

25 / 1

A well-known context free grammar

R → ∅ || ε || ′c′ || R + R || RR || R∗ || (R)

What’s this?

(The syntax of) regular expressions can be described by a CFG
(but not by an RE)!

26 / 1

REs vs CFGs

Since regular expressions are a special case of CFGs, could
we not do both, lexing and parsing, using only CFGs?

In principle yes, but lexing based on REs (and FSAs) is simpler
and faster!

27 / 1

Example: Java grammar

Let’s look at the CFG for a real language:

https://docs.oracle.com/javase/specs/jls/se13/
html/jls-19.html

28 / 1

https://docs.oracle.com/javase/specs/jls/se13/html/jls-19.html
https://docs.oracle.com/javase/specs/jls/se13/html/jls-19.html

CFGs, what’s next?

Recall we were looking for this:

regular expression/FSA
FSA

=
???

parser

And the answer was CFGs. But what is a parser?

regular expression/FSA
FSA

=
CFG
???

29 / 1

CFGs, what’s next?

CFGs allow us to specify the grammar for programming
languages. But that’s not all we want. We also want:
I An algorithm that decided whether a given token list is in

the language of the grammar or not.
I An algorithm that converts the list of tokens (if valid) into an

AST.

The key idea to solving both problems in one go is the parse
tree.

30 / 1

CFG vs AST

Here is a grammar that you were asked to write an AST for in
the tutorials.

P ::= x := e | if0 e then P else P
| whileGt0 e do P | P; P

e ::= e + e | e - e | e * e | (e) | e % e
| x | 0 | 1 | 2 | ...

31 / 1

CFG vs AST

Here’s a plausible definition of ASTs for the language: Syntax.java

32 / 1

CFG vs AST

Do you notice something?

Looks very similar. The CFG is (almost?) a description of data
type for the AST.

This is no coincidence, and we will use this similarity to
construct the AST as we parse, in that we will see the parsing
process as a tree. How?

33 / 1

Derivations and parse trees

Recall that a derivation in a CFG (A,V , I,R) is a sequence

I → t1 → t2 → · · · → tn

where tn is free from variables, and each step is goverend by a
reduction from R.

We can drawn each derivation as a tree, called parse tree. The
parse tree tells us how the input token list ’fits into’ the
grammar, e.g. which reduction we applied and when to
’consume’ the input.
I The start symbol I is the tree’s root.
I For each reduction X → 〈y1, ..., yn〉 we add all the yi as

children to node X .
I.e. nodes in the tree are elements of A ∪ V . Let’s look at an
example.

34 / 1

Example parse tree

Recall our CFG for arithmetic expressions: Let’s do another
example. Grammar:

E → E + E || E ∗ E || (E) || 0 || 1 || ...

Let’s say we have the string "4 * 3 + 17". Let’s parse this string
and build the corresponding parse tree.

35 / 1

Example parse tree

E → E + E
→ E ∗ E + E
→ 4 ∗ E + E
→ 4 ∗ E + 17
→ 4 ∗ 3 + 17

E

E + E

E * E

4

17

3

Let’s do this in detail on the board.

36 / 1

Derivations and parse trees

The following is important about parse trees.
I Terminal symbols are at the leaves of the tree.
I Variables symbols are at the non-leave nodes.
I An in-order traversal of the tree returns the input string.
I The parse tree reveals bracketing structure explicitly.

37 / 1

Left- vs rightmost derivation

BUT ... usually there are many derivations for a chosen string,
giving the same parse tree. For example:

E

E + E

E * E

4

17

3

E → E + E
→ E ∗ E + E
→ 4 ∗ E + E
→ 4 ∗ E + 17
→ 4 ∗ 3 + 17

E → E + E
→ E ∗ E + E
→ E ∗ 3 + E
→ E ∗ 3 + 17
→ 4 ∗ 3 + 17

Canonical choices:
I Left-most: always replace the left-most variable.
I Right-most: always replace the right-most variable.
I NB the examples above were neither left-nor right-most!

In parsing we usually use either left- or rightmost derivations to
construct a parse tree.

38 / 1

Left- vs rightmost derivation

Question: do left- and rightmost derivations lead to the same
parse tree?

Answer: For a context-free grammar: YES. It really doesn’t
matter in what order variables are rewritten. Why? Because the
rest of the string is unaffected by rewriting a variable, so we can
modify the order.

39 / 1

Which rule to choose?

Alas there is a second degree of freedom: which rule to
choose?

In constrast: it can make a big difference which rule we apply
when rewriting a variable

This leads to an important subject: ambiguity.

40 / 1

Ambiguity

41 / 1

Ambiguity
In the grammar

E → E + E || E ∗ E || (E) || 0 || 1 || ...

the string 4 * 3 + 17 has two distinct parse trees!

E

E + E

E * E

4

17

3

E

E * E

4 +E

3

E

17

A CFG with this property is called ambiguous.
42 / 1

Ambiguity

More precisely: a context-free grammar is ambiguous if there
is a string in the language of the grammar that has more than
one parse tree.

Note that this has nothing to do with left- vs right-derivation.
Each of the ambiguous parse trees has a left- and a
right-derivation.

43 / 1

Ambiguity

We also have ambiguity in natural language, e.g.

44 / 1

Ambiguity

Ambiguity is programming languages is bad, because it leaves
the meaning of a program unclear, e.g. the compiler should
generate different code for 1 + 2 ∗ 3 when it’s uderstood as
(1 + 2) ∗ 3 than for 1 + (2 ∗ 3).

Can we automatically check whether a grammar is
ambigouous?

Bad news: ambiguity of grammars is undecidable, i.e. no
algorithm can exist that takes as input a CFG and returns
"Ambiguous" or "Not ambiguous" correctly for all CFGs.

45 / 1

Ambiguity

There are several ways to deal with ambiguity.
I Parser returns all possible parse trees, leaving choice to

later compiler phases. Example: combinator parsers often
do this, Earley parser. Downside: kicks can down the road
... need to disambiguate later (i.e. doesn’t really solve the
problem), and does too much work if some of the parse
trees are later discarded.

I Use non-ambiguous grammar. Easier said than done ...
I Rewriting the grammar to remove ambiguity. For

example by enforcing precedence that * binds more tightly
than +. We look at this now.

46 / 1

Ambiguity: grammar rewriting

The problem with

E → E + E || E ∗ E || (E) || 0 || 1 || ...

is that addition and multiplication have the same status. But in
our everyday understanding, we think of a ∗ b + c as meaning
(a ∗ b) + c. Moreover, we evaluate a + b + c as (a + b) + c. But
there’s nothing in the naive grammar that ensures this.

Let’s bake these preferences into the grammar.

47 / 1

Ambiguity: grammar rewriting

Let’s rewrite

E → E + E || E ∗ E || (E) || 0 || 1 || ...

to
E → F + E || F
F → N ∗ F || N || (E) ∗ F || (E)
N → 0 || 1 || ...

Examples in class.

48 / 1

If-Then ambiguity

Here is a problem that often arises when specifying
programming languages.

M → if M then M
|| if M then M else M
|| ...

49 / 1

If-Then ambiguity

Now we can find two distinct parse trees for

if B then if B’ then P else Q

if

B if Q

PB'

if

B if

QPB'

50 / 1

If-Then ambiguity
We solved the */+ ambiguity by giving * precedence. At the level
of grammar that meant we had + coming ’first’ in the grammar.

Let’s do this for the if-then ambiguity by saying:

else always closes the nearest unclosed if, so
if-then-else has priority over if-then.

M → ITE only if-then-else
|| BOTH both if-then and

if-then-else
|| ...

ITE → if M then ITE else ITE
|| ... other reductions

BOTH → if M then M
|| if M then ITE else BOTH no other reductions

51 / 1

If-Then ambiguity, aka the dangling-else problem

M → ITE only if-then-else
|| BOTH both if-then and

if-then-else
ITE → if M then ITE else ITE

|| ... other reductions
BOTH → if M then M

|| if M then ITE else BOTH no other reductions

if

B if Q

PB'

if

B if

QPB'

52 / 1

Ambiguity: general algorithm?

Alas there is no algorithm that can rewrite all ambiguous CFGs
into unambiguous CFGs with the same language, since some
CFGs are inherently ambiguous, meaning they are only
recongnised by ambiguous CFGs.

Fortunately, such languages are esoteric and not relevant for
programming languages. For languages relevant in
programming, it is generally straightforward to produce an
unambiguous CFG.

I will not ask you in the exam to convert an ambiguous CFG
into an unambiguous CFG. You should just know what
ambiguity means in parsing and why it is a problem.

53 / 1

