
Compilers and computer architecture:
From strings to ASTs (1):

finite state automata for lexing

Martin Berger 1

October 2019

1Email: M.F.Berger@sussex.ac.uk, Office hours: Wed 12-13 in
Chi-2R312

1 / 1

M.F.Berger@sussex.ac.uk

Recall the function of compilers

2 / 1

Plan for this week

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

Remember the shape of compilers?

We learned about regular expressions
(REs). They enable us to specify simple
language (finite and infinite).

The question we need to answer is: how
to decide, given a string s and a regular
expression R, if s ∈ lang(R)?

We will later see that this is the main
step towards an algorithm for lexing
(tokenisation).

3 / 1

Finite state automata

A finite state automaton (FSA) is an algorithm that, given a
string over an alphabet A, answers with TRUE or FALSE. The
strings that the FSA says TRUE to is the language of the FSA.

In other words, FSAs decide languages.

FSAs are easiest explained in pictures. Here is one with the
alphabet {0,1}

4 / 1

Finite state automata

initial terminal
0

1

1

1

0

A word w is accepted by an FSA exactly if there is a path in the
FSA from the initial state to a terminal state such that the edge
labels we encounter on this path exactly spell the word w .

What language does the FSA above accept?

(1|01+)0∗
5 / 1

Finite state automata

A transition or edge s a−→ t is to be understood as:

If the automaton is in state s and reads (’eats’) the character a
then it moves to state t .

If we are at the end of the input, and the automaton is in an
terminal (also called accepting) state, the input string as a
whole is accepted and in the language of the automaton.

If we cannot find a path that terminates at the end of the input,
and the automaton is NOT in an accepting state, the input
string as a whole is rejected and is NOT in the language of the
automaton.

6 / 1

FSA, formal definition

A finite state automaton (FSA) is a tuple A = (A,S, i ,F ,R)
such that the following is true.
I A is a finite set, called the alphabet of the automaton.
I S is a non-empty finite set of states.
I i ∈ S is the initial state.
I F ⊆ S is the set of terminal, or accepting states of the

automaton. Note: F can be empty. (What happens then?)
I R is the transition relation, i.e. it is a relation on states,

characters and states. More formally, R is a subset of
S × A× S. We often write s α−→ t instead of (s, α, t) ∈ R

We say A is deterministic if whenever s α−→ t and s α−→ t ′

then t = t ′. Otherwise A is non-deterministic.

7 / 1

FSAs, deterministic vs non-deterministic
Which one is deterministic, which on is non-deterministic?

0

11

1

0

0

1

1

0

The finite state automaton on the left is deterministic, that on
the right non-deterministic. Each has one accepting state,
indicated by double circles. Initial states are often drawn with
an incoming arrow without source.

8 / 1

FSAs, accepting a string

A string (α1, ..., αn) is accepted by the automaton if and only if
there is a path

i α1−→ s1
α2−→ s2 · · · sn−1

αn−→ sn

where i is the initial state, and sn is a terminal state. Note that
the states i , s0, ..., sn don’t have to be distinct.

The language of an automaton A is the set of all accepted
strings. We write lang(A) for this language.

9 / 1

FSA examples

In class.

10 / 1

FSAs vs REs

Why do we bother introducing FSAs when we’ve got REs to
specify the lexical structure of a programming language?

Because we need an algorithm to decide membership in the
language specified by the RE, and convert the input to a
token list. FSA are (almost) algorithms. REs and FSAs are
connected by the following amazing and surprising facts.
I For each regular expression R over alphabet A, there is an

deterministic FSA F over A such that lang(R) = lang(F),
and vice versa.

I For each non-deterministic FSA F over alphabet A, there is
an deterministic FSA F ′ over A such that
lang(F ′) = lang(F), and vice versa.

11 / 1

Deterministic vs non-deterministic FSA: why bother?

An aside on the relationship between deterministic and
non-deterministic FSAs: why bother at all with
non-deterministic FSAs? Two reasons.
I Non-deterministic FSA are usually much smaller (fewer

states) than the deterministic FSAs accepting the same
language (often exponentially so: if the NFA has n states,
the DFA might have approximately 2n states).

I Determinstic FSAs can be implemented on real
machines. Question: Can non-deterministic FSAs be
implemented (directly)?

I Non-deterministic FSAs can be converted to deterministic
automata recognising the same language.

This is a familiar story: we look at something from two angles
(1) convenient for humans vs (2) convenient for the machine.

12 / 1

FSAs vs REs

Given that REs and FSAs can describe the same language,
how can we get from an RE to an FSA?

Going straight from REs to deterministic FSAs is complicated.
So we go there in several steps.

NFA, epsilon
automaton DFA

Table-driven
implementation of

DFA
Regular

expressions
Lexical

specification

Brzozowski derivatives

We are using ε-automata which can be seen as a special case
of NFAs. ε-automata make the conversion from REs to Java
implementations easier.

13 / 1

ε-automata
Formally, an ε-automaton with alphabet A is a (usually
non-deterministic) FSA with alphabet A ∪ {ε}.

The definition of language ε-automaton accepted by an
ε-automaton is slightly different from the definition for
non-deterministic) FSAs.

What is ε for? We use ε-labelled transitions s ε−→ t to move
from state s to state t , but without consuming input. This will
be convenient later. What language does this ε-automaton
accept?

initial

terminal1 terminal2

epsilon epsilon

1
0

The language 0∗|1∗ as a regular expression.
14 / 1

ε-automata

So, an ε-automaton with alphabet A is an FSA with alphabet
A ∪ {ε}, but the language is different: the word w over the
alphabet A is accepted by ε-automaton A precisely when there
is a word w ′ over A ∪ {ε} such that:
I If we remove all ε from w ′ we obtain w .
I w ′ ∈ lang(A) as a normal (i.e. walking any edge consumes

the first character of the input string).
We write langε(A) for the language of an ε-automaton A.

Example word: “h e l ε l ε o” gives us two chances to change
state without consuming input and accept “hello”.

So we have

langε(A) = {w | w ′ ∈ lang(A),w is w ′ with ε removed}

15 / 1

ε-automata are enough for non-deterministic FSA

Non-determinism can always be translated to ε-automata that
are deterministic except for ε-transitions.

initial

terminal1 terminal2
1

0

1 1

initial

epsilon

terminal1 terminal2
1

0

1 1

epsilon

16 / 1

Translation of REs to FSAs

We will translate every kind of RE (∅, ε,R|R′, ...) into an FSA (an
ε-FSA to be precise).

We don’t need to details of each FSA in the translation, we will
only be manipulating the initial and final state. All our
translations have just one final state. We use the following
notation to represent the FSAs arising in our translations.

17 / 1

Translation of ∅

A

18 / 1

Translation of ε

epsilon

19 / 1

Translation of ′c′

c

20 / 1

Translation of (A)

A

(A)

21 / 1

Translation of A|B

A

B

epsilon

epsilon

epsilon

epsilon

A B

22 / 1

Translation of AB

A B

A B
epsilon

23 / 1

Translation of A∗

A

A
epsilon epsilon

epsilon

epsilon

24 / 1

Example translation

What’s the automaton that the RE (1|0)∗1 translates to?
(Writing e for ε)

e e e 1

1

0

e
e

ee

e

e

25 / 1

From NFAs (ε-automata) to DFAs

Remember the lexer construction pipeline?

NFA, epsilon
automaton DFA

Table-driven
implementation of

DFA
Regular

expressions
Lexical

specification

Brzozowski derivatives

Now we want to translate our NFAs (ε-automata) to DFAs,
because we can implement DFAs in e.g. Java (computers can’t
handle non-determinism).

26 / 1

From NFAs (ε-automata) to DFAs: ε-closure
Consider the last example.

e e e 1

1

0

e
e

ee

e

e

The ε-closure of a set of states S in an automaton is the set of
all states reachable from a state in S by 0 or more ε-transitions.

27 / 1

From NFAs (ε-automata) to DFAs: ε-closure.
Consider the last example.

e e e 1

1

0

e
e

ee

e

e

e e e 1

1

0

e
e

ee

e

e

e e e 1

1

0

e
e

ee

e

e

e e e 1

1

0

e
e

ee

e

e

Now we construct a deterministic FSA using ε closure such that
both accept the same language!

28 / 1

From NFAs (ε-automata) to DFAs

Let (A,S, i ,F ,→) be an ε-automaton (A alphabet, S states,
i ∈ S initial state, F ⊆ S final states).

For each a ∈ A and X ⊆ S let a(X) = {y ∈ S | x ∈ X , x a−→ y}

Now the corresponding DFA (accepting the same language) is
given as follows.
I The new alphabet is A
I The new states are all non-empty subsets of S
I The new start state is the ε-closure of i .
I The new final states are all non-empty sets X ⊆ S such

that X ∩ F 6= ∅. (Why non-empty?)
I We have a new transition from X to Y with the label a

exactly when Y = ε-closure of a(X).

29 / 1

From NFAs (ε-automata) to DFAs
The example

A B

C

D

E

F

G H I Je e e 1

1

0

e
e

ee

e

e

J

A B

C

D

E

F

G H I Je e e 1

1

0

e
e

ee

e

e

ABCDHI

ABCDFGHI

ABCDEGHIJ

0
0

0

1

1
1

Becomes

Unreachable states omitted

J
30 / 1

From NFAs (ε-automata) to DFAs

0
0

0

1

1
1

Check that the language of the new FSA is (1|0)∗1 as required.

31 / 1

From NFAs (ε-automata) to DFAs

Do you notice something? How many states does the new
automaton have?

Consider our running example. It has 10 states. How many
states would it DFA version have?

It has 210 − 1 = 1023 ...

This exponential blowup is an intrinsic problem of converting
non-deterministic automata into deterministic ones. It has
nothing to do with ε-automata.

Fortunately in many cases, most of them are inactive and can
be ignored. However in pathological cases, all states are
needed.

32 / 1

From NFAs (ε-automata) to DFAs

This example shows that the translation in the naive form
presented here is not particularly efficient: of the 1023 states it
introduces, only 3 are needed (active). It is possible to improve
the translation, so the inactive states disappear.

33 / 1

Implementation of DFAs and NFAs

Remember the lexer construction pipeline?

NFA, epsilon
automaton DFA

Table-driven
implementation of

DFA
Regular

expressions
Lexical

specification

Brzozowski derivatives

Now we want to translate DFAs into real programs e.g. Java.

34 / 1

Implementation of DFAs
A DFA is naturally implemented as a 2-dimensional table
(array) T. Columns are indexed by the alphabet, rows are
indexed by the states. Array element at row X and character c
stores the the next state in the automaton when starting in state
X and consuming c.

A

B

C

0
0

0

1

1
1

A

B

C

0
0

1

1

0
1

B C
C B
B C

A
B
C

0 1

In code: p/t/o

35 / 1

Implementation of DFAs

A

B

C

0
0

1

1

0
1

B C
C B
B C

A
B
C

0 1

def scan (input : Array [Char])
: Boolean = {

val table = ... // transitions
var i = 0 // current character
var s = A // current state
val acceptingState = C
while (i < input.length) {

s = table [s, input[i]]
i += 1 }

return (s == acceptingState) }

Question: what if one of the state lacks outgoing transitions on
some labels? Answer: add artificial error states, and from the
error state a transition back to itself for every character.

36 / 1

Implementation of DFAs

This idea, using a 2-dimensional table to implement an FSA is
fundamental. Most (all?) real-world implementations of REs,
FSAs etc use variants of it. It is worth understanding well.

37 / 1

Implementation of DFAs
Many rows in the array are identical (all in the example below,
first and third row in the previous example). That is often the
case in the implementation of lexers. We can save space by
sharing rows (or columns):

A

B

C

0
0

0

1

1
1

A
B
C

0 1

B C

Disadvantage: extra indirection can be slower.

38 / 1

Outputting a token list

We have reached our intermediate goal: going from REs to
algorithms that decide the language of the RE, i.e. respond
with TRUE/FALSE for each input string. But in lexing we want a
token list (or an error message). Fortunately, this is only a small
variant of the decision problem.

Hello (123 then ...

should yield a token list:

T_Ident ("Hello"),
T_Left Bracket,
T_Num (123),
T_Then,
...

39 / 1

Mealy automata

We use Mealy automata, which is a variant of FSAs which
have not only an input action, but also an output action. A
picture says more than a 1000 words.

initial I F

T

H E N

eps T_if

eps

eps eps T_then

Output

Input

eps
eps

40 / 1

Mealy automata

initial I F

T

H E N

eps T_if

eps

eps eps T_then

Output

Input

eps
eps

With a Mealy automaton, when we have a path

i w1−→
u1

s1
w2−→
u2

s2 · · · sn−1
wn−→
un

sn

whenever we accept (and consume) the input string w1...wn we
create an output u1, ...,un. There are many variants, e.g.
Moore automata.

41 / 1

Mealy automata: implementation

We can implement Mealy automata by agumenting the
2-dimensional table with appropriate outputs that we
accumulate as we consume the input string.

42 / 1

Lexer generators
Lexers can be written by hand, but much easier to let the
computer do that work. Lexer generators take as input an
ordered list of REs (ordering gives priority, see below) together
with actions (think Mealy automaton) associated with each RE,
and returns a working lexer. Actions allow you to associate
Java code with regular expressions. Examples: Flex, JFlex.

Lexer generator upside:
I Lexer generators produce very fast lexers
I Lexer generators isolate the compiler writer from having to

worry about fast lexer implementations.
Lexer generator downside:
I Yet another thing to learn, and (like most software) tend to

be badly documented.
I An expert can probably produce faster lexers than a

generator.

43 / 1

Implementing lexers using regular expression libraries

Modern programming languages often have elaborate regular
expression libraries. They can be used for implementing lexers
too. But you have to ensure things like “longest-match” and
“keywords-first” heuristics.

Key disadvantage: regular expressions tend to be slow, so not
suitable for industrial strength compilers. But OK for toy
compilers.

44 / 1

Summary

In first approximation, lexing works like this
I Write an RE for the lexemes of each token class, e.g.

Number = [0-9]+, Keywords = ...

I Construct a big RE, matching all lexemes for all tokens.
R = Keywords | Identifier | Number | ...

I Construct an FSA (Mealy automaton) for R. Let a lexer
generator do this work.

45 / 1

Error handling in lexers

What if the lexer encounters a character in the input that does
not match any RE defining the lexical level of the language? It’s
important for good compilers to return helpful error messages
(not all compilers do this alas).

There’s a neat way using regular expressions, longest match
and priorities can also be used for error handling in lexers.

Use a RE that matches any character in the alphabet. Give this
RE the lowest priority. Because it matches any character it will
also always be a shortest possible match.

It catches anything that is not allowed by all previous REs. The
output associated with this RE can be used for error messages.

46 / 1

Conclusion

Lexer: takes a program as string, returns a list of tokens.

The point of lexing is to have a ROUGH classification of the
input program that enables the next stage (parsing) to
determine of the program is syntactically well-formed, and to
construct the AST. Regular expressions and FSAs are
convenient tools for implementation of lexers.

47 / 1

The material in the textbooks

I Dragon Book: Chapter 2.6, Chapter 3.
I Appel, Palsberg: Chapter 2.
I “Engineering a compiler”: Chapter 2: especially sections

2.1 to 2.5.

48 / 1

