
Compilers and computer architecture:
From strings to ASTs (1): lexing

Martin Berger 1

October 2019

1Email: M.F.Berger@sussex.ac.uk, Office hours: Wed 12-13 in
Chi-2R312

1 / 1

M.F.Berger@sussex.ac.uk

Recall the function of compilers

2 / 1

Plan for the next 9 weeks

Lexical analysis

Syntax analysis
(parsing)

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

Remember the shape of compilers?

For the next 9 weeks or so, we will
explore this pipeline step-by-step,
starting with lexing.

3 / 1

From strings to ASTs

The purposes of the lexing and parsing phase is twofold.
I To convert the input from strings (a representation that is

convenient for humans) to an abstract syntax tree (AST), a
representation that is convenient for (type-checking and)
code generation.

I Check syntactic correctness.

4 / 1

From strings to ASTs

We will later define in details what ASTs are, but for now, a
picture says more than 1000 words. We want to go from the
representation on the left to that on the right:

while(n > 0){
n--;
res *= 2; }

T_while

T_greater

T_var (n) T_num (0)

T_semicolon

T_decrement

T_var (n)

T_update

T_var (res) T_mult

T_var (res) T_num (2)

5 / 1

From strings to ASTs

while(n > 0){
n--;
res *= 2; }

T_while

T_greater

T_var (n) T_num (0)

T_semicolon

T_decrement

T_var (n)

T_update

T_var (res) T_mult

T_var (res) T_num (2)

Why? To make the backend and type-checking much easier
and faster: type-checking and code generation need acces to
components of the program. E.g. to generate code for if C
then Q else R we need to generate code for C. Q and R.
This is difficult directly from strings. The AST is a data
structure optimised for making this simple. ASTs use pointers
(references) to point to program components. CPUs can
maninpulate pointers very efficiently.

6 / 1

From strings to ASTs
It is possible to go in from strings to ASTs in one step (called
scannerless parsing). But that is complicated. Most compilers
use two steps.
I Lexical analysis (lexing).
I Syntactical analysis (parsing).

Another example of divide-and-conquer.

This will involve a bit of language theory and automata, some of
which you have already seen last year in one of the introductory
courses. You will also learn about tools for generating lexers
and parsers.

Knowing about this, (e.g. regular expressions, context-free
languages) is one of the most useful things to know as a
programmer, even if you’ll never write a compiler: just about
every application you’ll ever encounter will involve reading or
creating formal languages.

7 / 1

Lexical analysis (lexing)

The purpose of lexing is to prepare the input for the parser.
This involves several related jobs.
I Removing irrelevant detail (e.g. whitespace, tab-stops,

new-lines).
I Split the string into basic parts called tokens. You can think

of them as ’atoms’.
Why is using tokens useful?

8 / 1

Lexical analysis (lexing)

Why is using tokens useful?

Because for syntax analysis it’s not important if a variable is
called n or numberOfUsers, and likewise for x vs y 3 vs 4 etc.

In other words, the program

if n == 3 then x := 0 else x := 1

is syntactically correct exactly when

if numberOfUsers == 666 then y := 0 else z := 171717

is syntactically correct.

The precise choice of variable name is important later (for
type-checking and for code generation) so we keep the name of
the identifier for later phases. But syntactic correctness is
decided independently of this detail.

9 / 1

Lexical analysis (lexing)
Another reason why using tokens is useful?

Information hiding / modularisation: for syntax analysis it’s not
important if the syntax for conditionals is if then else or IF
THENDO ELSEDO etc. In other words, the reason why we deem

if n == 3 then x := 0 else x := 1

to be syntactically correct (in one language) is exactly the
same as the reason why we deem

IF n == 3 THENDO x := 0 ELSEDO x := 1

to be syntactically correct (in another language).

The precise choice of keywords name is irrelevant in later
stages, so let’s abstract it by way of a token representing
concrete keywords. That makes it much easier to change
language keywords later, only the lexer needs adaptation.

10 / 1

Lexical analysis (lexing)

Let’s look at an analogy. You can classify natural languages
sentences according to syntactic function. For example

Synchronised dancing is great!

This can be simplified as follows

Adjective︷ ︸︸ ︷
Synchronised dancing︸ ︷︷ ︸

Noun

Verb︷︸︸︷
is great︸ ︷︷ ︸

Adverb

Punctuation︷︸︸︷
!

Roughly: sentences of the form ...

Adjective Noun Verb Adverb Punctuation

... are syntactically correct in English.

11 / 1

Lexical analysis (lexing)
The process of going from string “Synchronised dancing is
great!” to list “Adjective Noun Verb Adverb Punctuation” is
lexing. Let’s break it down.

To work out if an English sentence is syntactically correct, we
can do the following:

I Classify every word in terms of its function (tokens), i.e.
perform lexical analysis.

I Check if the ordering of tokens is acceptable according to
the grammar of English. (This is parsing aka sytnax
analysis.)

Question: How do we know what the words are? Answer: We
have a concept of boundary, typically whitespace.

We do the same with computer languages.
12 / 1

Breaking down this process even further

Lexing/tokenisation can be seen as two separate steps:

I Start with String
I Split string on boundaries into List(String)
I Convert/classify the List(String) into List(Token)

Example:

I String: “Synchronised dancing is great!”
I List(String): [“Synchronised”, “dancing”, “is”, “great”, “!”]
I List(Token): [Adjective, Noun, Verb, Adverb, Punctuation]

In practise, those steps are often excuted in one go for
efficiency.

13 / 1

Question: why bother with this?

Recall that our goal is twofold:
I Produce an AST form the input string, because code

generation works with ASTs.
I Check syntactic correctness.

Both are much easier using a list of tokens, rather than a
string. So tokenisation is a form of simplification (information
hiding): it shields the next stage (parsing) from having to deal
with irrelevant information.

14 / 1

Question: why bother with this?

In summary, lexing has two beneficial effects.
I It simplifies the next stage, parsing (which checks syntactic

correctness and constructs the AST).
I It abstracts the rest of the compilers from the lexical detail

of the source language.

15 / 1

Lexical analysis (lexing)
When designing a programming language, or writing a
compiler, we need to decide what the basic constituents of
programs are, and what the grammatical structure of the
language is. There are many different ways of doing this. Let’s
look at one.
I Keywords (IF, ELSE, WHILE, ...), but not GIRAFFE
I Identifiers (x, i, username, ...), but not _+++17
I Integers (0, 1, 17, -3, ...), but not ...
I Floating point numbers (2.0, 3.1415, -16.993, ...)
I Binary operators (+, *, &&, ||, =, ==, !=, :=, ...)
I Left bracket
I Right bracket
I Token boundaries (whitespace, tab-stops, newlines,

semicolon, ...)
I ...

So the tokens are: Keywords, Identifiers, Integers, Floating
point numbers, Binary operators, Left bracket, Right bracket, ...

16 / 1

Example
Let’s look a the raw string

\t IF (x > 1 \n) \t\t\n THEN \tz := -3.01 \n

This gives rise to the following token list:
I Keyword: “IF”
I LeftBracket
I Ident: “x”
I Binop: “>”
I Int: “1”
I RightBracket
I Keyword: “THEN”
I Identifier: “z”
I Binop: “:=”
I Unop: “-”
I Float “3.01”

17 / 1

Lexical analysis (lexing): ingredients

Hence, to lex strings we need to decide on the following
ingredients.
I Tokens (representing sets of strings).
I Boundaries between tokens.
I Inhabitation of tokens, i.e. decide which strings are

classified by what tokens.
I An algorithm that inputs a strings and outputs a token list.
I What to do if we encounter an input that isn’t well-formed,

i.e. a string that cannot be broken down into a list of
tokens.

18 / 1

Example: Tokens and their inhabitation

For example the token class for Identifiers is inhabited by: e.g.
non-empty strings of letters, digits, and “_” (underscore),
starting with a letter. (This is the language designer’s choice.)

Token class Integers is inhabited by: e.g. non-empty strings of
digits.

Keywords: “ELSE”, “IF”, “NEW”, ... each is its own token class.

Whitespace: a non-empty string of blanks, newlines and
tab-stops. Not inhabiting any token classes, since irrelevant to
rest of compilation.

Can you see a problem with this?

19 / 1

Tokens and their inhabitation

Some strings can be described by more than one token, e.g.
“THEN” is an identifier and a keyword.

We must have a mechanism to deal with this: e.g. have
priorities like: if a string is both a keyword and an identifier, it
should be classified as a keyword. In other words, keywords
have priority over identifiers.

20 / 1

Tokens and their inhabitation

Aside: Some old programming languages let keywords be
identifiers, for example in PL/1 the following is valid (or
something close to it):

if if = then (if, else) then else = 1 else else = 3

Allowing identifiers also to be keywords is rarely useful, so most
modern programming languages prohibit it.

21 / 1

Tokens and their inhabitation

There is a second problem!

What about the string “IFTHEN”? Should it be the tokens “IF”
followed by “THEN”, or a single token standing for the identifier
“IFTHEN”? Usual answer: use longest match.

22 / 1

Tokens and their inhabitation

However, problems still remain. For efficiency, most lexers
usually scan their input from left to right, but only once! A
keyword might be a proper prefix of an identifier:

int formulaLength = 17; for i = 0 to ...

So the lexer can only classify strings by looking ahead.

How does the lexer know from looking ahead that the “for” in
“formulaLength” isn’t a keyword? Answer: because we know
what word boundaries are (such as whitespace, semicolon).

23 / 1

Tokens and their inhabitation

Question: how far does the lexer have to look ahead (in
Java-like languages) before it can decide whether for... is
the keyword for or the beginning of an identifier?

The more lookahead required, the less efficient the lexing
process. Some old language can require unbounded
lookahead. Modern languages require little lookahead (typically
1 character). Bear that in mind when designing a language.

24 / 1

Summary

The goal of lexical analysis is:
I Get rid of semantically irrelevant information (e.g.

whitespace, tab stops, syntax of keywords, ...)
I Give a rough classification (simplification) of the input to

simplify the next stage (parsing). In detail:
I Identify the lexical structure and tokens of the language.
I Partition the input string into small units (tokens) used by

the parser.

Lexing does a left-to-right scan of the input string, sometimes
with lookahead.

25 / 1

Tasks for the lexical stage

Let’s rephrase what we’ve just said in a slightly different
language. The point of the lexical phase is:

1. Description of the lexical structure of the language
(determine token classes). We use regular expressions
for this purpose.

2. From the description in (1) derive a scanning algorithm,
called lexer, that determines the token class of each lexical
unit. We use FSAs (finite state automata) for this.

26 / 1

Regular expressions

Regular expressions are a way of formally (= precisely)
describing the set of lexemes (= strings) associated with each
token. Informally, with REs we can say something like this:

An integer is a non-empty string of digits.

But we want to be more terse and precise than using natural
language.

Aside: Invented in the 1950s to study neurons / neural nets!
(Then called “nerve nets”.)

27 / 1

Preparation for regular expressions

An alphabet is a set of characters. Examples {1,4,7} is an
alphabet as is {a,b, c, ..., z}, as is the empty set.

A string over an alphabet A is a finite sequence elements from
A. Example with alphabet {a,b, c, ..., z}:

“hellomynameismartin”

""

Question: Is “hello my name is martin” a string over the same
alphabet?

Question: what are the strings that you can form over the
empty set as alphabet?

28 / 1

Preparation for regular expressions

A language over an alphabet A is a set of strings over A.
Examples over {a,b, c, ..., z}:
I ∅, the empty language.
I {””}.
I {”hellomynameismartin”}.
I {”hellomynameismartin”, ”hellomynameistom”}.
I {”hellomynameismartin”, ”hellomynameistom”, ””}.
I The set of all strings of even length over {a,b, c, ..., z}.
I The set of all strings of even length over {a,b}.
I What is the language of all strings over the alphabet
{0,1}?

Do you see what’s special about the last three examples? The
languages are infinite!

29 / 1

Specifying languages

Finite languages (= consisting of a finite number of strings) can
be given by listing all strings. This is not possible for infinite
languages (e.g. the language of all integers as a language over
{0, ...,9}).

Regular expressions are a mechanism to specify finite and
infinite languages.

This is the real point of regular expressions (and other formal
accounts of languages like context free languages that we see
later): to enable a terse description of languages that are too
large (typically infinite) to enumerate.

The set of all (lexically/syntactically valid) Java/C/Python/Rust
... programs is infinite.

30 / 1

Regular expressions

Regular expressions are a tool for specifying languages. You
can think of them as a “domain specific language” or an ’API’ to
specify languages. We will describe them precisely but
informally now.

31 / 1

Regular expressions

Let A be an alphabet, i.e. a set of characters. We now define
two things in parallel:
I The regular expressions over A.
I The language of each regular expression over A. We

denote the language of r.e. R by lang(R).

32 / 1

Regular expressions

We have 7 (basic) kinds of regular expressions over alphabet A
I ∅.
I ε.
I ′c′ for all c ∈ A.
I R|R′.
I RR′.
I R∗.
I (R).

Each specifies a language.

33 / 1

Regular expressions (1): ∅

Let A be an alphabet, i.e. a set of characters. The regular
expressions over A are given by the following rules.

∅ is a regular expression, denoting the empty set {}. Now
lang(∅) = {}.

34 / 1

Regular expressions (2): ε

Let A be an alphabet, i.e. a set of characters. The regular
expressions over A are given by the following rules.

ε is a regular expression, denoting the set {””}. We write
lang(ε) = {””}.

It’s important to realise that ∅ and ε are different regular
expressions, denoting different languages.

35 / 1

Regular expressions (3): alphabet characters

Let A be an alphabet, i.e. a set of characters. The regular
expressions over A are given by the following rules.

For each character c from A, ′c′ is a regular expression,
denoting the language

lang(′c′) = {”c”}.

36 / 1

Regular expressions (4): alternatives

Let A be an alphabet, i.e. a set of characters. The regular
expressions over A are given by the following rules.

If R and S are regular expression, then R|S is a regular
expression, denoting the language

lang(R) ∪ lang(S).

You can think of R|S as R or S.

37 / 1

Regular expressions (5): concatenation

Let A be an alphabet, i.e. a set of characters. The regular
expressions over A are given by the following rules.

If R and S are regular expression, then RS (pronounced R
concatenated with S, or R then S) is a regular expression,
denoting the language

{rs|r ∈ lang(R), s ∈ lang(S)}.

Here rs is the concatenation of the strings r and s. Example: if
r = ”hello” and s = ”world”, then rs is ”helloworld”.

38 / 1

Regular expressions (6): star

The regular expressions presented so far do not, on their own,
allow as to define infinite languages. Why?

The next operator changes this. It can be seen as a simple kind
of ’recursion’ or ’loop’ construct for languages.

39 / 1

Regular expressions (6): star

Let A be an alphabet, i.e. a set of characters. The regular
expressions over A are given by the following rules.

If R is a regular expression, then R∗ (pronounced R-star) is a
regular expression, denoting the language

lang(R∗) = lang(ε) ∪ lang(R) ∪ lang(RR) ∪ lang(RRR) ∪ · · ·

In other words

lang(R∗) =
⋃
n≥0

lang(RRR...R︸ ︷︷ ︸
n

)

So a string w is in lang(R∗) exactly when some number n exists
with w ∈ lang(RRR...R︸ ︷︷ ︸

n times

).

40 / 1

Regular expressions (6): star

Example: Let A = {0,1,2, ...,9}, then the language of

(′0′|′1′)∗

is ... the set of all binary numbers.

Whoops, where do these brackets come from in (′0′|′1′)∗?

Can we drop them and write

′0′|′1′∗

No!

41 / 1

Regular expressions (7): brackets

Let A be an alphabet, i.e. a set of characters. The regular
expressions over A are given by the following rules.

If R is a regular expression, then (R) is a regular expression
with the same meaning as R, i.e.

lang((R)) = lang(R).

42 / 1

Regular expressions: summary

Summary: the regular expressions over an alphabet A are
I ∅.
I ε.
I ′c′ for all c ∈ A.
I R|R′, provided R and R′ are regular expressions.
I RR′, provided R and R′ are regular expressions.
I R∗, provided R is a regular expressions.
I (R), provided R is a regular expressions.

43 / 1

Regular expressions precedence rules

To reduce the number of brackets in regular expressions with
assume the following precedence rules.
I R∗ binds more highly than RR′, i.e. AB∗ is short for A(B∗).
I RR′ binds more highly than R|R′, i.e. AB|C is short for

(AB)|C.

So AB∗C|D should be read as ((A(B∗))C)|D.

44 / 1

Examples of REs

I Alphabet A = {0,1}. What language is ′1′∗?
I Alphabet A = {0,1}. What language is (′0′|′1′)∗|1?
I Alphabet A = {0,1}. What language is (′0′|′1′)∗1?
I Alphabet A = {0,1}. What language is ′0′∗|′1′∗?
I Alphabet A = {0,1}. What language is ′0′|′1′∗?

45 / 1

Examples of REs

Alphabet A = {0,1}. What language is

(′0′|′1′)∗′0′′0′(′0′|′1′)∗

Answer: the set of all binary strings containing 00 as a
substring.

46 / 1

Examples of REs

Alphabet A = {0,1}. What regular expression over A has
exactly the strings of length 4 as language?

Answer: (′0′|′1′)(′0′|′1′)(′0′|′1′)(′0′|′1′).

47 / 1

Examples of REs

Alphabet A = {0,1}. What regular expression has only strings
with at most one 0 as language?

Answer: ′1′∗(′0′|ε)′1′∗

48 / 1

Examples of REs

Alphabet A = {−,0,1, ...,9}. What regular expression has only
strings representing positive and negative integers as
language?

(′−′|ε)(′0′|′1′|′2′|′3′|′4′|′5′|′6′|′7′|′8′|′9′)(′0′|...|′9′)∗

Note that “...” is not part of regular expressions, I was just too
lazy to type out all the relevant characters.

49 / 1

Abbreviations in REs

One often finds the following abbreviations.
I We often write 1 instead of ′1′, a instead of ′a′ and so on

for all elements of the alphabet A. With this convention it
makes sense to write e.g. A∗.

I Instead of ′a′′ ′′s′′t ′′r ′′i ′′n′′g′ we write ′a string′ or
”a string”.

I Sometimes R + S is written for R|S.
I R+ stands for RR∗. (Note R+S is different from R + S)
I If there’s a ’natural’ order on the alphabet we often specify

ranges, e.g. [a− z] instead of a|b|c|...|y |z or [0− 9]
instead of 0|1|2|3|4|5|6|7|8|9, or [2− 5] for 2|3|4|5. Etc.

I We write [a− zA− Z] instead of [a− z]|[A− Z]

I R? for R|ε

50 / 1

Lexical specification using REs

Let us now give a lexical specification of a simple programming
language using REs. We start with keywords.

"if" | "else" | "for" | "while"

Recall that "if" is a shorthand for ’i”f’.

51 / 1

Lexical specification using REs

Next are digits and integers. Digits are:

0|1|2|3|4|5|6|7|8|9

or simpler

[0-9]

We want to refer to this RE later, so we name it.

digit = [0-9]

52 / 1

Lexical specification using REs

Now integers can be written as follows

integer = -?digit+

This is short for

integer =
(’-’ | epsilon)

(’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’)
(’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’)*

Abbreviations are helpful for readability (writing epsilon for ε).

53 / 1

Lexical specification using REs

When specifying the lexical level of programming languages we
also need to specify whitespace (why?). Often the following is
used.

whitespace = (’ ’ | ’\n’ | ’\t’)+

What does ’\n’ and ’\t’ mean?

54 / 1

Lexical specification using REs

Here is a more realistic example: specification of numbers in a
real programming language. Examples 234, 3.141526 or
6.2E-14

digit = [0-9]
digits = digit+
optFraction = (’.’digits) | eps
optExponent = (’E’(’-’ | eps) digits)

| eps
num = digits optFraction optExponent

(Writing eps for epsilon.)

55 / 1

Real languages

Java’s (JDK 13) lexical spec: https://docs.oracle.com/
javase/specs/jls/se13/html/jls-3.html

Python 3’s lexical spec: https://docs.python.org/3/
reference/lexical_analysis.html

56 / 1

https://docs.oracle.com/javase/specs/jls/se13/html/jls-3.html
https://docs.oracle.com/javase/specs/jls/se13/html/jls-3.html
https://docs.python.org/3/reference/lexical_analysis.html
https://docs.python.org/3/reference/lexical_analysis.html

Lexical specification using REs

I hope you see that REs are useful and can specify the lexical
level of programming languages. Two main questions are left
open.

1. Can all languages be specified with REs? E.g. all
syntactically valid Java programs, or all arithmetic expressions
that have balanced parentheses? Answer: no! We need more
general languages. e.g. context free and context sensitive
languages. More about this soon.

2. How to decide, given a string s and a regular expression R, if
s ∈ lang(R)? Answer: FSA as algorithms to decide the
language defined by REs.

57 / 1

The material in the textbooks

I Dragon Book: Chapter 2.6 and Chapter 3.
I Appel, Palsberg: Chapter 2.1 and 2.2
I "Engineering a compiler": Chapter 2.1 and 2.2

58 / 1

