
Compilers and computer architecture:
Caches and caching

Martin Berger 1

December 2019

1Email: M.F.Berger@sussex.ac.uk, Office hours: Wed 12-13 in
Chi-2R312

1 / 1

M.F.Berger@sussex.ac.uk

Recall the function of compilers

2 / 1

Caches in modern CPUs

Today we will learn about caches in modern CPUs. They are
crucial for high-performance programs and high-performance
compilation.

Today’s material can safely be ignored by ’normal’
programmers who don’t care about performance.

3 / 1

Caches in modern CPUs

Today we will learn about caches in modern CPUs. They are
crucial for high-performance programs and high-performance
compilation.

Today’s material can safely be ignored by ’normal’
programmers who don’t care about performance.

4 / 1

Caches in modern CPUs
Let’s look at a modern CPU. Here is a November 2018 Intel Ivy
Bridge Xeon CPU. Much of the silicon is for the cache, and
cache controllers.

5 / 1

Caches in modern CPUs

Why is much of the chip area dedicated to caches?

6 / 1

Simplified computer layout

Volatile memory (RAM)

Bus

CPU

ALU

Registers

Disks/Flash

Fast

Medium

Slow

The faster the memory, the faster the computer.

7 / 1

Available memory
Capacity Latency Cost

Register 1000s of bytes 1 cycle £££££
SRAM 1s of MBytes several cycles ££££
DRAM 10s GBytes 20 - 100 cycles ££
Flash 100s of GBytes £
Hard disk 10 TByte 0.5 - 5 M cycles cheap
Ideal 1000s GBytes 1 cycle cheap

I RAM = Random Access Memory
I SRAM = static RAM, fast but uses 6 transistors per bit.
I DRAM = dynamic RAM, slow but uses 1 transistor per bit.
I Flash = non-volatile, slow, looses capacity over time.
I Latency is the time between issuing the read/write access

and the completion of this access.

It seems memory is either small, fast and expensive, or cheap,
big and slow.

8 / 1

Available memory
Capacity Latency Cost

Register 1000s of bytes 1 cycle £££££
SRAM 1s of MBytes several cycles ££££
DRAM 10s GBytes 20 - 100 cycles ££
Flash 100s of GBytes £
Hard disk 10 TByte 0.5 - 5 M cycles cheap
Ideal 1000s GBytes 1 cycle cheap

I RAM = Random Access Memory
I SRAM = static RAM, fast but uses 6 transistors per bit.
I DRAM = dynamic RAM, slow but uses 1 transistor per bit.
I Flash = non-volatile, slow, looses capacity over time.
I Latency is the time between issuing the read/write access

and the completion of this access.

It seems memory is either small, fast and expensive, or cheap,
big and slow.

9 / 1

Tricks for making the computer run faster

Key ideas:

I Use a hierarchy of memory technology.
I Keep the most often-used data in a small, fast memory.
I Use slow main memory only rarely.

But how? Does that mean the programmer should have to
worry about this? Let the CPU worry about this, using a
mechanism called cache.

Why on earth should this work?

Exploit locality!

10 / 1

Tricks for making the computer run faster

Key ideas:

I Use a hierarchy of memory technology.
I Keep the most often-used data in a small, fast memory.
I Use slow main memory only rarely.

But how? Does that mean the programmer should have to
worry about this? Let the CPU worry about this, using a
mechanism called cache.

Why on earth should this work?

Exploit locality!

11 / 1

Tricks for making the computer run faster

Key ideas:

I Use a hierarchy of memory technology.
I Keep the most often-used data in a small, fast memory.
I Use slow main memory only rarely.

But how?

Does that mean the programmer should have to
worry about this? Let the CPU worry about this, using a
mechanism called cache.

Why on earth should this work?

Exploit locality!

12 / 1

Tricks for making the computer run faster

Key ideas:

I Use a hierarchy of memory technology.
I Keep the most often-used data in a small, fast memory.
I Use slow main memory only rarely.

But how? Does that mean the programmer should have to
worry about this?

Let the CPU worry about this, using a
mechanism called cache.

Why on earth should this work?

Exploit locality!

13 / 1

Tricks for making the computer run faster

Key ideas:

I Use a hierarchy of memory technology.
I Keep the most often-used data in a small, fast memory.
I Use slow main memory only rarely.

But how? Does that mean the programmer should have to
worry about this? Let the CPU worry about this, using a
mechanism called cache.

Why on earth should this work?

Exploit locality!

14 / 1

Tricks for making the computer run faster

Key ideas:

I Use a hierarchy of memory technology.
I Keep the most often-used data in a small, fast memory.
I Use slow main memory only rarely.

But how? Does that mean the programmer should have to
worry about this? Let the CPU worry about this, using a
mechanism called cache.

Why on earth should this work?

Exploit locality!

15 / 1

Tricks for making the computer run faster

Key ideas:

I Use a hierarchy of memory technology.
I Keep the most often-used data in a small, fast memory.
I Use slow main memory only rarely.

But how? Does that mean the programmer should have to
worry about this? Let the CPU worry about this, using a
mechanism called cache.

Why on earth should this work?

Exploit locality!

16 / 1

Locality

In practice, most programs, most of the time, do the following:

If the program accesses memory location loc then
the most of the next few memory accesses are very
likely at addresses close to loc.

I.e. we use access to a memory location as a heuristic
prediction for memory access in the (near) future. This is
called (data) locality. Locality means that memory access
often (but not necessarily always) follows this fairly predictable
pattern.

Modern CPUs exploit this predictability for speed with caches.

Note: it is possible to write programs that don’t exhibit locality.
They will typically run very slow.

17 / 1

Locality

In practice, most programs, most of the time, do the following:

If the program accesses memory location loc then
the most of the next few memory accesses are very
likely at addresses close to loc.

I.e. we use access to a memory location as a heuristic
prediction for memory access in the (near) future. This is
called (data) locality. Locality means that memory access
often (but not necessarily always) follows this fairly predictable
pattern.

Modern CPUs exploit this predictability for speed with caches.

Note: it is possible to write programs that don’t exhibit locality.
They will typically run very slow.

18 / 1

Locality

In practice, most programs, most of the time, do the following:

If the program accesses memory location loc then
the most of the next few memory accesses are very
likely at addresses close to loc.

I.e. we use access to a memory location as a heuristic
prediction for memory access in the (near) future. This is
called (data) locality. Locality means that memory access
often (but not necessarily always) follows this fairly predictable
pattern.

Modern CPUs exploit this predictability for speed with caches.

Note: it is possible to write programs that don’t exhibit locality.
They will typically run very slow.

19 / 1

Locality

In practice, most programs, most of the time, do the following:

If the program accesses memory location loc then
the most of the next few memory accesses are very
likely at addresses close to loc.

I.e. we use access to a memory location as a heuristic
prediction for memory access in the (near) future. This is
called (data) locality. Locality means that memory access
often (but not necessarily always) follows this fairly predictable
pattern.

Modern CPUs exploit this predictability for speed with caches.

Note: it is possible to write programs that don’t exhibit locality.
They will typically run very slow.

20 / 1

Why would most programs exhibit locality?

21 / 1

Data locality

int [] a = new int [1000000];
for (int i = 0; i < 1000000; i++) {

a [i] = i+1; }

Memory
address

Time

22 / 1

Data locality
int [] a = new int [1000000];
...
for (int i = 2; i < 1000000; i++) {

a [i] = a [i-1] * a [i-2]; }

Memory
address

Time

23 / 1

Data locality
int [] a = new int [1000000];
int [] b = new int [1000000];
...
for (int i = 0; i < 1000000; i++) {

a [i] = b [i] + 1; }

Memory
address

Time
24 / 1

Code locality

Program execution (reading via PC) is local too, with occasional
jumps.

addiu $sp $sp -4
li $a0 1
lw $t1 4($sp)
sub $a0 $t1 $a0
addiu $sp $sp 4
sw $a0 0($sp)
addiu $sp $sp -4
jal next
lw $t1 4($sp)
add $a0 $t1 $a0
addiu $sp $sp 4
b exit2

Memory
address

Time

Jump Jump Jump

25 / 1

Data locality

Another cause for data locality is
the stack and how we compile
procedure invocations into
activation records.

This is because within a procedure
activation we typically spend a lot
of time accessing the procedure
arguments and local variables.

In addition, in recursive procedure
invocations, related activation
records, are nearby on the stack.

Result

Argument: 3

Control

Return address: "in main"

Result

Argument: 2

Control

Return address: "recursive"

Main's AR

f(3)

f(2)

main

Result

Argument: 1

Control

Return address: "recursive"

f(1)

Result

Argument: 0

Control

Return address: "recursive"

f(0)

26 / 1

Data locality

Stop & Copy garbage collectors improve locality because they
compact the heap.

A B C D E F old space

new spaceA C

root

F

27 / 1

Locality

In practise we have data access and instruction access
together, so the access patterns look more like this:

Memory
address

Time

= instruction access
= data access

Still a lot of predictability in memory access patterns, but over
(at least) two distinct regions of memory.

28 / 1

Data locality of OO programming
Accessing objects, especially method invocation often has bad
locality because of pointer chasing. Object pointers can point
anywhere inside the heap, loosing locality.

Instance of A

Pointer to class description

Members

dptr

Class name "A"

Method descriptions

Description of A

...

f_A

g_A

...

Body of f_A

Body of g_A

...

Partly to ameliorate this shortcoming, JIT compilers have been
developed.

29 / 1

How to exploit locality and the memory hierarchy?

Two approaches
I Expose the hierarchy (proposed by S. Cray): let

programmers access registers, fast SRAM, slow DRAM
and the disk ’by hand’. Tell them “Use the hierarchy
cleverly”. This is not done in 2019.

I Hide the memory hierarchy. Programming model: there is
a single kind of memory, single address space (excluding
registers). Automatically assigns locations to fast or slow
memory, depending on usage patterns. This is what
caches do in CPUs.

30 / 1

How to exploit locality and the memory hierarchy?

Two approaches

I Expose the hierarchy (proposed by S. Cray): let
programmers access registers, fast SRAM, slow DRAM
and the disk ’by hand’. Tell them “Use the hierarchy
cleverly”. This is not done in 2019.

I Hide the memory hierarchy. Programming model: there is
a single kind of memory, single address space (excluding
registers). Automatically assigns locations to fast or slow
memory, depending on usage patterns. This is what
caches do in CPUs.

31 / 1

How to exploit locality and the memory hierarchy?

Two approaches
I Expose the hierarchy (proposed by S. Cray): let

programmers access registers, fast SRAM, slow DRAM
and the disk ’by hand’. Tell them “Use the hierarchy
cleverly”. This is not done in 2019.

I Hide the memory hierarchy. Programming model: there is
a single kind of memory, single address space (excluding
registers). Automatically assigns locations to fast or slow
memory, depending on usage patterns. This is what
caches do in CPUs.

32 / 1

Cache
The key element is the cache which is integrated in modern
CPUs.

DRAM

CPU
Disks

Swap space

Fast

Medium

Slow

Cache
SRAM

ALU

Registers

33 / 1

Cache
The key element is the cache which is integrated in modern
CPUs.

DRAM

CPU
Disks

Swap space

Fast

Medium

Slow

Cache
SRAM

ALU

Registers

34 / 1

Cache
A CPU cache is used by the CPU of a computer to reduce the
average time to access memory. The cache is a smaller, faster
and more expensive memory inside the CPU which stores
copies of the data from the most frequently used main
memory locations for fast access.

When the CPU reads from or
writes to a location in main memory, it first checks whether a
copy of that data is in the cache. If so, the processor
immediately reads from or writes to the cache, which is much
faster than reading from or writing to main memory. As long as
most memory accesses are cached memory locations, the
average latency of memory accesses will be closer to the
cache latency than to the latency of main memory.

Recall that latency (of memory access) is the time between
issuing the read/write access and the completion of this access.

A cache entry is called cache line.

35 / 1

Cache
A CPU cache is used by the CPU of a computer to reduce the
average time to access memory. The cache is a smaller, faster
and more expensive memory inside the CPU which stores
copies of the data from the most frequently used main
memory locations for fast access. When the CPU reads from or
writes to a location in main memory, it first checks whether a
copy of that data is in the cache. If so, the processor
immediately reads from or writes to the cache, which is much
faster than reading from or writing to main memory. As long as
most memory accesses are cached memory locations, the
average latency of memory accesses will be closer to the
cache latency than to the latency of main memory.

Recall that latency (of memory access) is the time between
issuing the read/write access and the completion of this access.

A cache entry is called cache line.

36 / 1

Cache
A CPU cache is used by the CPU of a computer to reduce the
average time to access memory. The cache is a smaller, faster
and more expensive memory inside the CPU which stores
copies of the data from the most frequently used main
memory locations for fast access. When the CPU reads from or
writes to a location in main memory, it first checks whether a
copy of that data is in the cache. If so, the processor
immediately reads from or writes to the cache, which is much
faster than reading from or writing to main memory. As long as
most memory accesses are cached memory locations, the
average latency of memory accesses will be closer to the
cache latency than to the latency of main memory.

Recall that latency (of memory access) is the time between
issuing the read/write access and the completion of this access.

A cache entry is called cache line.

37 / 1

Cache
A CPU cache is used by the CPU of a computer to reduce the
average time to access memory. The cache is a smaller, faster
and more expensive memory inside the CPU which stores
copies of the data from the most frequently used main
memory locations for fast access. When the CPU reads from or
writes to a location in main memory, it first checks whether a
copy of that data is in the cache. If so, the processor
immediately reads from or writes to the cache, which is much
faster than reading from or writing to main memory. As long as
most memory accesses are cached memory locations, the
average latency of memory accesses will be closer to the
cache latency than to the latency of main memory.

Recall that latency (of memory access) is the time between
issuing the read/write access and the completion of this access.

A cache entry is called cache line.

38 / 1

Cache (highly simplified)

119 stores 2
99

6

2

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache

321

15

77

119

1112

Main memory

Cache contains temporary copies of selected main memory
locations, eg. Mem[119] = 2.

The cache holds pairs of main memory address (called tag)
and value.

39 / 1

Cache (highly simplified)

119 stores 2
99

6

2

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache

321

15

77

119

1112

Main memory

Cache contains temporary copies of selected main memory
locations, eg. Mem[119] = 2.

The cache holds pairs of main memory address (called tag)
and value.

40 / 1

Cache (highly simplified)

119 stores 2
99

6

2

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache

321

15

77

119

1112

Main memory

Cache contains temporary copies of selected main memory
locations, eg. Mem[119] = 2.

The cache holds pairs of main memory address (called tag)
and value.

41 / 1

Cache (highly simplified)

119 stores 2
99

6

2

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache

321

15

77

119

1112

Main memory

Goal of a cache: to reduce the average access time to memory
by exploiting locality.

Caches are made from expensive but fast SRAM, with much
less capacity than main memory. So not all memory entries can
be in cache.

42 / 1

Cache (highly simplified)

119 stores 2
99

6

2

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache

321

15

77

119

1112

Main memory

Goal of a cache: to reduce the average access time to memory
by exploiting locality.

Caches are made from expensive but fast SRAM, with much
less capacity than main memory. So not all memory entries can
be in cache.

43 / 1

Cache (highly simplified)

119 stores 2
99

6

2

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache

321

15

77

119

1112

Main memory

Goal of a cache: to reduce the average access time to memory
by exploiting locality.

Caches are made from expensive but fast SRAM, with much
less capacity than main memory. So not all memory entries can
be in cache.

44 / 1

Cache reading (highly simplified)

119 stores 2
99

6

2

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache

321

15

77

119

1112

Main memory

Cache ’algorithm’: if the CPU wants to read memory location
loc:

I Look for tag loc in cache.
I If cache line (loc, val) is found (called cache hit), then

return val.
I If no cache line contains tag loc (called cache miss),

then select some cache line k for replacement, read
location loc from main memory getting value val’, replace
k with (loc, val’).

45 / 1

Cache reading (highly simplified)

119 stores 2
99

6

2

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache

321

15

77

119

1112

Main memory

Cache ’algorithm’: if the CPU wants to read memory location
loc:

I Look for tag loc in cache.
I If cache line (loc, val) is found (called cache hit), then

return val.
I If no cache line contains tag loc (called cache miss),

then select some cache line k for replacement, read
location loc from main memory getting value val’, replace
k with (loc, val’).

46 / 1

Cache writing (highly simplified)

119 stores 2
99

6

2

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache

321

15

77

119

1112

Main memory

Cache ’algorithm’: if the CPU wants to write the value val
memory location loc:

I Write val to main memory location loc.
I Look for tag loc in cache.
I If cache line (loc, val’) is found (cache hit), then replace

val’ with val in the cache line.
I If no cache line contains tag loc (cache miss), then

select some cache line k for replacement, replace k with (
loc, val).

47 / 1

Cache writing (highly simplified)

119 stores 2
99

6

2

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache

321

15

77

119

1112

Main memory

Cache ’algorithm’: if the CPU wants to write the value val
memory location loc:

I Write val to main memory location loc.
I Look for tag loc in cache.
I If cache line (loc, val’) is found (cache hit), then replace

val’ with val in the cache line.
I If no cache line contains tag loc (cache miss), then

select some cache line k for replacement, replace k with (
loc, val).

48 / 1

Note

All these things (writing to main memory, looking for tag,
replacing cache line, evicting etc) happen automatically,
behind the programmer’s back. It’s all implemented in silicon,
so cache management is very fast.

Unless interested in peak performance, the programmer can
program under the illusion of memory uniformity.

49 / 1

Note

All these things (writing to main memory, looking for tag,
replacing cache line, evicting etc) happen automatically,
behind the programmer’s back. It’s all implemented in silicon,
so cache management is very fast.

Unless interested in peak performance, the programmer can
program under the illusion of memory uniformity.

50 / 1

Successful cache read (highly simplified)

119 stores 2
99

6

2

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache

321

15

77

119

1112

Main memory

51 / 1

Successful cache read (highly simplified)

119 stores 2
99

6

2

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache

321

15

77

119

1112

Main memory

read 119

52 / 1

Successful cache read (highly simplified)

119 stores 2
99

6

2

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache

321

15

77

119

1112

Main memory

2

53 / 1

Successful cache read (highly simplified)

119 stores 2
99

6

2

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache

321

15

77

119

1112

Main memory

54 / 1

Cache failure on read (highly simplified)

119 stores 2
99

6

2
12

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache

321

15

77

119

1112

Main memory

read 222

222

55 / 1

Cache failure on read (highly simplified)

119 stores 2
99

6

2
12

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache fault

321

15

77

119

1112

Main memory

read 222

222

56 / 1

Cache failure on read (highly simplified)

119 stores 2
99

6

2
12

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache fault

321

15

77

119

1112

Main memory

222

read 222

57 / 1

Cache failure on read (highly simplified)

119 stores 2
99

6

2
12

CPU
77 stores 6

1112 stores 321
15 stores 99

Cache fault

321

15

77

119

1112

Main memory

222

12

58 / 1

Cache failure on read (highly simplified)

119 stores 2
99

6

2
12

CPU
77 stores 6

1112 stores 321
evict

Cache

321

15

77

119

1112

Main memory

read 222

222

12

59 / 1

Cache failure on read (highly simplified)

119 stores 2
99

6

2
12

CPU
77 stores 6

1112 stores 321

Cache

321

15

77

119

1112

Main memory

read 222

222

222 stores 12

60 / 1

Cache failure on read (highly simplified)

119 stores 2
99

6

2
12

CPU
77 stores 6

1112 stores 321

Cache

321

15

77

119

1112

Main memory

12

222

222 stores 12

61 / 1

Cache failure on read (highly simplified)

119 stores 2
99

6

2
12

CPU
77 stores 6

1112 stores 321

Cache

321

15

77

119

1112

Main memory

222

222 stores 12

62 / 1

Successful cache write (highly simplified)

119 stores 2
99

6

2
12

CPU
77 stores 6

1112 stores 321

Cache

321

15

77

119

1112

Main memory

222

222 stores 12store 3
at 77

63 / 1

Successful cache write (highly simplified)

119 stores 2
99

6

2
12

CPU
77 stores 6

1112 stores 321

Cache

321

15

77

119

1112

Main memory

222

222 stores 12store 3
at 77

64 / 1

Successful cache write (highly simplified)

119 stores 2
99

6

2
12

CPU

1112 stores 321

Cache

321

15

77

119

1112

Main memory

222

222 stores 12

77 stores 3

store 3
at 77

65 / 1

Successful cache write (highly simplified)

119 stores 2
99

2
12

CPU

1112 stores 321

Cache

321

15

77

119

1112

Main memory

222

222 stores 12

77 stores 3

3

66 / 1

Write with cache failure (highly simplified)

119 stores 2
99

6

2
12

CPU
77 stores 6

1112 stores 321

Cache

321

15

77

119

1112

Main memory

222

222 stores 12store 3
at 85

67 / 1

Write with cache failure (highly simplified)

119 stores 2
99

6

2
12

CPU
77 stores 6

1112 stores 321
evict

Cache

321

15

77

119

1112

Main memory

222

store 3
at 85

68 / 1

Write with cache failure (highly simplified)

119 stores 2
99

6

2
12

CPU
77 stores 6

1112 stores 321

Cache

321

15

77

119

1112

Main memory

222

store 3
at 85

85 stores 3

69 / 1

Write with cache failure (highly simplified)

119 stores 2
99

6
3
2
12

CPU
77 stores 6

1112 stores 321

Cache

321

15

77

119

1112

Main memory

222

85 stores 3
85

70 / 1

Prefetching

What about locality?

Explanation has so far made little use of
locality.

Caches typically do something else. By locality, the act of

accessing loc predicts likely usage of

... loc-1 loc loc+1 loc+2 loc+3 ...

in the near future. So far we are only ’reusing’ loc.

So let’s get e.g. loc...loc+n from memory together (rather
than separately). This is called prefetching . It relies on the
fact that with current CPUs and memory systems a burst of
reads of n adjacent addresses from main memory is faster than
fetching those n cells separately.

71 / 1

Prefetching

What about locality? Explanation has so far made little use of
locality.

Caches typically do something else. By locality, the act of

accessing loc predicts likely usage of

... loc-1 loc loc+1 loc+2 loc+3 ...

in the near future. So far we are only ’reusing’ loc.

So let’s get e.g. loc...loc+n from memory together (rather
than separately). This is called prefetching . It relies on the
fact that with current CPUs and memory systems a burst of
reads of n adjacent addresses from main memory is faster than
fetching those n cells separately.

72 / 1

Prefetching

What about locality? Explanation has so far made little use of
locality.

Caches typically do something else. By locality, the act of

accessing loc predicts likely usage of

... loc-1 loc loc+1 loc+2 loc+3 ...

in the near future. So far we are only ’reusing’ loc.

So let’s get e.g. loc...loc+n from memory together (rather
than separately). This is called prefetching . It relies on the
fact that with current CPUs and memory systems a burst of
reads of n adjacent addresses from main memory is faster than
fetching those n cells separately.

73 / 1

Prefetching

What about locality? Explanation has so far made little use of
locality.

Caches typically do something else. By locality, the act of

accessing loc predicts likely usage of

... loc-1 loc loc+1 loc+2 loc+3 ...

in the near future. So far we are only ’reusing’ loc.

So let’s get e.g. loc...loc+n from memory together (rather
than separately). This is called prefetching . It relies on the
fact that with current CPUs and memory systems a burst of
reads of n adjacent addresses from main memory is faster than
fetching those n cells separately.

74 / 1

Prefetching

So on cache fault on loc, the CPU prefetches
e.g. loc...loc+n in one big burst.

The concept of preloading of webpages in is similar.
(Cf. Instagram)

75 / 1

Prefetching

So on cache fault on loc, the CPU prefetches
e.g. loc...loc+n in one big burst.

The concept of preloading of webpages in is similar.
(Cf. Instagram)

76 / 1

Counterintuitive behaviour of CPUs with caches
Consider the following simple program.

x := x + 1;
x := x + 1

Clearly both assignments translate to the same machine code.
But if the CPU has caches (and all modern CPUs have), then
the execution of the first execution of x := x+ 1 might take
much longer than the execution of the second x := x+ 1,
despite having identical machine code. Why?

Because in the first execution of x := x+ 1, the cache may not
contain x. In this case, a slow request will be issued to main
memory to fetching x. However, if for some reason x is already
in the cache then x will quickly be fetched from the cache. In
both cases the second execution will execute quickly, because
the cache will contain x.

77 / 1

Counterintuitive behaviour of CPUs with caches
Consider the following simple program.

x := x + 1;
x := x + 1

Clearly both assignments translate to the same machine code.
But if the CPU has caches (and all modern CPUs have), then
the execution of the first execution of x := x+ 1 might take
much longer than the execution of the second x := x+ 1,
despite having identical machine code. Why?

Because in the first execution of x := x+ 1, the cache may not
contain x. In this case, a slow request will be issued to main
memory to fetching x. However, if for some reason x is already
in the cache then x will quickly be fetched from the cache. In
both cases the second execution will execute quickly, because
the cache will contain x.

78 / 1

Miss rate

Miss rate = number of cache failures
number of cache accesses .

The performance of a program can be significantly improved if
the miss rate is low.

Miss rate is influenced by many factors:

I Selection policy for cache eviction.
I Compiler improving data locality (e.g. in garbage

collection).
I Programmer ensuring data locality.
I Cache size (bigger = better). Modern computers have

multiple caches (see later).

79 / 1

Miss rate

Miss rate = number of cache failures
number of cache accesses .

The performance of a program can be significantly improved if
the miss rate is low.

Miss rate is influenced by many factors:

I Selection policy for cache eviction.
I Compiler improving data locality (e.g. in garbage

collection).
I Programmer ensuring data locality.
I Cache size (bigger = better). Modern computers have

multiple caches (see later).

80 / 1

Miss rate

Miss rate = number of cache failures
number of cache accesses .

The performance of a program can be significantly improved if
the miss rate is low.

Miss rate is influenced by many factors:

I Selection policy for cache eviction.
I Compiler improving data locality (e.g. in garbage

collection).
I Programmer ensuring data locality.
I Cache size (bigger = better). Modern computers have

multiple caches (see later).

81 / 1

Miss rate

Miss rate = number of cache failures
number of cache accesses .

The performance of a program can be significantly improved if
the miss rate is low.

Miss rate is influenced by many factors:

I Selection policy for cache eviction.
I Compiler improving data locality (e.g. in garbage

collection).
I Programmer ensuring data locality.
I Cache size (bigger = better). Modern computers have

multiple caches (see later).

82 / 1

Miss penalty

The miss penalty of a cache are the time it takes to read
from/write to main memory - (minus) the time it takes to read
from/write to the cache.

The miss penalty has been increasing dramatically, because
CPUs get faster more quickly than memory. So good cache
management is becoming increasingly important.

83 / 1

Miss penalty

The miss penalty of a cache are the time it takes to read
from/write to main memory - (minus) the time it takes to read
from/write to the cache.

The miss penalty has been increasing dramatically, because
CPUs get faster more quickly than memory. So good cache
management is becoming increasingly important.

84 / 1

Important questions about Cache

How does the search in the cache for a tag proceed?

Which cache line is replaced after a cache miss?

When to update main memory after cache write?

What (how much) data to read from main memory after a cache
miss?

The answers to both are vitally important for performance.
Different CPUs give different answers. Modern CPUs are very
sophisticated in these matters: good answers have dramatic
impact on performance.

85 / 1

Important questions about Cache

How does the search in the cache for a tag proceed?

Which cache line is replaced after a cache miss?

When to update main memory after cache write?

What (how much) data to read from main memory after a cache
miss?

The answers to both are vitally important for performance.
Different CPUs give different answers. Modern CPUs are very
sophisticated in these matters: good answers have dramatic
impact on performance.

86 / 1

Important questions about Cache

How does the search in the cache for a tag proceed?

Which cache line is replaced after a cache miss?

When to update main memory after cache write?

What (how much) data to read from main memory after a cache
miss?

The answers to both are vitally important for performance.
Different CPUs give different answers. Modern CPUs are very
sophisticated in these matters: good answers have dramatic
impact on performance.

87 / 1

Important questions about Cache

How does the search in the cache for a tag proceed?

Which cache line is replaced after a cache miss?

When to update main memory after cache write?

What (how much) data to read from main memory after a cache
miss?

The answers to both are vitally important for performance.
Different CPUs give different answers. Modern CPUs are very
sophisticated in these matters: good answers have dramatic
impact on performance.

88 / 1

Important questions about Cache

How does the search in the cache for a tag proceed?

Which cache line is replaced after a cache miss?

When to update main memory after cache write?

What (how much) data to read from main memory after a cache
miss?

The answers to both are vitally important for performance.
Different CPUs give different answers. Modern CPUs are very
sophisticated in these matters: good answers have dramatic
impact on performance.

89 / 1

Important questions about Cache

How does the search in the cache for a tag proceed?

Which cache line is replaced after a cache miss?

When to update main memory after cache write?

What (how much) data to read from main memory after a cache
miss?

The answers to both are vitally important for performance.
Different CPUs give different answers. Modern CPUs are very
sophisticated in these matters: good answers have dramatic
impact on performance.

90 / 1

Important questions about Cache

Example: which cache line is replaced after a cache miss?
Different policies:

I Random choice.
I Least recently used.
I Most recently used.
I FIFO.
I LIFO
I ...

See e.g. https://en.wikipedia.org/wiki/Cache_
replacement_policies for more.

91 / 1

https://en.wikipedia.org/wiki/Cache_replacement_policies
https://en.wikipedia.org/wiki/Cache_replacement_policies

Important questions about Cache

Example: which cache line is replaced after a cache miss?

Different policies:

I Random choice.
I Least recently used.
I Most recently used.
I FIFO.
I LIFO
I ...

See e.g. https://en.wikipedia.org/wiki/Cache_
replacement_policies for more.

92 / 1

https://en.wikipedia.org/wiki/Cache_replacement_policies
https://en.wikipedia.org/wiki/Cache_replacement_policies

Important questions about Cache

Example: which cache line is replaced after a cache miss?
Different policies:

I Random choice.
I Least recently used.
I Most recently used.
I FIFO.
I LIFO
I ...

See e.g. https://en.wikipedia.org/wiki/Cache_
replacement_policies for more.

93 / 1

https://en.wikipedia.org/wiki/Cache_replacement_policies
https://en.wikipedia.org/wiki/Cache_replacement_policies

Important questions about Cache

Example: when to update main memory after cache write?

Different policies:
I Immediately on write. This is simple and simple to

implement, but can potentially stall the CPU while being
executed.

I Later, e.g. when there is no/little contention for memory
bus. This leads to strange effects from the programmer’s
point of view, where seemingly instructions are reordered,
e.g. the programmer says: write this, then read that, but
the CPU executes: read that then write this. This
reordering of instructions is called the CPU’s memory
model. Modern CPUs have complicated memory models.
Compiler writes and assembler programmers need to be
aware of this, otherwise programs will be buggy. ’Normal’
programmers can ignore this, since the compiler will sort it
out.

94 / 1

Important questions about Cache

Example: when to update main memory after cache write?

Different policies:
I Immediately on write. This is simple and simple to

implement, but can potentially stall the CPU while being
executed.

I Later, e.g. when there is no/little contention for memory
bus. This leads to strange effects from the programmer’s
point of view, where seemingly instructions are reordered,
e.g. the programmer says: write this, then read that, but
the CPU executes: read that then write this. This
reordering of instructions is called the CPU’s memory
model. Modern CPUs have complicated memory models.
Compiler writes and assembler programmers need to be
aware of this, otherwise programs will be buggy. ’Normal’
programmers can ignore this, since the compiler will sort it
out.

95 / 1

Important questions about Cache

Example: when to update main memory after cache write?

Different policies:
I Immediately on write. This is simple and simple to

implement, but can potentially stall the CPU while being
executed.

I Later, e.g. when there is no/little contention for memory
bus. This leads to strange effects from the programmer’s
point of view, where seemingly instructions are reordered,
e.g. the programmer says: write this, then read that, but
the CPU executes: read that then write this. This
reordering of instructions is called the CPU’s memory
model. Modern CPUs have complicated memory models.
Compiler writes and assembler programmers need to be
aware of this, otherwise programs will be buggy. ’Normal’
programmers can ignore this, since the compiler will sort it
out.

96 / 1

Important questions about Cache

Example: what (how much) data to read from main memory
after a cache miss?

Different CPUs give different answers. Due to locality, it makes
sense to load loc+0, ..., loc+n on cache fault for location loc.
Modern CPUs typically determine n dynamically.

97 / 1

Important questions about Cache

Example: what (how much) data to read from main memory
after a cache miss?

Different CPUs give different answers. Due to locality, it makes
sense to load loc+0, ..., loc+n on cache fault for location loc.
Modern CPUs typically determine n dynamically.

98 / 1

Important questions about Cache

Example: what (how much) data to read from main memory
after a cache miss?

Different CPUs give different answers. Due to locality, it makes
sense to load loc+0, ..., loc+n on cache fault for location loc.
Modern CPUs typically determine n dynamically.

99 / 1

Important questions about Cache

What do real processors use? That’s quite hard to say, but
looks complicated. CPU producers seem to keep this secret. If
you know more, let me know ...

Why can they keep this secret? Because caching does not
affect the results programs compute, only speed. Give
manufacturers freedom to change CPU architecture without
telling anyone.

100 / 1

Important questions about Cache

What do real processors use?

That’s quite hard to say, but
looks complicated. CPU producers seem to keep this secret. If
you know more, let me know ...

Why can they keep this secret? Because caching does not
affect the results programs compute, only speed. Give
manufacturers freedom to change CPU architecture without
telling anyone.

101 / 1

Important questions about Cache

What do real processors use? That’s quite hard to say, but
looks complicated. CPU producers seem to keep this secret. If
you know more, let me know ...

Why can they keep this secret? Because caching does not
affect the results programs compute, only speed. Give
manufacturers freedom to change CPU architecture without
telling anyone.

102 / 1

Important questions about Cache

What do real processors use? That’s quite hard to say, but
looks complicated. CPU producers seem to keep this secret. If
you know more, let me know ...

Why can they keep this secret?

Because caching does not
affect the results programs compute, only speed. Give
manufacturers freedom to change CPU architecture without
telling anyone.

103 / 1

Important questions about Cache

What do real processors use? That’s quite hard to say, but
looks complicated. CPU producers seem to keep this secret. If
you know more, let me know ...

Why can they keep this secret? Because caching does not
affect the results programs compute, only speed. Give
manufacturers freedom to change CPU architecture without
telling anyone.

104 / 1

An artificial example
for (j <- 0 to 20-1) {

for (i <- 0 to 100000000-1) {
a[i] = a[i]*b[i] } }

When we run this we execute

a[0] = a[0] * b[0]
a[1] = a[1] * b[1]
a[2] = a[2] * b[2]
a[3] = a[3] * b[3]
a[4] = a[4] * b[4]
...
a[0] = a[0] * b[0]
a[1] = a[1] * b[1]
...

Depending on details, every read is a cache miss. So the
program runs at the speed of main memory, i.e. slowly.

105 / 1

An artificial example
for (j <- 0 to 20-1) {

for (i <- 0 to 100000000-1) {
a[i] = a[i]*b[i] } }

When we run this we execute

a[0] = a[0] * b[0]
a[1] = a[1] * b[1]
a[2] = a[2] * b[2]
a[3] = a[3] * b[3]
a[4] = a[4] * b[4]
...
a[0] = a[0] * b[0]
a[1] = a[1] * b[1]
...

Depending on details, every read is a cache miss. So the
program runs at the speed of main memory, i.e. slowly.

106 / 1

An artificial example
What happens if we exchange loops?

for (i <- 0 to 100000000-1) {
for (j <- 0 to 20-1) {

a[i] = a[i]*b[i] } }

When we run this we execute

a[0] = a[0] * b[0]
a[0] = a[0] * b[0]
...
a[0] = a[0] * b[0]
a[1] = a[1] * b[1]
...
a[1] = a[1] * b[1]
...

Result:
I The program computes exactly the same results.
I We have a lot fewer cache misses.

107 / 1

An artificial example
What happens if we exchange loops?

for (i <- 0 to 100000000-1) {
for (j <- 0 to 20-1) {

a[i] = a[i]*b[i] } }

When we run this we execute

a[0] = a[0] * b[0]
a[0] = a[0] * b[0]
...
a[0] = a[0] * b[0]
a[1] = a[1] * b[1]
...
a[1] = a[1] * b[1]
...

Result:
I The program computes exactly the same results.
I We have a lot fewer cache misses.

108 / 1

An artificial example

Going from

for (j <- 0 to 20-1) {
for (i <- 0 to 100000000-1) {
a[i] = a[i]*b[i] } }

to

for (i <- 0 to 100000000-1) {
for (j <- 0 to 20-1) {
a[i] = a[i]*b[i] } }

is called loop interchange, can speed up code up to 10 times,
and some advanced compilers can do it automatically.

See prog/proc.c

109 / 1

Problem

Modern compilers are very good at managing registers, much
better than almost all programmers could.

Compilers are not good at managing caches. This problem is
left to the programmer. It is an open research question of to
make compilers better at managing caches.

One problem: OS switches between processes, and a context
switch typically ’trashes’ the cache, i.e. the cache holds values
that are good for the outgoing process, but hold no values of
interest to the incoming process.

110 / 1

Problem

Modern compilers are very good at managing registers, much
better than almost all programmers could.

Compilers are not good at managing caches. This problem is
left to the programmer. It is an open research question of to
make compilers better at managing caches.

One problem: OS switches between processes, and a context
switch typically ’trashes’ the cache, i.e. the cache holds values
that are good for the outgoing process, but hold no values of
interest to the incoming process.

111 / 1

Problem

Modern compilers are very good at managing registers, much
better than almost all programmers could.

Compilers are not good at managing caches. This problem is
left to the programmer. It is an open research question of to
make compilers better at managing caches.

One problem: OS switches between processes, and a context
switch typically ’trashes’ the cache, i.e. the cache holds values
that are good for the outgoing process, but hold no values of
interest to the incoming process.

112 / 1

Multi-level caches

The picture painted about caches so far is too simplistic in that
modern CPUs have not one but (usually) three caches:

I L1. Small, very fast.
I L2. Medium size, medium speed.
I L3. Large size, slow (but still much faster than main

memory).

(L stands for Level.) Intel has just started adding L4 caches
(Haswell)

Processor L1 L2 L3
ARM Coretex A9 32 KB 128kB-8MB -
ARM Coretex A15 64 KB 4MB -
Intel Ivy Bridge 64 KB p. core 256 kB p. core 8 MB shared

Why?

113 / 1

Multi-level caches

The picture painted about caches so far is too simplistic in that
modern CPUs have not one but (usually) three caches:

I L1. Small, very fast.
I L2. Medium size, medium speed.
I L3. Large size, slow (but still much faster than main

memory).

(L stands for Level.) Intel has just started adding L4 caches
(Haswell)

Processor L1 L2 L3
ARM Coretex A9 32 KB 128kB-8MB -
ARM Coretex A15 64 KB 4MB -
Intel Ivy Bridge 64 KB p. core 256 kB p. core 8 MB shared

Why?

114 / 1

Multi-level caches

The picture painted about caches so far is too simplistic in that
modern CPUs have not one but (usually) three caches:

I L1. Small, very fast.
I L2. Medium size, medium speed.
I L3. Large size, slow (but still much faster than main

memory).

(L stands for Level.) Intel has just started adding L4 caches
(Haswell)

Processor L1 L2 L3
ARM Coretex A9 32 KB 128kB-8MB -
ARM Coretex A15 64 KB 4MB -
Intel Ivy Bridge 64 KB p. core 256 kB p. core 8 MB shared

Why?

115 / 1

Multi-level caches

The picture painted about caches so far is too simplistic in that
modern CPUs have not one but (usually) three caches:

I L1. Small, very fast.
I L2. Medium size, medium speed.
I L3. Large size, slow (but still much faster than main

memory).

(L stands for Level.) Intel has just started adding L4 caches
(Haswell)

Processor L1 L2 L3
ARM Coretex A9 32 KB 128kB-8MB -
ARM Coretex A15 64 KB 4MB -
Intel Ivy Bridge 64 KB p. core 256 kB p. core 8 MB shared

Why?

116 / 1

Multi-level caches

There is a fundamenal and hard trade-off in caches:

I Smaller chaches are faster, have lower latency.
I Bigger caches have a better miss-rate.

It seems we can’t have both: fast caches and low miss-rate.

117 / 1

Multi-level caches

To deal with the miss-rate/low latency trade-off, modern CPU
create a hierarchy of caches: the small but fast L1 cache
doesn’t read directly from memory but from a bigger but slower
L2 cache. In turn the L2 cache often reads from a even larger
and even more slow L3 cache. The L3 cache reads from the
main memory.

ALU
Registers

L1 L2 L3 Main memory

CPU

118 / 1

Instruction caches
So far we’ve mostly assumed that our caches can not only be
read from, but also written to. This is vital for data.

But in most modern computers, instructions can only be read.
Caches that are read-only are much easier technically and
hence faster, and taking up less chip space.

Consequently, modern CPUs often have a separate and fast
instruction cache that exploits instruction locality.

ALU
Registers

L1 L2 L3 Main memory

CPU

Instruction
cache

119 / 1

Interesting issues not mentioned

I Modern CPUs have multiple cores, i.e. mini-CPUs. How do
cores and caches interact?

I Caches can be used to steal data from other processes
(e.g. private keys), how can that be avoided? See e.g. the
paper “CACHE MISSING FOR FUN AND PROFIT” by
Colin Percival. Short summary: this is a serious problem,
and Intel has changed it’s CPU architectures so that
caches can be ’switched off’ when dealing with secret data.

120 / 1

Interesting issues not mentioned

I Modern CPUs have multiple cores, i.e. mini-CPUs. How do
cores and caches interact?

I Caches can be used to steal data from other processes
(e.g. private keys), how can that be avoided? See e.g. the
paper “CACHE MISSING FOR FUN AND PROFIT” by
Colin Percival. Short summary: this is a serious problem,
and Intel has changed it’s CPU architectures so that
caches can be ’switched off’ when dealing with secret data.

121 / 1

Interesting issues not mentioned

I Modern CPUs have multiple cores, i.e. mini-CPUs. How do
cores and caches interact?

I Caches can be used to steal data from other processes
(e.g. private keys), how can that be avoided? See e.g. the
paper “CACHE MISSING FOR FUN AND PROFIT” by
Colin Percival.

Short summary: this is a serious problem,
and Intel has changed it’s CPU architectures so that
caches can be ’switched off’ when dealing with secret data.

122 / 1

Interesting issues not mentioned

I Modern CPUs have multiple cores, i.e. mini-CPUs. How do
cores and caches interact?

I Caches can be used to steal data from other processes
(e.g. private keys), how can that be avoided? See e.g. the
paper “CACHE MISSING FOR FUN AND PROFIT” by
Colin Percival. Short summary: this is a serious problem,
and Intel has changed it’s CPU architectures so that
caches can be ’switched off’ when dealing with secret data.

123 / 1

Conclusion

Caches in modern CPUs are a form of fast memory that
automatically exploits memory locality to speed up execution,
often quite considerably.

Making good use of the cache typically has drastic influences
on execution speed.

It is currently difficult for compilers to increase data-locality
(although Stop & Copy garbage collectors help).

For most normal programming activities, it’s probably not a
good idea to worry much about data locality. It’s probably more
economical to think about better high-level algorithms (or use a
faster computer) when you encounter performance problems.

For really high-performance computing, programming
cache-aware is vital, and has a substantial (negative) influence
on program structure and portability.

124 / 1

Conclusion
Caches in modern CPUs are a form of fast memory that
automatically exploits memory locality to speed up execution,
often quite considerably.

Making good use of the cache typically has drastic influences
on execution speed.

It is currently difficult for compilers to increase data-locality
(although Stop & Copy garbage collectors help).

For most normal programming activities, it’s probably not a
good idea to worry much about data locality. It’s probably more
economical to think about better high-level algorithms (or use a
faster computer) when you encounter performance problems.

For really high-performance computing, programming
cache-aware is vital, and has a substantial (negative) influence
on program structure and portability.

125 / 1

Conclusion
Caches in modern CPUs are a form of fast memory that
automatically exploits memory locality to speed up execution,
often quite considerably.

Making good use of the cache typically has drastic influences
on execution speed.

It is currently difficult for compilers to increase data-locality
(although Stop & Copy garbage collectors help).

For most normal programming activities, it’s probably not a
good idea to worry much about data locality. It’s probably more
economical to think about better high-level algorithms (or use a
faster computer) when you encounter performance problems.

For really high-performance computing, programming
cache-aware is vital, and has a substantial (negative) influence
on program structure and portability.

126 / 1

Conclusion
Caches in modern CPUs are a form of fast memory that
automatically exploits memory locality to speed up execution,
often quite considerably.

Making good use of the cache typically has drastic influences
on execution speed.

It is currently difficult for compilers to increase data-locality
(although Stop & Copy garbage collectors help).

For most normal programming activities, it’s probably not a
good idea to worry much about data locality. It’s probably more
economical to think about better high-level algorithms (or use a
faster computer) when you encounter performance problems.

For really high-performance computing, programming
cache-aware is vital, and has a substantial (negative) influence
on program structure and portability.

127 / 1

Conclusion
Caches in modern CPUs are a form of fast memory that
automatically exploits memory locality to speed up execution,
often quite considerably.

Making good use of the cache typically has drastic influences
on execution speed.

It is currently difficult for compilers to increase data-locality
(although Stop & Copy garbage collectors help).

For most normal programming activities, it’s probably not a
good idea to worry much about data locality. It’s probably more
economical to think about better high-level algorithms (or use a
faster computer) when you encounter performance problems.

For really high-performance computing, programming
cache-aware is vital, and has a substantial (negative) influence
on program structure and portability.

128 / 1

Conclusion
Caches in modern CPUs are a form of fast memory that
automatically exploits memory locality to speed up execution,
often quite considerably.

Making good use of the cache typically has drastic influences
on execution speed.

It is currently difficult for compilers to increase data-locality
(although Stop & Copy garbage collectors help).

For most normal programming activities, it’s probably not a
good idea to worry much about data locality. It’s probably more
economical to think about better high-level algorithms (or use a
faster computer) when you encounter performance problems.

For really high-performance computing, programming
cache-aware is vital, and has a substantial (negative) influence
on program structure and portability.

129 / 1

