
Compilers and computer architecture:
Garbage collection

Martin Berger 1

December 2019

1Email: M.F.Berger@sussex.ac.uk, Office hours: Wed 12-13 in
Chi-2R312

1 / 1

M.F.Berger@sussex.ac.uk

Recall the function of compilers

2 / 1

Recall the structure of compilers

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

3 / 1

“There is nothing difficult in GC, except to get it to run fast.
That’s 30-40 years of research.” J. Vitek, personal communication, 2016.

4 / 1

What is the question GC is the answer to?

5 / 1

Memory management
Consider the following Java fragment

while(serverRunning) {
NetConnection conn = new NetConnection(...);
Customer cust = new Customer(conn);
cust.act();
if(...) serverRunning = false;

}

Say a NetConnection object and a Customer object
together take 100 KBytes in (heap) memory (realistic for many
applications). Say we have 16 GBytes memory available. How
many times can we go through the loop before running out of
memory (assuming we do nothing to reclaim memory)?

Approx. 167772 times. That’s not a lot (think Facebook,
Amazon, Google). What should happen then?
(See prog/IntroExample.java)

6 / 1

Memory management

7 / 1

Memory management

Consider the following Java fragment

while(serverRunning) {
NetConnection conn = new NetConnection(...);
Customer cust = new Customer(conn);
cust.act();
if(...) serverRunning = false;

}

But at the end of each loop iteration, the allocated conn and
cust are no longer usable (static scoping!)

So the heap storage they occupy can be reused!

How do we heap reuse storage?

8 / 1

9 / 1

Reusing storage

There are three ways of reusing heap storage.

I By hand: the programmer has to insert commands that
reclaim storage. Used in C/C++.

I Automatically, using a garbage collector. Used in most
other modern languages. Java was the first mainstream
language to do this, although the concept is much older.

I With the help from the typing system. That’s Rust’s
approach. It’s brand new. Not currently used in any
mainstream language, but might be popular in the future.

Let’s look at the first two in turn.

10 / 1

Manually reusing storage

In C/C++-like languages we would have to write something like
this:

while(serverRunning) {
NetConnection conn = new NetConnection(...);
Customer cust = new Customer(conn);
cust.act();
if(...) serverRunning = false;
free(cust);
free(conn);

}

To understand what free is really doing, let’s look at (a
simplified model of) what new does.

11 / 1

Heap management
Remember we need a heap because some things in the
memory outlive procedure/method activations, e.g. this:

public Thing doStuff() {
Thing thing = new Thing();
...
return thing;

}

We cannot store thing the activation record of doStuff,
because thing might be used after doStuff has returned,
and ARs are removed from the stack when the method returns.

We use the heap for such long-lived objects.

Please remember that the concept of heap in compilers has
nothing to do with heaps you learn about in algorithms/data
structures.

12 / 1

Heap management

Code

Static data

Stack

Empty

Stack pointer

Stack base

Heap

Heap pointer

We use the heap for such
long-lived objects.

Let’s look at a very simplified
model of heap management.

13 / 1

Heap management: allocating memory

Here is a simplified picture of what happens when we allocate
memory on the heap, e.g. by a = new A (...).

Next free

Next free

z

y

x

z

y

x

a

a = new A (...)

14 / 1

Heap management: freeing memory

Here is a simplified picture of what happens when we free
memory on the heap, e.g. by free(z).

Next free

Next free

a

y

x

z

y

x

a free (z)

Note that this is a simplification, e.g. heap allocated memory is
not always of the same size.

15 / 1

Manual heap management
In older languages (C/C++) the programmer manages the heap
explicitly, i.e. calls free to release memory from the heap, and
make it available for other usage. This is problematic:

I Forgetting to free memory, leading to memory leaks.
I Accidentally freeing memory more than once.
I Using memory after it has been freed, the dreaded

null-pointer dereference in C/C++.
I Using memory after it has been freed, and reallocated (to

something of a different type).

These bugs tend to be really hard to find, because cause and
effect can be far removed from each other.

Fear of the above problems leading to defensive
programming which can be inefficient and exhibit awkward
software style.

16 / 1

Manual heap management: problems

Here is an example of using memory after it has been freed,
and reallocated.

a = new A (); // a stored starting at memory
// cell 1234

...
free(a);
b = new B(); // now b occupies cell 1234
a.f(); // might use memory cell 1234

// as if it still contained
// something of type A

What can we do about this?

17 / 1

Memory management is tedious, so why not let the computer
do it?

18 / 1

Automatic heap management

This is an old problem, and has been studied since at least the
1950s (LISP). There are two ways of doing this!

Type-based

GC (Garbage collection)

19 / 1

Rust & type-based memory management. (Not exam
relevant)

Rust seeks to combine the advantages of C/C++ (speed of
memory management) with those of GC (safety), by letting the
typing system check for absence of memory errors. Problem:
complicates language.

Rust is fairly new and is only now (2019) hitting the mainstream.

20 / 1

GC

First mainstream language to use it was Java, where it was
introduced because manual heap management in C/C++
caused so many problems.

Originally GC was slow, and resented for that reason. But by
now GC is typically almost as fast as manual memory
management, but much safer. (There are edge cases where
GC can be much slower.)

21 / 1

GC speed

“There is nothing difficult in GC, except to get it to run fast.
That’s 30-40 years of research.” J. Vitek, personal communication, 2016.

Fortunately, we’ve spent those 30-40 years, and you can reap
the benefits!

22 / 1

Automatic heap management

GC becoming mainstream is probably the single biggest
programming language improvement (in the sense of reducing
bugs) in the last two decades.

23 / 1

Garbage collection

int [] a = new int[] { 1,2,3 };
a = new int[] { 9,8,7,6,5,4,3,2 };

What do we know about the memory allocated in the first line
after the last line is executed?

The memory allocated in the first line is no longer reachable
and usable by the program. (Why?)

Memory that is no longer reachable cannot affect the remainder
of the program’s computation.

Hence: memory that is no longer reachable can be reused.

24 / 1

Garbage collection

The basic idea of GC at a given point in a program’s execution
is simple, in order to reclaim heap memory:

I Find all the memory that is reachable (from the live
variables visible as the given point).

I All memory that is not reachable, can be used for allocation
(is free). We also say that non-reachable memory (at the
given point in a program’s execution) is garbage.

The details of how to implement this basic idea can vary a great
deal and strongly influence how well a GC works.

Before we can study GCs in more detail, we must be more
precise what it means for memory to be reachable by a
program.

25 / 1

Reachability

The big question in GC: how can we know if a piece of memory
is free (available for reallocation), or is still being used by the
program and cannot (at this point) be reallocated?

Let’s look at an example.

26 / 1

Reachability
class A {

public int n;
public A(int n) { this.n = n; } }

class B {
public int n;
public A a;
public B(int n, A a) {

this.n = n;
this.a = a; } }

...
public static void main (String [] args) {

A a = new A (1);
B b1 = new B (11, a);

a = new A (2);
B b2 = new B (22, new A (3));

b2 = new B (33, new A (4));
int[] ar = new int[] { 1,2,3 };
...

27 / 1

Reachability
The picture below shows the heap just after the array ar has
been allocated.

Header
n = 11 Header

n = 1

Header
n = 2

Header
n = 22

Header
n = 3

Header
n = 33 Header

n = 4

Header
1
2
3

ar

b2

b1

a

reachable

unreachable

Some cells are reachable directly from the variables b1, a, b2
and ar. But some are reachable only indirectly through
embedded pointers.

28 / 1

Reachability
The picture below shows the heap just after the array ar has
been allocated.

Header
n = 11 Header

n = 1

Header
n = 2

Header
n = 22

Header
n = 3

Header
n = 33 Header

n = 4

Header
1
2
3

ar

b2

b1

a

reachable

unreachable

Question: why don’t we have to worry about the pointers to the
method tables in the headers?

29 / 1

Reachability
The picture below shows the heap just after the array ar has
been allocated.

Header
n = 11 Header

n = 1

Header
n = 2

Header
n = 22

Header
n = 3

Header
n = 33 Header

n = 4

Header
1
2
3

ar

b2

b1

a

reachable

unreachable

Answer: methods are statically allocated. They don’t change
during program execution (in Java).

30 / 1

Reachability

The key idea of reachability is this, for any point in a program
we can work out which variables are live as follows:

I We look at the program syntax (known at compile time) to
see which variables are in scope. These variables are
called roots.

I If a root is a pointer to an object on the heap, (e.g. the
memory a points to in a = new A(...), or in a = new
int [5], then that object is reachable.

I If an object on the heap is reachable and contains a
pointer to another object in the heap, then the second
object is also reachable.

I An object on the heap is unreachable if it is not reachable
from a live variable, or a heap object that is reachable.

That’s it ...

31 / 1

Garbage collection
With the concept of (un)reachability in mind we can describe
automatic memory management as follows:

I Maintain a list of free memory on the heap, initially
containing the whole heap.

I Freely allocate memory from the free list whenever new is
called, until you run out.

I When you run out, interrupt the program execution and
invoke the GC, which does the following.

I Get the set of live variables at the point of program
interruption (the variables on the stack and in registers).

I Compute the set of reachable and unreachable heap
memory cells.

I Add all the unreachable cells to the free list.

I Resume program execution.

Many variants of this scheme exist, e.g. run the GC not when
memory has run out, but periodically.

32 / 1

Live variables - Example

What are the live variables at program points 1, ..., 5?

A a = new A();
// point 1

while (true) {
// point 2

NetConnection conn = new NetConnection (...);
// point 3

Customer cust = new Customer (conn);
// point 4

...
if (...) break;

}
// point 5

Solve in class

33 / 1

How can we implement GC at run-time?

This depends on the language we use, and the compilation
strategy.

We must work out what (if any) pointers to the heap our source
language has.

We must determine how to find the roots, i.e. the variables that
are live at the point in the program’s execution when we run
GC.

We must work out the embedded pointers (if any) of any piece
of heap memory.

We must decide on an algorithm that finds all (un)reachable
memory cells.

We must then reclaim the unreachable memory.

There are many different ways to do this.
34 / 1

What are the pointers in a language?

Consider the simple language we used to explain code
generation.

D → def I (A) = E
E → INT | ID | if E = E then E else E

| E + E | E − E | ID(EA)

Question: What are the pointers/references into the heap?

Answer: there are none. All variables are procedure
parameters. They are stored on the stack in activation records.
They live on the stack and are automatically freed when the
corresponding AR is popped of the stack.

35 / 1

What are the pointers in a language

In a language like Java, pointers into the heap are created
whenever you call new. So in

A a = new A (...);
B[] b = new B[] { ... };
int n = 3;

the variables a and b point into the heap, unlike n.

But GC executes at run-time, so to find the roots at run-time,
we must know where variables are located.

36 / 1

What are the pointers in a language

Remembering our (accumulator machine) compilation,
variables are stored in:

I The accumulator. Other compilation schemes use more
registers.

I Activation records on the stack.

Question: How does the GC know at run-time if a register or an
activation record entry contain a pointer into the heap, or an
integer that is not a pointer?

Answer: combintion of using type-information available at
compile-time, together with type information stored in headers
at run-time. Details of this are quite tricky ... (and beyond scope
of this course)

37 / 1

What are the pointers in a language

Remember a piece of heap memory m is reachable, exactly
when one of the following conditions holds:

I Another piece of reachable heap memory contains a
pointer to m.

I A root (register or activation record) contains a pointer to m
and the root is of a type that is stored on the heap (e.g. not
integers). Why is the qualification important?

I Integers might happen to have values that match the
addresses of objects on the heap

Languages where integers can be used as pointers (i.e. C/C++)
cannot really be GCed (at least not well) for this reason.

38 / 1

Reachability is an approximation

Consider the following slightly artificial program.

A tmp = new A ();
// can mem pointed to by "a"
// affect future of computation?

if (...) {
B b = new B() // might trigger GC

// tmp is root here
b.f(17)
return "hello" }

else { ... }
... // tmp is used here

After the first line, the memory allocated by new in the first line
can never be used again, hence cannot affect rest of
computation. But it is reachable (from root tmp which is in
scope in then ...), so cannot be GCed inside of then.

39 / 1

Reachability must be an approximation
Programs like

A tmp = new A ();
if (...) {

B b = new B() // might trigger GC
// tmp is root here

...

show that reachability at a given program point is an
approximation: a piece of memory might be reachable, but
cannot be used by the program.

Cause: roots (which start reachability search) is a compile-time
concept, and we assume that all roots are reachable.

Approximations are necessary! To be on the safe side, the
memory allocated by the initial new is considered reachable
before and inside the loop.

(Remember Rice’s theorem?)
40 / 1

The algorithm for computing reachability

reach(roots) =
for each r in roots
if (r not yet processed)

mark heap memory that r points to as reachable
let [r1, ..., rn] be the pointers contained in r
reach([r1, ..., rn])

How do we mark memory as reachable?

There are several ways of mark memory as reachable. In OO
languages, we reserve a bit in the header of each object that
can be stored in the heap.

41 / 1

The algorithm for computing reachability

Accumulator

Stack pointer

Accumulator

Stack pointer

Accumulator

Stack pointer

Accumulator

Stack pointer

Accumulator

Stack pointer

Accumulator

Stack pointer

Accumulator

Stack pointer

Accumulator

Stack pointer

Accumulator

Stack pointer

Accumulator

Stack pointer

Accumulator

Stack pointer

Accumulator

Stack pointer

= unreachable, can be reused

= reachable, cannot be reused

= activation record, not on heap

42 / 1

Two GC algorithms

We are going to look at two GC algorithms.

I Mark and sweep
I Stop and copy

43 / 1

Mark and sweep

The mark and sweep algorithm has two phases:
I The mark phase which computes the reachable parts of

the heap, starting from the roots.
I The sweep phase which reclaims unreachable memory,

by going through whole heap.

For this to work (easily) we need need the following information.

I Mark bit, initially set to 0 when memory is allocated.
I Size of the object in memory, and location of pointers

embedded in an object. This can often be determined
using types.

In addition, we need a free list which holds the memory that is
available for allocation (free).

44 / 1

Mark phase

We run the algorithm shown a few slides ago that sets the mark
bit to 1 in each heap object reachable from the roots.

reach(roots) =
for each r in roots
if (r not yet processed)

r.markbit := 1
let [r1, ..., rn] be the pointers contained in r
reach([r1, ..., rn])

45 / 1

Sweep phase

Conceptually, this phase proceeds in two steps.

I The algorithm scans the heap looking for objects with mark
bit zero. Any such object is added to the free list. We know
the size of the memory part we add to the free list because
the size is in the header.

I We reset the mark bit to 0 in objects where it is 1.

sweep(heap) =
for each cell c in heap

if (c.markbit == 1)
c.markbit := 0

else
putOnFreeList (c)

46 / 1

Mark and sweep

Conceptually, this algorithm is really simple. But it has a
number of really tricky details (typical for GC algorithms).

A problem with the mark phase:

The GC is invoked when we run out of memory.

But we need space to run the marking algorithm, and later for
resetting the mark bits to 0 (at least when we implement this
naively). If this space is not known at compile time, how can we
reserve space for it?

There are some very neat algorithms for this purpose (google
Schorr-Waite graph marking algorithm aka Pointer Reversal).

47 / 1

Schorr-Waite algorithm (not exam relevant)
A clever algorithm to explore a graph without additional
memory (except one pointer). It can be used to reset the mark
bits. The key idea is:

I Follow a pointer to a new node
I Reverse the pointer we just followed so we can go back
I Explore the pointers at the new location
I When we go back, we reverse the pointer again.

1root

1

1 1 1

1

1root

1

1 1 1

1

1root

1

1 1 1

1

1root

1

1 1 1

1

1root

1

1 1 1

1

1root

1

1 1 1

11

1root

1

1 1 1

11

1root

1

1 1 1

10

1root

1

1 1 1

10

1root

0

1 1 1

1

1root

0

1 1 1

1

1 1root

0

1 1 1

1

1 1root

0

1 1 1

1

11 1 1root

0

1 1 1

1

11 1 1root

0

1 1 1

1

11 1 1root

0

1 1 1

1

11 1 1root

0

1 1 1

1

11

1

1root

0

1 1 1

1

11

1

1root

0

1 1 1

1

11

0

1root

0

1 1 1

1

11

0

1root

0

1 1 1

0

11 1root

0

1 1 1

0

01 1root

0

1 1 1

0

01 1 1root

0

1 1 1

0

01 1 1root

0

1 1 0

0

1 1 1root

0

1 1 0

0

1 0 1root

0

1 1 0

0

1 01 1root

0

1 1 0

0

1 01 1root

0

1 1 0

0

1 01

1root

0

1 0 0

0

1 1 1root

0

1 0 0

0

1 0 1root

0

1 0 0

0

1 01 1root

0

1 0 0

0

1 01 1root

0

0 0 0

0

11 1root

0

0 0 0

0

10 1root

0

0 0 0

0

10 1root

0

0 0 0

0

10 1root

0

0 0 0

0

0 1root

0

0 0 0

0

0

48 / 1

Constructing the free list

The Schorr-Waite algorithm enables us to sweep the reachable
objects (essentially) without using additional memory.

But how do we construct the new free list without using
additional memory?

Idea: use the free space itself to construct the free list.

49 / 1

Constructing the free list

reachable

free

free
reachable

free

free
reachable

free

free
reachable

free

free
reachable

free

free
reachable

free

free
reachable

free

free
reachable

free

free
reachable

free

free

reachable

free

free
reachable

free

free
reachable

free

free
reachable

free

free
reachable

free

free
reachable

free

free
reachable

free

free
reachable

free

free
reachable

free

free
reachable

free

free

reachable

free

free
reachable

free

free

Null

reachable

free

free

Null

In practise we also merge adjacent free memory regions into
larger regions, so we can later use them to allocate bigger
objects.

Clearly this way of constructing the free list also doesn’t need
(much) additional memory, so we can use it if we run out of
heap space.

50 / 1

Stop & Copy

One disadvantage of Mark & Sweep is that it has to go throught
the whole memory twice in the worst case, first to mark, then
to reset the mark bits and to update the free list. This is
expensive, because memory access is slow.

A different GC technique is Stop & Copy. It needs to touch only
reachable memory. (When is that especially advantageous?)

Here is how Stop & Copy works.

51 / 1

Stop & Copy
Heap is split into two halves:

Old space

New space

next allocation

Heap

Only the Old space is used in the current round. Allocation is
simple: just use next free memory at allocation pointer.

GC happens when the Old space is full.
52 / 1

Stop & Copy
Memory is split into two areas (often about equally sized):

Old space

New space

next allocation

Heap

GC finds reachable objects (starting from roots) and copies
them (instead of marking) from Old space to New space.

Objects contain pointers to other objects. These pointers must
be rewritten to account for the new location (including roots).

As we copy an object from Old to New, we store a forwarding
pointer in the old object, pointing to the new version of the
object. If we reach an object with a forwarding pointer, we know
it was already copied. Like the mark bit, it prevents GC loops.

Finally we swap the role of Old and New space.
53 / 1

Stop & Copy
To implement the rewriting of addresses after copying, we
partition the New space into three parts.

A B C D E F old space

new space

allocscan

root

Left of the scan pointer, objects are processed (all pointers
have been rewritten). The memory between scan and alloc
is copied, but some pointers are still poining to the Old space.
Memory from alloc on is free.

54 / 1

Example of Stop & Copy

A B C D E F old space

new space

alloc

scan

root

A B C D E F old space

new space

alloc

scan

A

Unprocessed
pointer to old
memory

root
A B C D E F old space

new space

alloc

scan

A

Unprocessed
pointer to old
memory

Forwarding
pointer

root

A B C D E F old space

new space

alloc

scan

A

Unprocessed
pointer to old
memory

C

Forwarding
pointer

root

A B C D E F old space

new space

alloc

scan

A

Unprocessed
pointer to old
memory

C

Forwarding
pointer

root

A B C D E F old space

new space

alloc

scan

A

Unprocessed
pointer to old
memory

C

Forwarding
pointer

root

A B C D E F old space

new space

alloc

scan

A

Unprocessed
pointer to old
memory

C

Forwarding
pointer

root

A B C D E F old space

new space

alloc

scan

A

Unprocessed
pointer to old
memory

C

Forwarding
pointer

root

F

A B C D E F old space

new space

alloc

scan

A

Unprocessed
pointer to old
memory

C

Forwarding
pointer

root

F

A B C D E F old space

new space

alloc

scan

A

Unprocessed
pointer to old
memory

C

Forwarding
pointer

root

F

A B C D E F old space

new space

alloc

scan

A

Unprocessed
pointer to old
memory

C

Forwarding
pointer

root

F

A B C D E F old space

new space

alloc

scan

A

Unprocessed
pointer to old
memory

C

Forwarding
pointer

root

F

A B C D E F old space

new space

alloc

scan

A

Unprocessed
pointer to old
memory

C

Forwarding
pointer

root

F

A B C D E F old space

new space

alloc

scan

A

Unprocessed
pointer to old
memory

C

Forwarding
pointer

root

F

A B C D E F old space

new space

alloc

scan

A

Unprocessed
pointer to old
memory

C

Forwarding
pointer

root

F

new space

old space

alloc

A C

root

F

55 / 1

Stop & Copy algorithm

while scan < alloc
let o be the object at scan
for each embedded pointer p in o

find o’ that p points to
if o’ has no forwarding pointer

copy o’ to new space
alloc = alloc + size(o’)
set forwarding pointer in old o’ to new o’

(this marks old o’ as copied)
change pointer p to point to new o’

else
set p in o equal to forwarding pointer

scan = scan + size(o)

We also must rewrite pointers in roots (e.g. activation records).

56 / 1

Stop & Copy

Question: How do we find the pointers embedded in objects?
After all, bit patterns are bit patterns.

Just like with Mark & Sweep, we need to know the size and the
types of objects. This can be done by embedding this
information in the object’s header, and/or using type
information. If this information is not available we cannot do GC.

57 / 1

Stop & Copy

Stop & Copy is (in its advanced forms) the fastest GC algorithm.

Allocation is very fast and simple: just increment the alloc
pointer. No free list needed.

Collection is relatively cheap, especially if there is a lot of
garbage. This is because only reachable objects are
touched. Does not touch garbage. (Mark & Sweep touches
every object in memory.)

Stop & Copy also improves memory locality, which can
increase program execution speed.

Disadvantages: only uses half heap, and pointers get rewritten
(prevents e.g. adress arithmetic).

58 / 1

Key trade-off of GC

GC effortlessly prevents many serious and hard to track down
bugs, hence leads to much nicer and more readable program
structure. So in most cases programs in a GCed language will
be easier to write and maintain than corresponding programs in
non GCed languages.

But reduces programmer control, e.g. data layout in memory, or
when memory is deallocated. Sometimes (but not very often)
this is a problem.

The GC (or OS kernel) itself has to be written in a language
that doesn’t have GC!

59 / 1

GC pauses

GC is extremely effective at avoiding the problems of manual
memory managment, at the cost of some loss of performance.

Some applications need to be responsive, e.g. to user input.
Simple implementations of GC reclaim the whole (mark &
sweep) or half of the whole (stop & copy) heap in one go. While
they operate, the computation of the user’s program is
suspended.

The bigger the heap, the longer the pause.

Some applications cannot tolerate long pauses, and must
always remain responsive, e.g. handle user input in at most
300 ms. Or if you want to deliver Javascript generated graphics
in the browser at 60 FPS, say, you have 16 mSec per image.

Variants of basic GC algorithms have been developed that
allow GCed programs to remain responsive.

60 / 1

GC pauses

Variants of basic GC algorithms have been developed that
allow GCed programs to remain responsive.

I Concurrent GC which happens in the background without
stopping the program.

I Incremental GC Incremental GC reclaims heap memory is
small increments. Rather than doing a full GC cycle when
running out of memory, small parts of the heap are GCed
regularly.

I Generational GC can be seen as a variant of incremental
GC. It’s widely used, e.g. in the JVM, Python (CPython,
PyPy), Chrome’s V8 Javascript JIT compiler, and probably
a whole lot more. Let’s look at generational GC in more
detail.

61 / 1

Generational GC
Generational GC is based on the following empirical insight
about the lifetimes of objects in the heap.

Long
lived

Short
lived

Object lifetime

Percentage
of objects

Objects in the heap are usually either really short lived, or really
long lived. In GC terms: if an object has survived a few GC
cycles, then it is likely to be long-lived and survive more GC
cyles. How can we use this insight to improve GC?

62 / 1

Generational GC
Generational GC uses several heaps, e.g.:

I One heap for short-lived objects.
I One heap for long-lived objects.

How do these heaps relate to each other?
I Objects are first allocated in the heap for short-lived

objects.
I If an object survives a couple of collections in the heap

for short-lived objects, it is moved to the heap for
long-lived objects.

I GC is typically run only on the heap for short-lived objects.
As there are many short-lived objects, GC is likely to
reclaim memory just from that heap.

I If GC on the heap for short-lived objects fails, the heap for
long-lived objects is GCed. This is rare!

Since moving objects is a requirement for generational GC, it’s
especially suitable for combination with Stop & Copy GC.

63 / 1

Generational GC in the JVM
The choice of GC is really important for performance for
memory intensive computation. A large amount of effort has
been spent on improving the JVM GCs.

As of December 2019, the JVM ships with at 7 (!) different
garbage collectors. Most are generational collectors, using
several heaps (called generations) with complicated rules how
to move between them:

I Young Generation. This is subdivided into three (!)
sub-heaps: Eden (where objects are created), and two
survivor spaces.

I Old Generation.
I Permanent Generation.

Note that these complicated GC structures are the result of
intensive empirical investigations into memory usage by
real-world programs.

64 / 1

GC in the JVM

The permanent heap is used for objects that the JVM finds
convenient to have the garbage collector manage, such as
objects describing classes and methods, as well as the classes
and methods (method tables) themselves.

The young generation consists of Eden and two smaller
survivor spaces. Most objects are initially allocated in Eden.
(Some large objects may be allocated directly in the Old
Generation heap.)

The survivor spaces hold objects that have survived at least
one young generation collection and have thus been given
additional chances to die before being considered "old enough"
to be moved to the Old Generation. Survivor spaces holds such
objects (we have 2 to do stop/copy with them).

65 / 1

Heap structure in the JVM (simplified)

Eden

From

To

Old

PermanentA's Method table B's Method table

Green
means
Young

66 / 1

GC in the JVM

Eden

From

To

Old

PermA's Method table B's Method table

Objects are (mostly) created in Eden.

When the Young Generation fills up, a Young
Generation collection (sometimes referred to
as a minor collection) of just that generation is
performed. When an Eden object survives on
collection, it is moved to a Survivor heap (To or
From). When an object has survived some
number of collections in a Survivor heap, it is
moved to the Old Generation heap.

When the Old Generation fills up, a full
collection (aka major collection) is done. Note
that old generation doesn’t have to be Stop &
Copy since objects there are not moved.
Example stanford-gc.pdf

67 / 1

GC in the JVM

The JVM GC can be heavily tweaked by the programmer,
e.g. size of the different generational heaps, collection
strategies etc.

The JVM also offers extensive profiling features, so you can
see exactly when and what kind of GC happens. This can be
very useful if you are dealing with large amounts of data.

Example: java -verbose:gc prog/Measure.java

68 / 1

GC speed

“There is nothing difficult in GC, except to get it to run fast.
That’s 30-40 years of research.” J. Vitek, personal communication, 2016.

“Whenever your data increases by 10x, you have to redesign
your algorithms from scratch” Programmer folklore.

As memory gets bigger, (as of 6. December 2019 the biggest
memory you can rent on Amazon’s EC2 is 24 TB) GC
algorithms have to be, and are being rethought: GC, and
memory management is an active area of research (see also
Rust).

69 / 1

GC summary
GC automatises reclamation of unused heap memory (in
C/C++ this is under programmer control). This tends to reduce
the number of bugs.

GC estimates object lifetime by reachability, starting from roots
(registers and activation records on the stack), and then
chasing pointers.

Memory that is not reachable can be reclaimed.

Many different techniques for reclamation of reachable memory,
including copying.

Modern GC system tend to be generational (a collection of
’smaller’ GCs) that can move live objects from one GC to
another. The key assumption is that “most objects die young”.

Understanding GC is vital for high-performance programs, both
for the normal programmer dealing with big data, and the
compiler writer. 70 / 1

Last words

Compilers (and related subjects) great subject for final year
projects.

JRA (Junior Research Assistant) in the summer 2020.

Feel free to talk to me about this.

71 / 1

72 / 1

73 / 1

