
Compilers and computer architecture:
Compiling OO languages

Martin Berger 1

December 2019

1Email: M.F.Berger@sussex.ac.uk, Office hours: Wed 12-13 in
Chi-2R312

1 / 1

M.F.Berger@sussex.ac.uk

Recall the function of compilers

2 / 1

Recall the structure of compilers

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

3 / 1

Introduction

The key ideas in object oriented programming are:
I Data (state) hiding through objects, objects carry access

mechanisms (methods).
I Subtyping. If B is a subclass of A than any object that is an

instance of B can be used whenever and wherever an
instance of A is expected.

Let’s look at an example.

4 / 1

A Java example

interface A { int f () { ... } }
class B implements A { int f () { ... } }
class C implements A { int f () { ... } }
...
public static void main (String [] args) {

...
A a = if (userInput == 0) {

new B (); }
else {

new C (); }
...
a.f() // Does the compiler know which f is used?

At compile time we don’t know exactly what objects we have to
invoke methods on.

5 / 1

Problem

The code generator must generate code such that access
(methods and instance variables) to an object that is an
instance of A must work for any subclass of A.

Indeed some subclasses of A might only become available at
run-time.

So we have two questions to ask:
I How are objects laid out in memory?
I How is method invocation implemented?

6 / 1

Object layout in memory
We solve these problems using the following ideas.
I Objects are laid out in contiguous memory, with pointer

pointing to that memory giving us access to object.
I Each instance variable is at the same place in the

contiguous memory representing an object, i.e. at a fixed
offset, known at compile-time, from the top of the
contiguous memory representing the offset.

I Subclass instance variables are added ’from below’.

Instance of A

b = 999

Instance of B

a = 0

a2 = 1

a = 0

Header

a2 = 1

32

36

40

124

128

132

120 Header

7 / 1

Object layout in memory

Note that the the number and types of instance
variables/attributes (i.e. size in memory) are available to the
compiler at compile time.

class A {
int a = 0;
int a2 = 1;
int f () {

a = a + a2;
return a; } }

class B extends A {
int b = 999;
int f () { return a; }
int g () {

a = a - b + a2;
return a; } }

b = 999

Instance of B

a = 0

a2 = 1

124

128

132

120

Instance of A

a = 0

Header

a2 = 1

32

36

40

Header

8 / 1

Object layout in memory
Instance of A

b = 999

Instance of B

a = 0

a2 = 1

a = 0

Header

a2 = 1

32

36

40

124

128

132

120

b = 44

Another instance of B

a = 7

a2 = 12

1604

1608

1612

1600Header Header

The compiler uses the same layout for every instance of a
class. So if the size of the header is 4 bytes, and integers are 4
bytes, then a is always at offset 8 from the beginning of the
object, and a2 is always at offset 12, both in instances of A and
B, and likewise for other subclasses of A, or other header and
field sizes

This ensures that every instance of B can be used where an
instance of A is expected.

9 / 1

Object layout in memory
This also works with deeper inheritance hierarchies.

class A {
int a = 0; }

class B extends A {
int b = 1; }

class C extends B {
int c = 9;
int d = 9; }

class D extends C {
int e = 5; }

1604

1608

1612

1600

1616

1620

a = 0 1604

1608

1612

1600

1616

1620

Header

A

a = 0

b = 1

1604

1608

1612

1600

1616

1620

Header

A
B

c = 9

a = 0

b = 1

1604

1608

1612

1600

d = 91616

1620

Header

A
B

C

c = 9

a = 0

b = 1

1604

1608

1612

1600

d = 9

e = 5

1616

1620

Header

D

A
B

C

No matter what object we create, we can always find the visible
fields at the same offset from the ’top’ of the object.

10 / 1

We’ve overlooked one subtle issue

In Java and other languages you can write this:

class A { public int a = 0; }
class B extends A { public int a = 1; }

class Main {
public static void main (String [] args) {

A a = new A ();
B b = new B ();
A ab = new B ();
System.out.println ("a.a = " + a.a);
System.out.println ("b.a = " + b.a);
System.out.println ("ab.a = " + ab.a); } }

What do you think this program outputs? Why? (Example: prog/ex3.java)

11 / 1

Shadowing of instance variables/attributes

The solution is twofold:
I To determine what instance variable/attribute to access,

the code generator looks at the static type of the variable
(available at compile-time). Note that the type of the object
at run-time might be different (e.g. A ab = new B (); in
the example on the last slide).

I If there is more than one instance variable/attribute with
the same name, we choose the one that is closest up the
inheritance hierarchy.

12 / 1

Shadowing of instance variables/attributes (bigger
example)

class A1 { a ...} // defines a
class A2 extends A1 { a ...} // defines a
class A3 extends A2 { a ...} // defines a
class A4 extends A3 {...} // doesn’t define a
class A5 extends A4 { a ...} // defines a
class A6 extends A5 {...} // doesn’t define a
class A7 extends A6 {...} // doesn’t define a
class A8 extends A7 {...} // doesn’t define a
class A9 extends A8 {...} // doesn’t define a
class A10 extends A9 { a ...} // defines a
...
A7 x = new A10 ()
...
print (x.a) // prints A5’s a

(Example: ex5.java)

13 / 1

Shadowing of instance variables/attributes

Do you think Java’s shadowing is a good idea?

What alternative approaches would you recommend?

14 / 1

Multiple inheritance

Some OO languages (e.g. C++, but not Java) allow multiple
inheritance.

class A {
int a = 0; }

class B {
int b = 2; }

class C extends A, B {
int c = 9; }

Now we have two possibilities for laying out objects that are
instances of C in memory.

15 / 1

Multiple inheritance

Now we have two possibilities for laying out objects that are
instances of C in memory.

a = 0 1604

1608

1612

1600

c = 9

b = 1

Header

a = 0

1604

1608

1612

1600

c = 9

b = 1

Header

Either way is fine, as long as we always use the same choice!

16 / 1

Multiple inheritance: diamond inheritance
However with multiple inheritance the compiler must must be
careful because attributes/instance variables and methods can
be inherited more than once:

class A { int a = 0; }

class B extends A{
int a = 2; }

class C extends A {
int a = 9; }

class D extends B, C { int a = 11; ... }

A

B C

D

Should D contain a once, twice, thrice, four or five times? To
avoid such complications, Java and other languages prohibit
multiple inheritance.

17 / 1

Quick question

Languages like Java have visibility restrictions (private,
protected, public).

How does the code generator handle those?

Answer: not at all, they are enforced by semantic analysis (type
checking).

18 / 1

Summary
Inheritance relationships

class A { a ... }
class B extends A { b ... }
class C extends A { c ... }

give rise to the following object layouts.

Instance of A

b

Instance of B

a a

Header Header

c

Instance of C

a

Header

Note that we can access a in the same way in instances of A, B
and C just by using the offset from the top of the (contiguous
memory region representing the) object.

19 / 1

Methods

We have now learned how to deal with object instance
variables/attributes, what about methods? We need to deal with
two questions:
I How to generate the code for the method body?
I Where/how to store method code to ensure dynamic

dispatch works?
We begin with the former.

20 / 1

Compilation of method bodies

We have already learned how to generate code for procedures
(static methods). Clearly (non-static) methods are very similar
to procedures ... except:

Which method to invoke?

Can we reuse the code generator for methods?

21 / 1

Compilation of methods by reduction to procedures

Consider the following Java definition:

class A {
int n = 10;
int f (int x) = { n = n+1; return x+n; } }

What’s the difference between

a.f(7) f(a, 7)

22 / 1

Compilation of methods by reduction to procedures

We see a method invocation a.f(7) as a normal procedure
call taking two arguments, with the additional argument being
(a pointer to) the object a that we invoke the method on. The
additional argument’s name is hardcoded (to e.g. this).

int f_A (A this, int x) = {
this.n = this.n + 1;
return x + this.n }

So ’under the hood’ the compiler generates a procedure f_A
for each method f in each class A. The object (this in Java)
becomes nothing but normal a procedure parameter in f_A.
Each access to a instance variable n in the body of f is
converted to an access a.n to the field holding b in the
contiguous memory representing the object. Now we can
reuse the code generator for procedures, with one caveat.

23 / 1

Where does the method body code go?

The only two issues left to resolve are
I How to find the actual method body?
I Where to store method bodies?

Any ideas?

Finding methods is easy: just access them (like fields) at fixed
offset from the header, known at compile-time.

24 / 1

Where does the method body code go? First idea
Put them all in the contiguous memory with the instance
variables/attributes.

class A {
int a = 0;
int b = 1;
int f () = ...
int g (int x) =
...

Instance of A

a Code for f_A

b

Instance of A

a

b

Code for g_A

Header Other header datais really

Note that f_A and g_A are normal procedures with an
additional argument as described above.

Can you see the problem with this solution?

25 / 1

Where does the method body code go? Second idea
Problem: massive code duplication! But methods are the same
for each object of the same class.

Instead we could share the method bodies between objects,
and let the instances (at fixed offset) contain pointers the
shared method bodies.

Pointer to f_A

Instance of A

a

b

Pointer to g_A

Other header data
Code for f_A

Code for g_A

Method table

Pointer to f_A

a

b

Pointer to g_A

Other header data

Instance of A

Can you see the problem with this solution?
26 / 1

Where does the method body code go? Third idea
The problem with the second approach is that we are still
wasting memory: imagine a class with 100 methods, and
1.000.000 instances. With 64 bit pointers that’s a whopping 762
MBytes! Wasteful.

A much better solution is to add a layer of indirection, and have
just one pointer (at fixed offset) per object to a table that
contains (at fixed offset) a pointer to each method’s code
(remaining headers omitted for readability).

Instances of A

a

Pointer to f_A

b

Pointer to g_A

mtptr

a

b

mtptr

a

b

mtptr

Method table

Code for f_A

Code for g_A

Method bodies

27 / 1

Where does the method body code go? Third idea

This is the choice taken in practice as far as I know, because it
is much more memory efficient.

The main disadvantage is that the ’pointer chasing’ in the
invocation of a method is (slightly) more time-consuming than
with the first two ideas.

Just-in-time compilers (e.g. the JVM, Microsoft’s CLR,
Chrome’s V8) employ clever tricks to ameliorate this
shortcoming.

28 / 1

Inheritance and the third idea
Does this also work when inheritance is involved?

class A {
int a = 0;
int f (int x) {...}
int g (int x) {...} }

class B extends A {
int b = 7;
int f (int x) {...} }

b

a

dptr

Instances of A

Pointer to f_A

Pointer to g_A

mtptr

mtptr

mtptr

Method table for A

Code for f_A

Code for g_A

Method bodies

Pointer to f_B

Method table for B Method bodies
a

Pointer to g_A

Code for f_B

mtptr

bmtptr

a

Instances of B

b

29 / 1

Inheritance and the third idea

b

a

dptr

Instances of A

Pointer to f_A

Pointer to g_A

mtptr

mtptr

mtptr

Method table for A

Code for f_A

Code for g_A

Method bodies

Pointer to f_B

Method table for B Method bodies
a

Pointer to g_A

Code for f_B

mtptr

bmtptr

a

Instances of B

b

The key insight (as with the layout of the object in contiguous
memory) is that the pointer to the method table is always at
fixed offset from the top of the object, and pointers to method
bodies are always at fixed offset in the method table, e.g.:
I f is always at offset 0 in the method table.
I g is always at offset 4 in the method table (assuming 32 bit

pointers.
30 / 1

Translation of method invocation

b

a

dptr

Instances of A

Pointer to f_A

Pointer to g_A

mtptr

mtptr

mtptr

Method table for A

Code for f_A

Code for g_A

Method bodies

Pointer to f_B

Method table for B Method bodies
a

Pointer to g_A

Code for f_B

mtptr

bmtptr

a

Instances of B

b

To translate a.f(3) where, for example, a has type A at
compile time, but points to an instance of B at run-time, we do
the following.
I Get the pointer mptr to the method table for the current

instance of a (find by fixed offset available at compile time).
I In the method table find the pointer p to the body of f_B

(also by fixed offset available at compile time).
I Create the AR just like for any other procedure, supplying a

pointer to the object a as first argument.
I Jump to p the body of the procedure f_B.

31 / 1

Example
What does this program print out?

class A {
void f () { System.out.println ("A::f"); }
void g () { System.out.println ("A::g"); } }

class B extends A {
void f () { System.out.println ("B::f"); } }

class Main {
public static void main (String [] args) {
A a = new A ();
B b = new B ();
A ab = new B ();
a.f ();
a.g ();
b.f ();
b.g ();
ab.f ();
ab.g (); } }

(Example: prog/ex4.java)

32 / 1

Reflection
Languages like Java and Python enable reflection, that gives
you information about the type of an object at run-time. You can
do things like this:

import java.lang.reflect.Method;
class A {}
class B extends A {}
class Main {

public static void main (String [] args) {
A a = new A ();
B b = new B ();
A ab = new B ();
try {

System.out.println (a.getClass().getName());
System.out.println (b.getClass().getName());
System.out.println (ab.getClass().getName()); }

catch (Exception ioe){ System.out.println(ioe); } } }

What does this return? (Example: prog/refl.java)

33 / 1

Reflection
This can be implemented by creating a memory area at fixed
offset, containing a description of each class, and each
methods for reflection containing pointers to that description.

Instance of A

Pointer to method table Class name "A"

Method descriptions

Description of A

...

f_A

…

getClass

Body of f_A

Uses

…

Pointer to description of A

Alternatively, make all classes inherit from base class with
suitable getClassName method or similar. Overwrite the
getClassName method for each class (ideally automatically).

34 / 1

OO a la Javascript

We have learned how object oriented languages like Java are
translated. They exhibit class-based object orientation.

There is also prototype-based object orientation. This is used
in Javascript. The ideas seen here can be adapted to
prototype-based object orientation.

35 / 1

