
Compilers and computer architecture:
A realistic compiler to RISC-V

Martin Berger 1

November / December 2019

1Email: M.F.Berger@sussex.ac.uk, Office hours: Wed 12-13 in
Chi-2R312

1 / 1

M.F.Berger@sussex.ac.uk

Recall the function of compilers

2 / 1

Recall the structure of compilers

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

3 / 1

Introduction

Now we look at more realistic code generation. In the previous
two lectures we investigated key issues in compilation for more
realistic source and target languages, such as procedures and
memory alignment. We also introduced the RISC-V
architecture, which has an especially clean instruction set
architecture, and the ’new hotness’ on the CPU block.

4 / 1

Source language
Source is a simple imperative language with integers as sole
data type and recursive procedures with arguments.

P → D;P | D
D → def ID (A) = E
A → Ane | ε
Ane → ID,Ane | ID
E → INT | ID | if E = E then E else E

| E + E | E − E | ID(EA) | ID := E
EA → ε | EAne
EAne → E | E ,EAne

Here ID ranges over identifiers, INT over integers. First
declared procedure is entry point (i.e. will be executed when
the program is run) and must take 0 arguments. Procedure
names must be distinct, and distinct from all variable names. All
variable names in a declaration are distinct.
We assume that the program passed semantic analysis.

5 / 1

Example program

def myFirstProg () = fib (3);

def fib (n) =
if n = 0 then

1
else if n = 1 then

1
else

fib (n-1) + fib (n-2)

6 / 1

Generating code for the language

We use RISC-V as an accumulator machine. So we are using
only a tiny fraction of RISC-V’s power. This is to keep the
compiler easy.

Recall that in an accumulator machine all operations:
I the first argument is assumed to be in the accumulator;
I all remaining arguments sit on the (top of the) stack;
I the result of the operation is stored in the accumulator;
I after finishing the operation, all arguments are removed

from the stack.
The code generator we will be presenting guarantees that all
these assumptions always hold.

7 / 1

Generating code for the language

To use RISC-V as an accumulator machine we need to decide
what registers to use as stack pointer and accumulator.
We make the following assumptions (which are in line with the
assumptions the RISC-V community makes, see previous
lecture slides).

I We use the general purpose register a0 as accumulator.
I We use the general purpose register sp as stack pointer.
I The stack pointer always points to the first free byte above

the stack.
I The stack grows downwards.

We could have made other choices.

8 / 1

Assumption about data types

Our source language has integers.

We will translate them to the built-in (signed) 32 bit RISC-V
integer data-type.

Other choices are possible (e.g. 64 bits, infinite precision, 16 bit
etc). This one is by far the simplest.

For simplicity, we won’t worry about over/underflow of
arithmetic operations.

9 / 1

Code generation

Let’s start easy and generate code expressions.

For simplicity we’ll ignore some issues like placing alignment
commands.

As with the translation to an idealised accumulator machine a
few weeks ago, we compile expressions by recursively walking
the AST. We want to write the following:

def genExp (e : Exp) =
if e is of form

IntLiteral (n) then ...
Variable (x) then ...
If (cond , thenBody, elseBody) then ...
Add (l, r) then ...
Sub (l, r) then ...
Call (f, args) then ... } }

10 / 1

Code generation: integer literals

Let’s start with the simplest case.

def genExp (e : Exp) =
if e is of form

IntLiteral (n) then
li a0 n

Convention: code in red is RISC-V code to be executed at
run-time. Code in black is compiler code. We are also going
to be a bit sloppy about the datatype RISC-V_I of RISC-V
instructions.

This preserves all invariants to do with the stack and the
accumulator as required. Recall that li is a pseudo instruction
and will be expanded by the assembler into several real RISC-V
instructions.

11 / 1

Code generation: addition

def genExp (e : Exp) =
if e is of form

Add (l, r) then
genExp (l)
sw a0 0(sp)
addi sp sp -4
genExp (r)
lw t1 4(sp)
add a0 t1 a0
addi sp sp 4

Note that this evaluates from left to right! Recall also that the
stack grows downwards and that the stack pointer points to the
first free memory cell above the stack.

Question: Why not store the result of compiling the left
argument directly in t1? Consider 1+(2+3)

12 / 1

Code generation: minus

We want to translate e − e′. We need new RISC-V command:

sub reg1 reg2 reg3

It subtracts the content of reg3 from the content of reg2 and
stores the result in reg1. I.e. reg1 := reg2 - reg3.

13 / 1

Code generation: minus

def genExp (e : Exp) =
if e is of form

Minus (l, r) then
genExp (l)
sw a0 0 sp
addi sp sp -4
genExp (r)
lw t1 4(sp)
sub a0 t1 a0 // only change from addition
addi sp sp 4

Note that sub a0 t1 a0 deducts a0 from t1.

14 / 1

Code generation: conditional

We want to translate if e1 = e2 then e else e′. We need two
new RISC-V commands:

beq reg1 reg2 label

b label

beq branches (= jumps) to label if the content of reg1 is
identical to the content of reg2. Otherwise it does nothing and
moves on to the next command.

In contrast b makes an unconditional jump to label.

15 / 1

Code generation: conditional
def genExp (e : Exp) =

if e is of form
If (l, r, thenBody, elseBody) then

val elseBranch = newLabel () // not needed
val thenBranch = newLabel ()
val exitLabel = newLabel ()

genExp (l)
sw a0 0(sp)
addi sp sp -4
genExp (r)
lw t1 4(sp)
addi sp sp 4
beq a0 t1 thenBranch

elseBranch + ":"
genExp (elseBody)
b exitLabel

thenBranch + ":"
genExp (thenBody)

exitLabel + ":" }

newLabel returns new, distinct string every time it is called. 16 / 1

Code generation: procedure calls/declarations

The code a compiler emits for procedure
calls and declarations depends on the
layout of the activation record (AR).

The AR stores all the data that’s needed
to execute an invocation of a procedure.

ARs are held on the stack, because
procedure entries and exits are adhere
to a bracketing discipline.

Note that invocation result and (some)
procedure arguments are often passed
in register not in AR (for efficiency)

Result

Argument: 3

Return address

Result

Argument: 2

Return address

Main's AR

f(3)

f(2)

main

17 / 1

Code generation: procedure calls/declarations

Let’s design an AR! What assumptions can we make?

The result is always in the accumulator, so no need for to store
the result in the AR.

The only variables in the language are procedure parameters.
We hold them in AR: for the procedure call f(e1, ...,en) just
push the result of evaluating e1, ...,en onto the stack.

The AR needs to store the return address.

The stack calling discipline ensures that on invocation exit sp is
the same as on invocation entry.

Also: no registers need to be preserved in accumulator
machines. Why? Because no register is used except for the
accumulator and t1, and when a procedure is invoked, all
previous evaluations of expressions are already discharged or
’tucked away’ on the stack.

18 / 1

Code generation: procedure calls/declarations

So ARs for a procedure with n arguments look like this:

caller’s FP
argument n
...
argument 1
return address

A pointer to the top of current AR (i.e. where the return
address sits) is useful (though not necessary) see later. This
pointer is called frame pointer and lives in register fp. We
need to restore the caller’s FP on procedure exit, so we store it
in the AR upon procedure entry. The FP makes accessing
variables easier (see later).

Arguments are stored in reverse order to make indexing a bit
easier.

19 / 1

Code generation: procedure calls/declarations
Let’s look at an example: assume we call f (7,100,33)

Caller's FP

Third argument: 33

Second argument: 100

First argument: 7

Caller's AR

FP

SP

Caller's FP

Third argument: 33

Second argument: 100

First argument: 7

Caller's AR

Return addressFP

SP

Callee's
responsibility

Caller's
responsibility

Jump

20 / 1

Code generation: procedure calls/declarations

To be able to get the return addess for a procedure call easily,
we need a new RISC-V instruction:

jal label

Note that jal stands for jump and link. This instruction does
the following:

Jumps unconditionally to label, stores the address of next
instruction (syntactically following jal label) in register ra.

On many other architectures, the return address is
automatically placed on the stack by a call instruction.

On RISC-V we must push the return address on stack explicitly.
This can only be done by callee, because address is available
only after jal has executed.

21 / 1

Code generation: procedure calls

Example of procedure call with 3 arguments. General case is
similar.

case Call (f, List (e1, e2, e3)) then
sw fp 0(sp) // save FP on stack
addi sp sp -4
genExp (e3) // we choose right-to-left ev. order
sw a0 0(sp) // save 3rd argument on stack
addi sp sp -4
genExp (e2)
sw a0 0(sp) // save 2nd argument on stack
addi sp sp -4
genExp (e1)
sw a0 0(sp) // save 1st argument on stack
addi sp sp -4
jal (f + "_entry") // jump to f, save return

// addr in ra

22 / 1

Code generation: procedure calls
Several things are worth noting.

I The caller first saves the FP (i.e. pointer to top of its own
AR).

I Then the caller saves procedure parameters in reverse
order (right-to-left).

I Implicitly the caller saves the return address in ra by
executing jal. The return address is still not in the AR on
the stack. The AR is incomplete. Completion is the callee’s
responsibility.

I How big is the AR? For a procedure with n arguments the
AR (without return address) is 4 + 4 ∗ n = 4(n + 2) bytes
long. This is know at compile time and is important for
the compilation of procedure bodies.

I The translation of procedure invocations is generic in the
number of procedure arguments, nothing particular about
3.

23 / 1

Code generation: procedure calls
So far we perfectly adhere to the lhs of this picture (except 33,
100, 7).

Caller's FP

Third argument: 33

Second argument: 100

First argument: 7

Caller's AR

FP

SP

Caller's FP

Third argument: 33

Second argument: 100

First argument: 7

Caller's AR

Return addressFP

SP

Callee's
responsibility

Caller's
responsibility

Jump

24 / 1

Code generation: procedure calls, callee’s side

In order to compile a declaration d like

def f (x1, ..., xn) = body

we use a procedure for compiling declarations like so:

def genDecl (d) = ...

25 / 1

Code generation: procedure calls, callee’s side

We need two new RISC-V instructions:

jr reg

mv reg reg’

The former (jr reg) jumps to the address stored in register
reg.

The latter (mv reg reg’) copies the content of register reg’
into the register reg.

26 / 1

Code generation: procedure calls, callee’s side

def genDecl (d : Declaration) =
val sizeAR = (2 + d.args.size) * 4

// each procedure argument takes 4 bytes,
// in addition the AR stores the return
// address and old FP

d.id + "_entry:" // label to jump to
mv fp sp // FP points to top of current AR
sw ra 0(sp) // put return address on stack
addi sp sp -4 // now AR is fully created
genExp (d.body)
lw ra 4(sp) // load return address into ra

// could also use fp
addi sp sp sizeAR // pop AR off stack in one go
lw fp 0(sp) // restore old FP
jr ra // hand back control to caller

27 / 1

Code generation: procedure calls, callee’s side

Caller's FP

Third argument: 33

Second argument: 100

First argument: 7

Caller's AR

On entry

FP

SP

Caller's FP

Third argument: 33

Second argument: 100

First argument: 7

Caller's AR

Return address

On exit

FP

SP

Caller's AR

Before call

FP

Caller's AR

After call

SP SP

FP

So we preserve the invariant that the stack looks exactly the
same before and after a procedure call!

28 / 1

Code generation: frame pointer
Variables are just the procedure parameters in this language.

They are all on the stack in the AR, pushed by the caller. How
do we access them? The obvious solution (use the SP with
appropriate offset) does not work (at least not easily).

Problem: The stack grows and shrinks when intermediate
results are computed (in the accumulator machine approach),
so the variables are not on a fixed offset from sp. For example
in

def f (x, y, z) = x + ((x * z) + (y - y))

Solution: Use frame pointer fp.
I Always points to the top of current AR as long as

invocation is active.
I The FP does not (appear to) move, so we can find all

variables at a fixed offset from fp.
29 / 1

Code generation: variable use

Let’s compile xi which is the i-th (starting to count from 1)
parameter of def f(x1, x2, ..., xn) = body works like
this (using offset in AR):

def genExp (e : Exp) =
if e is of form Variable (xi) then

val offset = 4*i
lw a0 offset(fp)

Putting the arguments in reverse order on the stack makes the
offseting calculation val offset = 4*i a tiny bit easier.

Key insight: access at fixed offset relative to a dynamically
changing pointer. Offset and pointer location are known at
compile time.

This idea is pervasive in compilation.

30 / 1

Code generation: variable use

Caller's FP

Third argument: 33

Second argument: 100

First argument: 7

Caller's AR

Return addressFP

In the declaration def f (x, y,
z) = ..., we have:

I x is at address fp + 4

I y is at address fp + 8

I z is at address fp + 12

Note that this work because
indexing begins at 1 in this case,
and arguments are pushed on
stack from right to left.

31 / 1

Translation of variable assignment
Given that we know now that reading a variable is translated as

if e is of form Variable (xi) then
val offset = 4*i
lw a0 offset(fp)

How would you translate an assignment

xi := e

Since xi is the i-th (starting to count from 1) formal parameter
of the ambient procedure declaration, we can simply do:

def genExp (exp : Exp) =
if exp is of form Assign (xi, e) then

val offset = 4*i
genExp (e)
sw a0 offset(fp)

Easy!

32 / 1

33 / 1

Code generation: summary remarks
The code of variable access, procedure calls and declarations
depends totally on the layout of the AR, so the AR must be
designed together with the code generator, and all parts of the
code generator must agree on AR conventions. It’s just as
important to be clear about the nature of the stack (grows
upwards or downwards), frame pointer etc.

Access at fixed offset relative to dynamically changing pointer.
Offset and pointer location are known at compile time.

Code and layout also depends on CPU.

Code generation happens by recursive AST walk.

Industrial strength compilers are more complicated:
I Try to keep values in registers, especially the current stack

frame. E.g. compilers for RISC-V usually pass first four
procedure arguments in registers a0 - a3.

I Intermediate values, local variables are held in registers,
not on the stack.

34 / 1

Non-integer procedure arguments

What we have not covered is procedures taking non integer
arguments.

This is easy: the only difference from a code generation
perspective between integer types and other types as
procedure arguments is the size of the data. But that size is
known at compile-time (at least for languages that are statically
typed). For example the type double is often 64 bits. So we
reserve 8 bytes for arguments of that type in the procedure’s
AR layout. We may have to use two calls to lw and sw to load
and store such arguments, but otherwise code generation is
unchanged.

35 / 1

Non-integer procedure arguments

Consider a procedure with the
following signature:

int f (int x,
double y,
int z) = { ... }

(Not valid in our mini-language).
Assuming that double is stored as
64 bits, then the AR would look like
on the right.

Caller's FP

int x

Double y

int z

return address

1632

1636

1640

1648

1652

1644

How does the code generator know what size the variables
have?
Using the information stored in the symbol table, which was
created by the type checker and passed to the code-generator.

36 / 1

Non-integer procedure arguments

Due to the simplistic accumulator machine approach, cannot do
the same with the return value, e.g.

double f (int x, double y, int z) = ...

This is because the accumulator holds the return value of
procedure calls, and the accumulator is fixed at 32 bits.

In this case we’d have to move to an approach that holds the
return value also in the AR (either for all arguments, or only for
arguments that don’t fit in a register – we know at compile time
which is which).

37 / 1

Example def sumto(n) = if n=0 then 0 else n+sumto(n-1)

sumto_entry:
mv fp, sp
sw ra, 0(sp)
addi sp, sp, -4
lw a0, 4(fp)
sw a0, 0(sp)
addi sp, sp, -4
li a0, 0
lw t1, 4(sp)
addi sp, sp, 4
beq t1, a0, then3

else4:
lw a0, 4(fp)
sw a0, 0(sp)
addi sp, sp, -4
sw fp, 0(sp)
addi sp, sp, -4
lw a0, 4(fp)
sw a0, 0(sp)

addi sp, sp, -4
li a0, 1
lw t1, 4(sp)
addi sp, sp, 4
sub a0, t1, a0
sw a0, 0(sp)
addi sp, sp, -4
jal sumto_entry
lw t1, 4(sp)
addi sp, sp, 4
add a0, t1, a0
b exit5

then3:
li a0, 0

exit5:
lw ra, 4(sp)
addi sp, sp, 12
lw fp, 0(sp)
jr ra

38 / 1

Interesting observations (1)

Stack allocated memory is much faster than heap allocation,
because (1) acquiring stack memory is just a constant-time
push operation, and (2) the whole AR can be ’deleted’ (=
popped off the stack) in a single, constant-time operation. We
will soon learn about heap-allocation (section on
garbage-collection), which is much more expensive. This is why
low-level language (C, C++, Rust) don’t have garbage collection
(by default).

39 / 1

Interesting observations (2): inefficiency of the
translation

As already pointed out at the beginning of this course, stack-
and accumulator machines are inefficient. Consider this from
the previous slide (compilation of parts of n = 0 in sumto):

lw a0, 4(fp) // first we load n into the
// accumulator from the stack

sw a0, 0(sp) // then we push n back onto
// the stack

addi sp, sp, -4
li a0, 0
lw t1, 4(sp) // now we load n back from

// the stack into a temporary

This is the price we pay for the simplicity of compilation strategy.

It’s possible to do much better, e.g. saving it directly in t1 using
better compilation strategies and optimisation techniques.

40 / 1

Compiling whole programs
So far we have only compiled expressions and single
declarations, but a program is a sequence of declarations, and
it is called from, and returns to the OS. To compile a whole
program we do the following:

I Creating the ’preamble’, e.g. setting up data declarations,
alignment commands etc.

I Generate code for each declaration.
I Emit code enabling the OS to call the first procedure (like

Java’s main – other languages might have different
conventions) ’to get the ball rolling’. This essentially
involves

1. Creating (the caller’s side of) an activation record.
2. Jump-and-link’ing to the entry point (here: first procedure).
3. Code that hands back control gracefully to the OS after

program termination. Termination means doing a return to
the place after (2). This part is highly OS specific.

41 / 1

Compiling whole programs
Say we had a program declaring 4 procedures f1, f2, f3, and
f4 in this order. Then a fully formed compiler would typically
generate code as follows.

preamble:
...// e.g. alignment commands if needed

entry_point: // this is where the OS jumps to
// at startup

... // create AR for initial call to f1
jal f1_entry // jump to f1
... // cleanup, hand back control to OS

// make sure you don’t ’fall’ into f1
f1_entry:

... // f1 body code
f2_entry:

... // f2 body code
f3_entry:

... // f3 body code
f4_entry:

... // f4 body code
42 / 1

