Compilers and computer architecture:
Realistic code generation

Martin Berger

November 2019

'Email: M.F.Berger@sussex.ac.uk, Office hours: Wed 12-13 in
Chi-2R312

1/1

M.F.Berger@sussex.ac.uk

Recall the function of compilers

High level language

Low
level
language

2/1

Recall the structure of compilers

Source program

0

Intermediate code

Lexical analysis

generation
\
Syntax analysis Optimisation
\ v \ v

Semantic analysis,

e.g. type checking Code generation

v

Translated program

3/1

Introduction

We have ‘finished’ the compilers course, in the sense that we
looked at all compiler phases: lexing, parsing, semantic
analysis and code generation.

4/1

Introduction

We have ‘finished’ the compilers course, in the sense that we
looked at all compiler phases: lexing, parsing, semantic
analysis and code generation.

What you've learned so far is enough to make a basic compiler
for a simple programming language.

5/1

Introduction

We have ‘finished’ the compilers course, in the sense that we
looked at all compiler phases: lexing, parsing, semantic
analysis and code generation.

What you've learned so far is enough to make a basic compiler
for a simple programming language.

Now we learn how to make a good compiler for a (more)
sophisticated programming language.

6/1

Introduction

We have ‘finished’ the compilers course, in the sense that we
looked at all compiler phases: lexing, parsing, semantic
analysis and code generation.

What you've learned so far is enough to make a basic compiler
for a simple programming language.

Now we learn how to make a good compiler for a (more)
sophisticated programming language.

To be able to do this, we must revisit code generation.

7/1

Introduction

We looked at code generation, but made various simplifications
to highlight the key ideas.
» Source language was simplistic (no procedures, no objects
etc).
» Target language was simplistic (e.g. stack machine, or
register machine with unbounded registers).

» Translation produced slow executables (in the case of
stack- and accumulator machines), also we looked at one
simple way to improve register allocation.

8/1

Introduction

Now we look at more realistic code generation.
» Target is a real’ architecture (e.g. RISC-V).

» Source language features e.g. procedures and
classes/objects.

» Code generation is typically split into three parts:

» Generation of intermediate code.
» Optimisation.
» Generation of machine code.

9/1

Introduction

Now we look at more realistic code generation.
» Target is a real’ architecture (e.g. RISC-V).

» Source language features e.g. procedures and
classes/objects.
» Code generation is typically split into three parts:

» Generation of intermediate code.
» Optimisation.
» Generation of machine code.

This leads to various complications.

10/1

Key issues in translation to a realistic processor:
speed

The code generators we've discussed at the start of this course
work fine, even on real processors. The problem is speed of
executables.

Naive code generation schemes make many memory
reference, that can be avoided with better generated code.

Why are memory references a problem? Because they are
slow in comparison with register access (approx. two orders of
magnitude slower).

But registers are scarce in real processors (core RISC-V has

32 integer registers). Putting a lot of effort into making best
possible of registers pays off handsomely in executable speed.

11/1

Key issues in translation to a realistic processor:
memory, energy

More generally a lot of effort goes into optimising the generated
executable, not just for speed, but sometimes for memory, and,
increasingly, for energy efficiency (important for battery
powered devices, and for large-scale data centers).

For example on some architectures caching a computed value

in memory and reusing it requires more energy than
recomputing the value multiple times in registers.

12/1

Key issues in translation to a realistic processor:

processor evolution
Processors evolve quickly. Extreme example: ARM processors
in our phones.

In modern compilers up to 90% of compiler LOCs is
optimisation. It would be annoying if we had to rewrite this
every time a processor evolves a bit.

Fortunately, most machine languages are fairly similar.

So we compile first to an intermediate representation (IR) which
is rather close to generic machine code, but hides some detail.

> Most optimisation is done on this IR.

» Code for the target machine is then easy to generate from
the IR.

13/1

Key issues in translation to a realistic processor:

processor evolution
Processors evolve quickly. Extreme example: ARM processors
in our phones.

In modern compilers up to 90% of compiler LOCs is
optimisation. It would be annoying if we had to rewrite this
every time a processor evolves a bit.

Fortunately, most machine languages are fairly similar.

So we compile first to an intermediate representation (IR) which
is rather close to generic machine code, but hides some detail.

> Most optimisation is done on this IR.

» Code for the target machine is then easy to generate from
the IR.

A picture says more than 1000 words.

14/1

Key issues in translation to a realistic processor:

processor evolution

C++

Java

Python 4

Scala &Y \K

Haskell

C#

Ocaml/F#

C++
Java

x86
Python

/ ARM

Scala IR \

/ MIPS

Haskell
RISC V
C# PowerPC

Ocaml/F#

15/1

Intermediate representation

A good intermediate representation should have the following
properties.
» IR must be easy to generate for front-end.
» IR must be easy to convert to real machine code for all
desired target machines.

» Each construct in the IR must have a clear and simple
meaning, so that optimisation can easily be specified and
implemented.

16/1

Intermediate representation

A good intermediate representation should have the following
properties.

» IR must be easy to generate for front-end.

» IR must be easy to convert to real machine code for all
desired target machines.

» Each construct in the IR must have a clear and simple
meaning, so that optimisation can easily be specified and
implemented. Optimisations in real compilers are
complicated and regularly introduce errors.

17/1

Intermediate representation

A good intermediate representation should have the following
properties.

» IR must be easy to generate for front-end.

» IR must be easy to convert to real machine code for all
desired target machines.

» Each construct in the IR must have a clear and simple
meaning, so that optimisation can easily be specified and
implemented. Optimisations in real compilers are
complicated and regularly introduce errors.

Real compilers often even use multiple IRs.

18/1

Intermediate representation: LLVM (not relevant for
exams)

In 2019 the most well-known and widely used IR is probably
LLVM (used to stand for “Low-Level Virtual Machine” although
the project is now way bigger than virtual machines). It was
developed by a student (Chris Lattner) for his final year
dissertation. C. Lattner went to Apple where LLVM is now used
in all Apple dev tools (OS X, iOS), did clang, Swift and was
briefly head of Autopilot Software at Tesla. He’s at Google Brain
now.

LLVM is free and open source, and has evolved into large tool
suite for building compilers. | recommend that you take a look:
https://1llvm.org

If you want / need to build an optimising compiler, my
recommendation is to use LLVM as backend.

19/1

https://llvm.org

Intermediate representation: WebAssembly (not

relevant for exams)
Last few years saw the rise of compile-to-Javascript, e.g.
TypeScript, Reason.ml and Scala.js.

Javascript is not a good language to compile to.

In the Summer 2017, all major browser vendors agreed to
support WebAssembly as an platform independent IR.

WebAssembly’s most interesting features:
> Typed
» Secure (e.g. no buffer overflow possible)

Will WebAssembly succeed? Time will tell ... but things are
looking good.

Check out: https://webassembly.org
20/1

https://webassembly.org

Intermediate representation

Often IRs (including LLVM) are quite simple and look much like
the machine code for the register machine with unlimited
registers.

Such IR is often called three address code because most
instructions look something like this:

rl := r2 op r3

Here r1, r2, r3 are registers and op is an operation like
addition, comparison ... It is clear that this can easily be
mapped to real assembly instructions (i.e. a mini-compiler).

21/1

Intermediate representation: SSA (not relevant for
exams)

Most modern compilers use a variant of three address code
called SSA form, short for static single assignment form.

» Each variable is assigned exactly once (what about loops?)
» Each varianble must be defined (= assigned to) before use
This format makes compiler optimisations easier and faster.

Surprisingly close to functional programming.

22/1

Intermediate representation: PTX (not relevant for
exams)

PTX (= Parallel Thread Execution) is an intermediate language
used for compiling Nvidia’s CUDA to Nvidia’s GPUs.

It's a register machine architecture with unlimited registers.

23/1

Key issues in translation to a realistic processor:
procedures, objects, methods

The key issues making code generation more complicated than
the schemes we saw in the first few weeks are:

» Procedures, potentially recursively defined.

» Objects and subtyping.
> ...

24/1

Key issues in translation to a realistic processor:
procedures

Procedures, potentially recursively defined, that can be invoked
like this:

def £ (
if |

: Int, y ¢ Int) : Int = {
== 0) then 7 else £ (x-1, x+y) }

X
X
£(z2, £(3, £(4, 100)))

Problem: we don’t know at compile time when, where and how
often they will be invoked, so we must have dynamic (run-time)
mechanisms that orchestrate the invocations.

25/1

Key issues in translation to a realistic processor:
procedures, objects, methods

Objects and subtyping: We might have objects

class A { void £ () {...} }

class B extends A { void £ () {...} }
class C extends A { void £ () {...} }
inp = read_user_input ()

A a = if inp == 0 then new B else new C

a.f()

26/1

Key issues in translation to a realistic processor:
procedures, objects, methods

Objects and subtyping: We might have objects

class A { void £ () {...} }

class B extends A { void £ () {...} }
class C extends A { void £ () {...} }
inp = read_user_input ()

A a = if inp == 0 then new B else new C

a.f()// how do we know which f to use? B::f or C::f?

27/1

Key issues in translation to a realistic processor:
procedures, objects, methods

Objects and subtyping: We might have objects

class A { void £ () {...} }
class B extends A { void £ () {...
class C extends A { void £ () {...

—— e
—— e

inp = read_user_input ()
A a = if inp == 0 then new B else new C
a.f()// how do we know which f to use? B::f or C::f?

We must have a dynamic mechanism (i.e. working at run-time)
that can make a dynamic dispatch at run time to the correct £.

28/1

End of overview

Recursive procedures are the tallest mountain to climb. The
technology that allows us to compile recursive procedures also
helps us to translate objects, exceptions etc.

29/1

End of overview

Recursive procedures are the tallest mountain to climb. The
technology that allows us to compile recursive procedures also
helps us to translate objects, exceptions etc.

Now that we understand the problems, let us begin looking at
solutions.

30/1

End of overview

Recursive procedures are the tallest mountain to climb. The
technology that allows us to compile recursive procedures also
helps us to translate objects, exceptions etc.

Now that we understand the problems, let us begin looking at
solutions.

First we look at the key ideas and data-structures (lifetimes,
activation records, stack, heap, alignment) in a general way.

Then we will write a code generator using these ideas.

31/1

Management of run-time resources

Important terminology:

» Static, happens at compile-time.
» Dynamic, happens at run-time.

It's important to be clear what happens statically and what
happens dynamically.

They interact: statically, the compiler generates code that

dynamically organises computation (e.g. garbage collection,
invocation of procedures/methods, allocation of heap memory).

32/1

Run-time organisation of memory

What happens when a program is invoked?

33/1

Run-time organisation of memory

What happens when a program is invoked?
» We ask the OS to allocate space for the program.

34/1

Run-time organisation of memory

What happens when a program is invoked?
» We ask the OS to allocate space for the program.

» The OS loads the code of the program into the allocated
space. Maybe maps symbolic names (remember those?)

to real machine addresses. This is called (dynamic) linking.

35/1

Run-time organisation of memory

What happens when a program is invoked?
» We ask the OS to allocate space for the program.

» The OS loads the code of the program into the allocated
space. Maybe maps symbolic names (remember those?)
to real machine addresses. This is called (dynamic) linking.

» The OS jumps to the entry point of the program, i.e. the
(translation of the) program’s entry point (e.g.: in Java the
main method).

36/1

Visualisation of memory

Memory

-

'

Code

Other (e.g. data)

A

We often draw memory like
this. Lines delimit different
areas for different kinds of
data. This a simplification,
e.g. memory blocks might not
be contiguous.

37/1

Runtime organisation
The compiler (at compile
time) is responsible for

» Generating the

- N executable code. This
happens statically.
Compiled code stays
Code unchanged (i.e. is read
only) after linking (with
all modern compilers |
know).

Memory

'
AN

Other (e.g. data)

38/1

Runtime organisation
The compiler (at compile
time) is responsible for

» Generating the

- N executable code. This
happens statically.
Compiled code stays
Code unchanged (i.e. is read
only) after linking (with
all modern compilers |
know). Question: Why?

Memory

'
AN

Other (e.g. data)

39/1

Runtime organisation

Memory

-

'

Code

A

Other (e.g. data)

The compiler (at compile
time) is responsible for

» Generating the

executable code. This
happens statically.
Compiled code stays
unchanged (i.e. is read
only) after linking (with
all modern compilers |
know). Question: Why?
Security, prevents
attackers from
modification (alas this is
an insufficient defense).

40/1

Runtime organisation

Memory

The compiler (at compile
time) is responsible for

» Generating the

-

'

Code

executable code. This
happens statically.
Compiled code stays
unchanged (i.e. is read
only) after linking (with
all modern compilers |

A

Other (e.g. data)

know). Question: Why?
Security, prevents
attackers from
modification (alas this is
an insufficient defense).

) » Orchestrating the

dynamic use of the data
area of memory.

41/1

Compilation of procedures

Now we are going to learn how to compile procedures (e.g.
static methods in Java). The technology used here can also be
used to compile (non-static) methods, but we need other
technology in addition.

42/1

Compilation of procedures

Now we are going to learn how to compile procedures (e.qg.
static methods in Java). The technology used here can also be
used to compile (non-static) methods, but we need other

technology in addition.

Note that we have two goals in code generation.

43/1

Compilation of procedures

Now we are going to learn how to compile procedures (e.qg.
static methods in Java). The technology used here can also be
used to compile (non-static) methods, but we need other

technology in addition.

Note that we have two goals in code generation.

» Code should be fast.

44/1

Compilation of procedures

Now we are going to learn how to compile procedures (e.qg.
static methods in Java). The technology used here can also be
used to compile (non-static) methods, but we need other

technology in addition.

Note that we have two goals in code generation.

» Code should be fast.
» Code should be correct (= preserve meaning of source).

45/1

Compilation of procedures

Now we are going to learn how to compile procedures (e.qg.
static methods in Java). The technology used here can also be
used to compile (non-static) methods, but we need other
technology in addition.

Note that we have two goals in code generation.

» Code should be fast.
» Code should be correct (= preserve meaning of source).

It's easy to achieve each goal separately.

46/1

Compilation of procedures

Now we are going to learn how to compile procedures (e.qg.
static methods in Java). The technology used here can also be
used to compile (non-static) methods, but we need other
technology in addition.

Note that we have two goals in code generation.

» Code should be fast.
» Code should be correct (= preserve meaning of source).

It's easy to achieve each goal separately.

All complication arises from trying to meet both goals together.

47/1

Compilation of procedures: key assumptions

From now on we base our discussion of code generation on
two fundamental assumptions.

48/1

Compilation of procedures: key assumptions

From now on we base our discussion of code generation on
two fundamental assumptions.

» Execution is sequential.

49/1

Compilation of procedures: key assumptions

From now on we base our discussion of code generation on
two fundamental assumptions.

» Execution is sequential.

» When a procedure is called, control returns to the point
immediately after the procedure call.

50/1

Compilation of procedures: key assumptions

From now on we base our discussion of code generation on
two fundamental assumptions.

» Execution is sequential.

» When a procedure is called, control returns to the point
immediately after the procedure call.

Compiling without either assumption is substantially harder.

51/1

Compilation of procedures: key assumptions

From now on we base our discussion of code generation on
two fundamental assumptions.

» Execution is sequential.

» When a procedure is called, control returns to the point
immediately after the procedure call.

Compiling without either assumption is substantially harder.

Let’s look at both in some more detail.

52/1

Compilation of procedures: key assumption sequential
execution

We assume that there is no parallel or concurrent execution in
our programming language. Only one thing happens at a time,
and code is executed on step after the other.

53/1

Compilation of procedures: key assumption sequential
execution

We assume that there is no parallel or concurrent execution in
our programming language. Only one thing happens at a time,
and code is executed on step after the other.

Concurrency (e.g. Java threads, or multi-core CPUs) violate
this assumption.

54/1

Compilation of procedures: key assumption sequential
execution

We assume that there is no parallel or concurrent execution in
our programming language. Only one thing happens at a time,
and code is executed on step after the other.

Concurrency (e.g. Java threads, or multi-core CPUs) violate
this assumption.

We will ignore concurrency.

55/1

Compilation of procedures: key assumption is simple
control flow

We assume that when a procedure is called, and returns, the
next command to be executed after the procedure returns is the
command immediately after the procedure call.

x = xX+1

y = f(x, 2) // assignment is executed after
// f returns a value

Z = y*z

56/1

Compilation of procedures: key assumption is simple
control flow
We assume that when a procedure is called, and returns, the

next command to be executed after the procedure returns is the
command immediately after the procedure call.

x = xX+1

y = f(x, 2) // assignment is executed after
// f returns a value

Z = y*z

We also assume that each procedure returns at most once for
each invocation!

57/1

Compilation of procedures: key assumption is simple
control flow
We assume that when a procedure is called, and returns, the

next command to be executed after the procedure returns is the
command immediately after the procedure call.

x = xX+1

y = f(x, 2) // assignment is executed after
// f returns a value

Z = y*z

We also assume that each procedure returns at most once for
each invocation!

Languages with advanced control constructs call/cc, or
goto or exceptions or concurrency violate this assumption.

58/1

Compilation of procedures: key assumption is simple
control flow
We assume that when a procedure is called, and returns, the

next command to be executed after the procedure returns is the
command immediately after the procedure call.

x = xX+1

y = f(x, 2) // assignment is executed after
// f returns a value

Z = y*z

We also assume that each procedure returns at most once for
each invocation!

Languages with advanced control constructs call/cc, or
goto or exceptions or concurrency violate this assumption.

We will ignore such advanced control constructs.

59/1

Two definitions: activations and lifetime of a procedure

Let Proc be a procedure.

60/1

Two definitions: activations and lifetime of a procedure

Let Proc be a procedure.

An activation of Proc is simply an execution of a call to Proc,
i.e. running Proc.

61/1

Two definitions: activations and lifetime of a procedure

Let Proc be a procedure.

An activation of Proc is simply an execution of a call to Proc,
i.e. running Proc.

Activations have a lifetime.

62/1

Two definitions: activations and lifetime of a procedure

Let Proc be a procedure.

An activation of Proc is simply an execution of a call to Proc,
i.e. running Proc.

Activations have a lifetime. The lifetime of an activation of
Procis

> All steps to execute the activation of Proc, including ...

63/1

Two definitions: activations and lifetime of a procedure

Let Proc be a procedure.

An activation of Proc is simply an execution of a call to Proc,
i.e. running Proc.

Activations have a lifetime. The lifetime of an activation of
Procis

> All steps to execute the activation of Proc, including ...

» ... all the steps in procedures that Proc calls while running
(including recursive calls to itself).

64/1

Important observation of procedure lifetimes

def £ () = {
println ("entering f")
g()
println ("leaving f") }
def g () = {
println (" entering g")
h ()
println (" leaving g") }
def h () = {
println (" entering h")
println (" leaving h") }
def main (args : Array [String]) {
£0)
g ()

h() 1} }

Inclass, test.scala, test2.scala.

65/1

Important observation of procedure lifetimes

Lifetimes of procedure activations are properly nested
(well-bracketed):

When f£ calls g, the g returns before f returns, etc. Hence we

can draw activations like below. This is a consequence of our
two assumption above.

Activations

Time

66/1

Important observation of procedure lifetimes
What about recursive procedures?

def factorial (n : Int) : Int = {
println ("entering £ (" + n + ")")
val result = if (n <= 0)
1
else
n factorial (n-1)
println ("leaving £ (" + n + ")")
result }
def main (args : Array [String]) {
println ("entering main")
factorial (4)

println ("leaving main") }

Inclass, factorial, factorial2.
67/1

Important observation of procedure lifetimes

Again we see the nesting structure as a form of stacking.

68/1

Activations

We need to store some data to orchestrate execution of a
procedure call. E.g. return address, procedure arguments,
return value. Let’s also call this information the activation ...

69/1

Activations

We need to store some data to orchestrate execution of a
procedure call. E.g. return address, procedure arguments,
return value. Let’s also call this information the activation ...

Where should we store this information, i.e. the activation, at
run time?

70/1

Activations

We need to store some data to orchestrate execution of a
procedure call. E.g. return address, procedure arguments,
return value. Let’s also call this information the activation ...

Where should we store this information, i.e. the activation, at
run time?

Cannot use statically allocated memory address. Why?

71/1

Activations

We need to store some data to orchestrate execution of a
procedure call. E.g. return address, procedure arguments,
return value. Let’s also call this information the activation ...

Where should we store this information, i.e. the activation, at
run time?

Cannot use statically allocated memory address. Why?
because more than one activation might be active at the same
time (recursion) and we cannot predict how many are
activations are active a the same time. Why?

72/1

Activations

We need to store some data to orchestrate execution of a
procedure call. E.g. return address, procedure arguments,
return value. Let’s also call this information the activation ...

Where should we store this information, i.e. the activation, at
run time?

Cannot use statically allocated memory address. Why?
because more than one activation might be active at the same
time (recursion) and we cannot predict how many are
activations are active a the same time. Why? Recall Rice’s
theorem?

73/1

Activations

The activation tree of a program is dynamic, is run-time
behaviour.

Cannot be predicted statically how many, and how they are
nested (e.g. might depend on user input.) The activation tree
may be different for different runs. But they are always
‘well-bracketed’.

This suggests the following implementation of procedures: Use
a stack to keep track of currently active activations, in order
encountered:

» When we call a procedure we create an activation on the
stack, containing all relevant data about activation (eg.
arguments, return address).

» When the procedure call terminates, we pop the activation
off of the stack.

74/1

Example: stack stores activations

def £ () = { g() }

def g () = { h () }

def h () = {}

def main (args : Array [String]) {

£0; g0 £0 1}

Draw stack in class.

75/1

Memory organisation: stack

Memory
Code
Other data
Q \
8
- Stack
3
3| >
Empty

The stack will grow as new
procedures are called, and shrink
when procedure calls terminate.

2

< <«—— Stack pointer

%

76/1

Activation records, aka (stack)frames

Let’s summarise.

77/1

Activation records, aka (stack)frames

Let’s summarise.

An activation, also known as activation record, frame or
stack frame, stores all the information needed to execute one

procedure activation.

78/1

Activation records, aka (stack)frames

Let’'s summarise.

An activation, also known as activation record, frame or
stack frame, stores all the information needed to execute one
procedure activation.

Activation records (and their being on the stack) are the key
data structure to make procedures (and later methods) to work.

79/1

Activation records, aka (stack)frames

What information do we keep in an activation record?

80/1

Activation records, aka (stack)frames

What information do we keep in an activation record?

Depends on the details of the programming language,
compilation strategy, and target architecture. But roughly this:

81/1

Activation records, aka (stack)frames

What information do we keep in an activation record?

Depends on the details of the programming language,
compilation strategy, and target architecture. But roughly this:

» Arguments for the procedure just called.

82/1

Activation records, aka (stack)frames

What information do we keep in an activation record?

Depends on the details of the programming language,
compilation strategy, and target architecture. But roughly this:

» Arguments for the procedure just called.
> Result of the activation, to be handed back to caller.

83/1

Activation records, aka (stack)frames

What information do we keep in an activation record?

Depends on the details of the programming language,
compilation strategy, and target architecture. But roughly this:

» Arguments for the procedure just called.
> Result of the activation, to be handed back to caller.
» Return address.

84/1

Activation records, aka (stack)frames

Let’s look at an example.

def g () : Int = { 1 }
def £ (n : Int) : Int = {
val result = if (n <= 0) g() elsen x £ (n-1)
result }
def main (args : Array [String]) {

£ 3)}

85/1

Activation records, aka (stack)frames

Let’s look at an example.

def g () : Int = { 1 }
def £f (n : Int) : Int = {
val result = if (n <= 0) g() elsen x £ (n-1)
result }
def main (args : Array [String]) {
£ (3) 1
Here is a possible layout for result
o , argument
activation records for £ (for main control Tink
and g they are different). oturn address

86/1

Activation records, aka (stack)frames

Here is a possible layout for
activation records for £ (for main
and g they are different).

result

argument

control link

return address

87/1

Activation records, aka (stack)frames

Here is a possible layout for
activation records for £ (for main
and g they are different).

result

argument

control link

return address

> The result holds the integer £ returns.

88/1

Activation records, aka (stack)frames

Here is a possible layout for
activation records for £ (for main
and g they are different).

result

argument

control link

return address

> The result holds the integer £ returns.

» The argument holds the unique integer argument £ gets.
If a procedure has n arguments, then n slots are needed in

the AR to holds them.

89/1

Activation records, aka (stack)frames

Here is a possible layout for
activation records for £ (for main
and g they are different).

result

argument

control link

return address

> The result holds the integer £ returns.

» The argument holds the unique integer argument £ gets.
If a procedure has n arguments, then n slots are needed in

the AR to holds them.

» The control link is a pointer to caller’s activation record

(explained later).

90/1

Activation records, aka (stack)frames

. : result
Here is a possible layout for
o , argument
activation records for £ (for main .
. control link
and g they are different).
return address

> The result holds the integer £ returns.

» The argument holds the unique integer argument £ gets.
If a procedure has n arguments, then n slots are needed in
the AR to holds them.

» The control link is a pointer to caller’s activation record
(explained later).

» The return address is where £ jumps to when finished.
Needed because £ is called in multiple places.

91/1

Activation records, aka (stack)frames

Here is a possible layout for
activation records for £ (for main
and g they are different).

result

argument

control link

return address

> The result holds the integer £ returns.

» The argument holds the unique integer argument £ gets.
If a procedure has n arguments, then n slots are needed in

the AR to holds them.

» The control link is a pointer to caller’s activation record

(explained later).

» The return address is where £ jumps to when finished.
Needed because £ is called in multiple places.

Do you note something important about this?

92/1

Activation records, aka (stack)frames

. : result
Here is a possible layout for
o , argument
activation records for £ (for main .
. control link
and g they are different).
return address

> The result holds the integer £ returns.

» The argument holds the unique integer argument £ gets.
If a procedure has n arguments, then n slots are needed in
the AR to holds them.

» The control link is a pointer to caller’s activation record
(explained later).
» The return address is where £ jumps to when finished.
Needed because £ is called in multiple places.
Do you note something important about this? The size and

shape (e.g. which field is at what offset) can be determined at
compile-time. This has important consequences.

93/1

Example of activations record stacking

main

Main's AR Main has no arguments and
interesting return values, so AR is
not so interesting.

f(3) (Result

(Argument: 3

] “in main” and “recursive” denote
the two places where £ is called,
j so the call were execution resumes

(Control

[Return address: "in main"

when f£ finishes.

f(2) [Resun
AU = Only one of many possible AR
(Control designs.

[F{eturn address: "recursive'

94/1

Stacks as arrays

95/1

Stacks as arrays

Remember that we realised something very important earlier.
The size and shape (e.g. which field is at what offset) can be
determined at compile-time. This has important
consequences:

96/1

Stacks as arrays

Remember that we realised something very important earlier.
The size and shape (e.g. which field is at what offset) can be
determined at compile-time. This has important
consequences:

The compiler can emit code that accesses any field in an AR,
provided there is a pointer to the top of the AR.

97/1

Stacks as arrays

Remember that we realised something very important earlier.
The size and shape (e.g. which field is at what offset) can be
determined at compile-time. This has important
consequences:

The compiler can emit code that accesses any field in an AR,
provided there is a pointer to the top of the AR.

But does the stack data type support this?

98/1

Stacks as arrays

Usually we think of the data-type stack as a black box that we
can either push something onto, or pop off, no other operations
provided.

Stacks in real CPUs support those, but are also big arrays.
This means we access the fields in the activation record

pointed to by the stack pointer relative to the stack pointer, e.g.
SP-4 or SP-16.

99/1

Stacks as arrays

Usually we think of the data-type stack as a black box that we
can either push something onto, or pop off, no other operations

provided.

Stacks in real CPUs support those, but are also big arrays.

This means we access the fields in the activation record
pointed to by the stack pointer relative to the stack pointer, e.g.

SP-4 or SP-16.

For example if the sp points to the top of
the AR (i.e. to the return address) and
each field is 32 bits, then the argument is
at sp-8 and the result sits at sp-12. If
the sPp points to the first free slot above
the stack, then the argument is at sp-12
and the result sits at sp-16.

result

argument

control link

return address

100/1

When AR is popped, SP points to result

Assume the sp points to the first free slot above the stack.

Ce)

Main's AR

Result

Argument: 3

Control

Return address: "in main"

N— e/
Result: 1

Argument: 2]

Control

Return address: "recursive"

Lse)>

Main's AR

Result

Argument: 3

Control

Return address: "in main"

101/1

When AR is popped, SP points to result

Here we are using the fact that
popping off something, only
rearranges the SP, but data is
physically still there (not
overwritten). So the caller can
easily access the result.

As we see later, local variables of
procedures are also stored in ARs
and are at fixed offset, so to access
local variables we make use of the
'stack’ also being an array.

102/1

Saving caller data

If a procedure £ calls g, for

example then the execution of g

typically uses registers. But these

registers are typically also used by

z <:X’Z+§’+ZZ \) the activation of £ that is not yet
finished.

def £ (...) {
X = X*V

103/1

Saving caller data

If a procedure f calls g, for
example then the execution of g

defxf: (X*) typically uses registers. But these
(x Y 2) registers are typically also used by
gt x Y the activation of £ that is not yet
X = z+y+z }

finished.

It would be bad if the activation of g overwrote £’s registers.

What happens is that the call to g saves f’s registers before
executing g, and when the execution of g is finished, these
saved registers are restored. The saved registers are also
stored in g’s AR.

The compiler must generate the code to save and restore caller
registers. More about this later.

104/1

Note that the AR layout just sketched, and division of
responsibility between the caller and callee are contingent
(could have been done otherwise).

What conventions we use depends on many factors, such as:
» Compatibility with existing software.
> Availability of CPU support for some operations.
» Speed or memory usage.
» Code generation simplicity.

105/1

ARs in real compilers

Production compilers attempt to hold as much of the AR in
registers as possible, especially the procedure arguments and
result. In other words: in this case the AR is stored partly on
the stack and partly in registers.

Reason: speed! Memory access is much slower than register
access.

This can make procedure invocations complicated to compile.

106/1

Global and heap data

We’ve now begun to understand how a compiler handles
procedure calls. We will come back to this soon.

But now we will look at global variables and heap data.

107/1

Global data

Consider the following Java program.

public class Test {
static int x = 1;
public static void main (String [] args) {
System.out.println (x); } }

Where to store x?

108/1

Global data

Consider the following Java program.

public class Test {

static int x = 1;
public static void main (String [] args) {
System.out.println (x); } }

Where to store x?

As x is static in the sense available from the start of the
program to its termination, we cannot store x in an AR. That’s
because ARs live only for part of the program’s lifetime.

We also say that x is statically allocated.

Depending on the programming language, other static data
may exist.

109/1

Static data
To deal with static data, we augment the run-time layout of
memory a bit by adding an area where static data lives
throughout the lifetime of the program.

Code

Y~ Y
A A

Static data
<«—— Stack base

%

<«—— Stack pointer

3

Stack

Y
A\

110/1

Heap data

Static variables are not the only thing that cannot be stored in
ARs. Consider the following Java program.

public class A { ... }
public class B {
A f () { return new A (); }

void g () { A a=°f(; ...} }

111/1

Heap data

Static variables are not the only thing that cannot be stored in
ARs. Consider the following Java program.

public class A { ... }

public class B {
A f () { return new A (); }
void g () { Aa=f£f(; ...} }

The object in red cannot be in ARs for invocations of £ because
it will outlive the invocation. The AR will hold a pointer to the
object though.

112/1

Heap data

Static variables are not the only thing that cannot be stored in
ARs. Consider the following Java program.

public class A { ... }

public class B {
A f () { return new A (); }
void g () { Aa=f£f(; ...} }

The object in red cannot be in ARs for invocations of £ because
it will outlive the invocation. The AR will hold a pointer to the
object though.

Can we store the object with static data?

113/1

Heap data

Static variables are not the only thing that cannot be stored in
ARs. Consider the following Java program.

public class A { ... }

public class B {
A f () { return new A (); }
void g () { Aa=f£f(; ...} }

The object in red cannot be in ARs for invocations of £ because
it will outlive the invocation. The AR will hold a pointer to the
object though.

Can we store the object with static data? Yes, but typically, the
object will not be used for the program’s entiere lifetime. The
static data will not be garbage collected (see later), so memory
there will not be reclaimed / reused. So storing the object there
is wasteful.

114/1

Heap data

So we need an additional memory region, where we store
things that live longer than the activation where they are are
created, but (typically) shorter than the program’s lifetime. This
region is called heap.

115/1

Heap data

So we need an additional memory region, where we store
things that live longer than the activation where they are are
created, but (typically) shorter than the program’s lifetime. This
region is called heap.

ARs are automatically popped off the stack when an activation

of a procedure terminates, but how do we free memory in the
heap?

116/1

Heap data

So we need an additional memory region, where we store
things that live longer than the activation where they are are
created, but (typically) shorter than the program’s lifetime. This
region is called heap.

ARs are automatically popped off the stack when an activation
of a procedure terminates, but how do we free memory in the
heap?

Answer: garbage collection (e.g. in Java, Scala, Haskell,

Python, Javascript), or manual memory management
(e.g. C/C++). We will learn more about this later.

117/1

(Simplified) Memory layout

Code

Y

Static data

A A

Stack base

Stack

Y

Empty

Heap

i

Code: fixed size.

Static data: fixed size,
contains static variables.

Stack: dynamic, contains

<«—— Stack pointer ARS

Heap: dynamic, contains all

<« Heap pointer other data.

%

118/1

(Simplified) Memory layout

Both heap and stack have dynamically changing sizes.
We must make sure they don’t grow into each other.

Solution: Stack and heap start at opposite ends of the memory
and grow towards each other.

When stack and heap boundaries cross, we’ve run out of
memory, and must terminate the program (or ask the OS for
more memory). The compiler must generate code that checks
for (and deals with) this. The OS can help with this (e.g. MMU).

119/1

Multiple meanings of “Heap”

A warning, the meaning of the term “heap” is different in other
parts of CS.

In particular, in the study of algorithms/data-structures, a heap
is a tree-based data structure, e.g. like so:

©
OO
() @) & W
@ @

These heaps have nothing to do with the heaps in
compilation.

120/1

Alignment

Here is another important (and annoying) issue to do with
memory.

Most modern CPUs have a 32 or 64 bits data bus. That means
the CPU reads 32 or 64 bits in one cycle.

But memory is addressed in bytes. This is for historical
reasons.

Recall that a byte is 8 bits, and a word is 32 bits (= 4 bytes) in
32 bit machines, and 64 bits (= 8 bytes) in a 64 bit machine.

121/1

Alignment

Example: assume we have a 32 bit CPU that reads 32 bit
words.

» The CPU reads a word at address 3000. Then it reads in
one cycle the content of addresses 3000, 3001, 3002 and
3003.

» The CPU reads (or should read) a word at address 3001.
Then it reads in one cycle the content of addresses 3001,
3002, 3003 and 3004.

122/1

Alignment

Example: assume we have a 32 bit CPU that reads 32 bit
words.

» The CPU reads a word at address 3000. Then it reads in
one cycle the content of addresses 3000, 3001, 3002 and
3003.

» The CPU reads (or should read) a word at address 3001.
Then it reads in one cycle the content of addresses 3001,
3002, 3003 and 3004.

Note that 3000 is divisible by 4, while 3001 is not divisible by 4.

123/1

Alignment

Example: assume we have a 32 bit CPU that reads 32 bit
words.

» The CPU reads a word at address 3000. Then it reads in
one cycle the content of addresses 3000, 3001, 3002 and
3003.

» The CPU reads (or should read) a word at address 3001.

Then it reads in one cycle the content of addresses 3001,
3002, 3003 and 3004.

Note that 3000 is divisible by 4, while 3001 is not divisible by 4.

Divisibility by 4 is important for many (most? all?) 32 bit CPUs
because accessing 32 bits in memory starting at an address
that is divisible by 4 is (much) faster than accessing memory at
an address that is not divisible by 4. We say addresses divisible
4 are (32 bit) aligned.

124/1

Alignment
More generally, for a 2" bit CPU (e.g. n =5 means 32 bit, n =6
means 64 bit), we say that addresses divisible by 273 are
word-boundaries. Memory access of 2" bits starting at a
word-boundary is aligned, access at all other addresses is
misalighed.

» 32 bit CPUs, n =5, so word boundaries, hence aligned
access begins at an address that is a multiple of 4 = 253,
e.g.0,4,8,12, 16, 20, ...

» 64 bit CPUs, n = 6, word boundaries are at addresses that
are multiples of 8 = 2673, e.g. 0, 8, 16, 24, 32, 40, ...

» 128 bit CPUs, n = 7, word boundaries are at addresses
that are multiples of 16 = 2773, e.g. 0, 16, 32, 48, 64, ...

Important: misaligned access is much slower (approx. 10
times) than aligned access for many (most? all?) CPUs. In

some CPUs misaligned access is an error.
125/1

Alignment

Because of the huge speed penalty for misaligned memory
access, compilers must do their best to ensure that all memory
access is aligned.

Compilers achieve this by always locating data at word
boundaries, using padding where necessary.

126/1

Alignment

Here is an example of padding data for a 32 bit CPU. We want

to store the strings “Hello” and “World”.

Word boundary

30000
0 1 2 3

anuun

Word boundary

Word boundary

pessss}

@Padd ng

:
:

Next data

el L O e

127/1

Alignment

Most assembler languages have build in support that aligns
(some) data automatically.

128/1

Alignment

Most assembler languages have build in support that aligns
(some) data automatically.

For example RISC-V assembly language has the .align

command. Putting .align nin aline means that the
succeedings lines are aligned on a 2" byte boundary.

129/1

Alignment

Most assembler languages have build in support that aligns
(some) data automatically.

For example RISC-V assembly language has the .align
command. Putting .align nin aline means that the
succeedings lines are aligned on a 2" byte boundary.

.align 2
.asciiz "Hello world!"

Here, .align 2 aligns the next value (the string "Hello world!")
on a word boundary on a 32 bit machine.

130/1

