
Compilers and computer architecture:
introduction

Martin Berger 1

Thanks to Chad MacKinney, Alex Jeffery, Justin Crow, Jim Fielding, Shaun Ring and Vilem Liepelt for
suggestions and corrections. Thanks to Benjamin Landers for the RARS simulator.

Thanks to Alex Aiken for his Compiler MOOC that this course was heavily inspired by.

September 2019

1Email: M.F.Berger@sussex.ac.uk, Office hours: Wed 12-13 in
Chi-2R312.

1 / 1

M.F.Berger@sussex.ac.uk

Administrative matters: lecturer

I Name: Martin Berger
I Email: M.F.Berger@sussex.ac.uk
I Web:

https://users.sussex.ac.uk/~mfb21/compilers

I Lecture notes etc: https://users.sussex.ac.uk/
~mfb21/compilers/material.html Linked from Canvas

I Office hour: after the Wednesdays lectures, and on
request (please arrange by email, see
https://users.sussex.ac.uk/~mfb21/cal for
available time-slots)

I My room: Chichester II, 312

2 / 1

https://users.sussex.ac.uk/~mfb21/compilers
https://users.sussex.ac.uk/~mfb21/compilers/material.html
https://users.sussex.ac.uk/~mfb21/compilers/material.html
https://users.sussex.ac.uk/~mfb21/cal

Administrative matters: dates, times and assessment

I Lectures: Two lectures per week,
Wednesday: 11-12 Lec PEV1-1A7
Friday: 17-18 RICH-AS3

I Tutorials: please see your timetables. The TA is Shaun
Ring sr410@sussex.ac.uk

I There will (probably) be PAL sessions, more soon.
I Assessment: coursework (50%) and by unseen

examination (50%). Both courseworks involve writing parts
of a compiler. Due dates for courseworks: Fri, 8 Nov 2019,
and Fri, 20 Dec 2019, both 18:00.

3 / 1

Questions welcome!

Please, ask questions ...
I during the lesson
I at the end of the lesson
I in my office hours (see

https://users.sussex.ac.uk/~mfb21/cal for
available time-slots)

I by email M.F.Berger@sussex.ac.uk
I on Canvas
I in the tutorials
I in the course’s Discord channel (invite is on Canvas)
I any other channels (e.g. Telegram, TikTok ...)?

Please, don’t wait until the end of the course to tell me about
any problems you may encounter.

4 / 1

https://users.sussex.ac.uk/~mfb21/cal

Prerequisites

Good Java programming skills are indispensable.This course is
not about teaching you how to program. “Good” in this context
means you can do most questions on e.g.

https://leetcode.com/

classified as “Easy” without problems (= without looking up the
answer, and in 1 hour or less). I also recommed that you
familiarise yourself with the material on “Shell Tools and
Scripting” and “Command-line Environment” in:

https://missing.csail.mit.edu/

It helps if you have already seen e.g. regular expressions,
FSMs etc. But we will cover all this from scratch.

It helps if you have already seen a CPU, e.g. know what a
register is or a stack pointer.

5 / 1

https://leetcode.com/
https://missing.csail.mit.edu/

Course content

I’m planning to give a fairly orthodox compilers course that
shows you all parts of a compiler. At the end of this course you
should be able to write a fully blown compiler yourself and
implement programming languages.

We will also look at computer architecture, although more
superficially.

This will take approximately 9 weeks, so we have time at the
end for some advanced material. I’m happy to tailor the course
to your interest, so please let me know what you want to hear
about.

6 / 1

Coursework

Evaluation of assessed courseworks will (largely) be by
automated tests. This is quite different from what you’ve seen
so far. The reason for this new approach is threefold.
I Compilers are complicated algorithms and it’s beyond

human capabilities to find subtle bugs.
I Realism. In industry you don’t get paid for being nice, or for

having code that “almost” works.
I Fairness. Automatic testing removes subjective element.

Note that if you make a basic error in your compiler then it is
quite likely that every test fails and you will get 0 points. So it is
really important that you test your code before submission
thoroughly. I encourage you to share tests and testing
frameworks with other students: as tests are not part of the
deliverable, you make share them. Of course the compiler must
be written by yourself.

7 / 1

Plan for today’s lecture

Whirlwind overview of the course.
I Why study compilers?
I What is a compiler?
I Compiler structure
I Lexical analysis
I Syntax analysis
I Semantic analysis, type-checking
I Code generation

8 / 1

Why study compilers?
To become a good programmer, you need to understand what
happens ’under the hood’ when you write programs in a
high-level language.

To understand low-level languages (assembler, C/C++, Rust,
Go) better. Those languages are of prime importance, e.g. for
writing operating systems, embedded code and generally code
that needs to be fast (e.g. computer games, ML e.g.
TensorFlow).

Most large programs have a tendency to embed a programming
language. The skill quickly to write an interpreter or compiler for
such embedded languages is invaluable.

But most of all: compilers are extremely amazing, beautiful and
one of the all time great examples of human ingenuity. After 70
years of refinement compilers are a paradigm case of beautiful
software structure (modularisation). I hope it inspires you.

9 / 1

Overview: what is a compiler?

10 / 1

Overview: what is a compiler?
A compiler is a program that translates programs from one
programming language to programs in another programming
language. The translation should preserve meaning (what does
“preserve” and “meaning” mean in this context?).

CompilerSource program Target program

Error messages

Typically, the input language (called source language) is more
high-level than the output language (called target language)
Examples
I Source: Java, target: JVM bytecode.
I Source: JVM bytecode, target: ARM/x86 machine code
I Source: TensorFlow, target: GPU/TPU machine code.

11 / 1

Example translation: source program

Here is a little program. (What does it do?)

int testfun(int n){
int res = 1;
while(n > 0){

n--;
res *= 2; }
return res; }

Using clang -S this translates to the following x86 machine
code ...

12 / 1

Example translation: target program
_testfun: ## @testfun

.cfi_startproc
BB#0:

pushq %rbp
Ltmp0:

.cfi_def_cfa_offset 16
Ltmp1:

.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp2:
.cfi_def_cfa_register %rbp
movl %edi, -4(%rbp)
movl $1, -8(%rbp)

LBB0_1: ## =>This Inner Loop Header: Depth=1
cmpl $0, -4(%rbp)
jle LBB0_3

BB#2:
in Loop: Header=BB0_1 Depth=1

movl -4(%rbp), %eax
addl $4294967295, %eax ## imm = 0xFFFFFFFF
movl %eax, -4(%rbp)
movl -8(%rbp), %eax
shll $1, %eax
movl %eax, -8(%rbp)
jmp LBB0_1

LBB0_3:
movl -8(%rbp), %eax
popq %rbp
retq
.cfi_endproc

13 / 1

Compilers have a beautifully simple structure

Analysis phase

Code generation

Source program

Generated program

In the analysis phase two things happen:
I Analysing if the program is well-formed (e.g.

checking for syntax and type errors).
I Creating a convenient (for a computer)

representation of the source program
structure for further processing. (Abstract
syntax tree (AST), symbol table).

The executable program is then generated from
the AST in the code generation phase.

Let’s refine this.

14 / 1

Compiler structure
Compilers have a beautifully simple structure. This structure
was arrived at by breaking a hard problem (compilation) into
several smaller problems and solving them separately. This has
the added advantage of allowing to retarget compilers
(changing source or target language) quite easily.

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program
15 / 1

Compiler structure

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

Interesting question: when do these phases happen?

In the past, all happend at ... compile-time. Now some happen
at run-time in Just-in-time compilers (JITs). This has profound
influences on choice of algorithms and performance.

16 / 1

Compiler structure

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

Another interesting question: do you note some thing about all
these phases?

The phases are purely functional, in that they take one input,
and return one output. Modern programming languages like
Haskell, Ocaml, F#, Rust or Scala are ideal for writing
compilers. 17 / 1

Phases: Overview

I Lexical analysis
I Syntactic analysis (parsing)
I Semantic analysis (type-checking)
I Intermediate code generation
I Optimisation
I Code generation

18 / 1

Phases: Lexical analysis

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

19 / 1

Phases: Lexical analysis

What is the input to a compiler?

A (often long) string, i.e. a sequence of characters.

Strings are not an efficient data-structure for a compiler to work
with (= generate code from). Instead, compilers generate code
from a more convenient data structure called “abstract syntax
trees” (ASTs). We construct the AST of a program in two
phases:
I Lexical anlysis. Where the input string is converted into a

list of tokens.
I Parsing. Where the AST is constructed from a token list.

20 / 1

Phases: Lexical analysis

In the lexical analysis, a string is converted into a list of tokens.
Example: The program

int testfun(int n){
int res = 1;
while(n > 0){

n--;
res *= 2; }
return res; }

Is (could be) represented as the list

T_int, T_ident ("testfun"), T_left_brack,
T_int, T_ident ("n"), T_rightbrack,
T_left_curly_brack, T_int, T_ident ("res"),
T_eq, T_num (1), T_semicolon, T_while, ...

21 / 1

Phases: Lexical analysis

T_int, T_ident ("testfun"), T_left_brack,
T_int, T_ident ("n"), T_rightbrack,
T_left_curly_brack, T_int, T_ident ("res"),
T_eq, T_num (1), T_semicolon, T_while, ...

Why is this interesting?
I Abstracts from irrelevant detail (e.g. syntax of keywords,

whitespace, comments).
I Makes the next phase (parsing) much easier.

22 / 1

Phases: syntax analysis (parsing)

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

23 / 1

Phases: syntax analysis (parsing)
This phase converts the program (list of tokens) into a tree, the
AST of the program (compare to the DOM of a webpage). This
is a very convenient data structure because syntax-checking
(type-checking) and code-generation can be done by walking
the AST (cf visitor pattern). But how is a program a tree?

while(n > 0){
n--;
res *= 2; }

T_while

T_greater

T_var (n) T_num (0)

T_semicolon

T_decrement

T_var (n)

T_update

T_var (res) T_mult

T_var (res) T_num (2)

24 / 1

Phases: syntax analysis (parsing)
T_while

T_greater

T_var (n) T_num (0)

T_semicolon

T_decrement

T_var (n)

T_update

T_var (res) T_mult

T_var (res) T_num (2)

I The AST is often implemented as a tree of linked objects.
I The compiler writer must design the AST data structure

carefully so that it is easy to build (during syntax analysis),
and easy to walk (during code generation).

I The performance of the compiler strongly depends on the
AST, so a lot of optimisation goes here for instustrial
strength compilers.

25 / 1

Phases: syntax analysis (parsing)
T_while

T_greater

T_var (n) T_num (0)

T_semicolon

T_decrement

T_var (n)

T_update

T_var (res) T_mult

T_var (res) T_num (2)

The construction of the AST has another important role: syntax
checking, i.e. checking if the program is syntactically valid!

This dual role is because the rules for constructing the AST are
essentially exactly the rules that determine the set of
syntactically valid programs. Here the theory of formal
languages (context free, context sensitive, and finite automata)
is of prime importance. We will study this in detail.

26 / 1

Phases: syntax analysis (parsing)
T_while

T_greater

T_var (n) T_num (0)

T_semicolon

T_decrement

T_var (n)

T_update

T_var (res) T_mult

T_var (res) T_num (2)

Great news: the generation of lexical analysers and parsers
can be automated by using parser generators (e.g. lex, yacc).
Decades of research have gone into parser generators, and in
practise they generate better lexers and parsers than most
programmers would be able to. Alas, parser generators are
quite complicated beasts, and in order to understand them, it is
helpful to understand formal languages and lexing/parsing. The
best way to understand this is to write a toy lexer and parser.

27 / 1

Phases: semantic analysis

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

28 / 1

Phases: semantic analysis

While parsing can reject syntactically invalid programs, it cannot
reject semantically invalid programs, e.g. programs with more
complicated ’semantic’ mistakes are harder to catch. Examples.

void main() {
i = 7
int i = 7
...

if (3 + true) > "hello" then ...

They are caught with semantic analysis. The key technology
are types. Modern languages like Scala, Rust, Haskell, Ocaml,
F# employ type inference.

29 / 1

Phases: intermediate code generation

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

30 / 1

Phases: intermediate code generation
There are many different CPUs with different machine
languages. Often the machine language changes subtly from
CPU version to CPU version. It would be annoying if we had to
rewrite large parts of the compiler. Fortunately, most machine
languages are rather similar. This helps us to abstract almost
the whole compiler from the details of the target language. The
way we do this is by using in essence two compilers.

I Develop an intermediate language that captures the
essence of almost all machine languages.

I Compile to this intermediate language.
I Do compiler optimisations in the intermediate language.
I Translate the intermediate representation to the target

machine language. This step can be seen as a
mini-compiler.

I If we want to retarget the compiler to a new machine
language, only this last step needs to be rewritten. Nice
data abstraction.

31 / 1

Phases: optimiser

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

32 / 1

Phases: optimiser
Translating a program often introduces various inefficiencies,
make the program e.g. run slow, or use a lot of memories, or
use a lot of power (important for mobile phones). Optimisers try
to remove these inefficiencies, by replacing the inefficient
program with a more efficient version (without changing the
meaning of the program).

Most code optimisations are problems are difficult (NP
complete or undecidable), so optimisers are expensive to run,
often (but not always) lead to modest improvements only. They
are also difficult algorithmically. These difficulties are
exacerbate for JITs because the are executed at program
run-time.

However, some optimisations are easy, e.g. inlining of
functions: if a function is short (e.g. computing sum of two
numbers), replacing the call to the function with its code, can
lead to faster code. (What is the disadvantage of this?)

33 / 1

Phases: code generation

Lexical analysis

Syntax analysis

Source program

Semantic analysis,
e.g. type checking

Intermediate code
generation

Optimisation

Code generation

Translated program

34 / 1

Phases: code generation

This straighforward phase translates the generated
intermediate code to machine code. As machine code and
intermediate code are much alike, this ’mini-compiler’ is simple
and fast.

35 / 1

Compilers vs interpreters
Interpreters are a second way to run programs.

CompilerSource program Executable

Data

Output

Source program Interpreter

Data

Output

At runtime.Syntax
error?

Syntax
error?

I The advantage of compilers is
that generated code is faster,
because a lot of work has to
be done only once (e.g.
lexing, parsing, type-checking,
optimisation). And the results
of this work are shared in
every execution. The
interpreter has to redo this
work everytime.

I The advantage of interpreters
is that they are much simpler
than compilers.

We won’t say much more about interpreters in this course.

36 / 1

Literature

Compilers are among the most studied and most well
understood parts of informatics. Many good books exist. Here
are some of my favourites, although I won’t follow any of them
closely.
I Modern Compiler Implementation in Java (second

edition) by Andrew Appel and Jens Palsberg. Probably
closest to our course. Moves quite fast.

I Compilers - Principles, Techniques and Tools (second
edition) by Alfred V. Aho, Monica Lam, Ravi Sethi, and
Jeffrey D. Ullman. The first edition of this book is is the
classic text on compilers, known as the “Dragon Book”, but
its first edition is a bit obsolete. The second edition is
substantially expanded and goes well beyond the scope of
our course. For my liking, the book is a tad long.

37 / 1

Literature

Some other material:
I Engineering a Compiler, by Keith Cooper, Linda Torczon.
I The Alex Aiken’s Stanford University online course on

compilers. This course coveres similar ground as ours,
but goes more in-depth. I was quite influenced by Aiken’s
course when I designed our’s.

I Computer Architecture - A Quantitative Approach (sixth
edition) by John Hennessey and David Patterson. This is
the ’bible’ for computer architecture. It goes way beyond
what is required for our course, but very well written by
some of the world’s leading experts on computer
architecture. Well worth studying.

38 / 1

How to enjoy and benefit from this course

I Assessed coursework is designed to reinforce and
integrate lecture material; it’s designed to help you pass
the exam

I Go look at the past papers - now.
I Use the tutorials to get feedback on your solutions
I Substantial lab exercise should bring it all together
I Ask questions, in the lectures, in the labs, on Canvas or in

person!
I Design your own mini-languages and write compilers for

them.
I Have a look at real compilers. There are many free,

open-source compilers, g.g. GCC, LLVM, TCC, MiniML,
Ocaml, the Scala compiler, GHC, the Haskell compiler.

39 / 1

Feedback

In this module, you will receive feedback through:
I The mark and comments on your assessment
I Feedback to the whole class on assessment and exams
I Feedback to the whole class on lecture understanding
I Model solutions
I Worked examples in class and lecture
I Verbal comments and discussions with tutors in class
I Discussions with your peers on problems
I Online discussion forums
I One to one sessions with the tutors

The more questions you ask, the more you participate in
discussions, the more you engage with the course, the more
feedback you get.

40 / 1

Questions?

41 / 1

