
 
 

  

Abstract—Recently complex network theory has been 
broadly applied in various domains. How to effectively and 
efficiently optimize the topology of complex networks remains 
largely an unsolved fundamental question. When applied to the 
network topology optimization, Genetic Algorithms (GAs) are 
often confronted with permutation representation, 
memory-inefficiency and stochastic modeling problems, as well 
as difficulties in the design of problem-specific evolutionary 
operators. This paper, inspired by the natural ripple spreading 
phenomenon, reports a deterministic model of random complex 
networks. Unlike existing stochastic models, the topology of a 
random network can be thoroughly determined by some 
ripple-spreading related parameters in the new model. 
Therefore, the network topology can be improved by optimize 
these ripple-spreading related parameters. As a result, no 
purpose-designed GA is required, but a very basic binary GA, 
compatible to all classic evolutionary operators, can be applied 
in a straightforward way. Preliminary simulation results 
demonstrate the potential of the proposed ripple-spreading 
model and GA for the topology optimization of random complex 
networks. 

I. INTRODUCTION 
OMPLEX networks, i.e. networks whose structure is 
irregular, complex and dynamically evolving in time, 

describe a wide range of systems in nature and society, and 
are all around us in our daily life [1], [2], [3]. The study of 
networks can be historically traced back to the 18th century 
when graph theory was born, while complex network theory 
has just developed since the last decade, which is partially a 
result of the accelerated developing progress of computer 
technologies. Modern powerful computers make it possible to 
model and analyze complex networks, which can easily 
compose of thousands, millions or even billions of nodes and 
links. Complex network theory provides a mathematical 
platform to study most real networks which the classic graph 
theory can not handle. Many new concepts, measures and 
algorithms have been defined and developed to characterize 
the topology of real networks, and to cover the novel topics 
and problems in real networks. Complex network theory has 
now been widely applied to study many networks in our daily 
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life, such as our social network, Internet, WWW (World Wide 
Web), power grid, transportation network, communication 
network, food web, and even the network of protein reactions. 

In the past few decades many efforts have been made to 
model and analyze various complex networks [1] [2]. Most 
network models can be classified as stochastic model, 
because they have a typical feature in common: a stochastic 
model abstracts one or a few network properties or 
parameters in order to capture in quantitative terms the 
underlying organizing principles of complex networks, and 
these network properties or parameters can estimate what the 
network looks like, but can not guarantee an exact or unique 
topology. In other words, different network topologies may 
have exactly the same values for the specified properties or 
parameters. For instance, in the classic random graph theory 
[4], the connection probability is the core parameter of the 
network model. In the generalized random graph model [5], 
the degree distribution following a power law is used as the 
input in order to be able to describe the scale-free character of 
real networks that the classic random graph model can not 
capture. In the theory of evolving networks [6], the parameter, 
so called preferential attachment, is often used to model 
scale-free real networks. In a recently reported spatial 
embedded random network model [7], the connection 
probability is formulated as a function of distance between 
nodes. In either of above network models, even if the input is 
fixed, i.e., the connection probability, power law for degree 
distribution, or preferential attachment is fixed, the output of 
the model is enormous, and what the output topology exactly 
looks like is largely by chance. Therefore, they are all 
stochastic models. Except those network properties which 
explicitly depend on the input parameters, the output 
topology of the models is largely unpredictable or uncertain 
in terms of other network properties. As a result, it is difficult 
to apply these models in the network topology optimization 
problem.  

In this paper we will propose a novel deterministic random 
network model inspired by the natural ripple-spreading 
phenomenon. In this model, some ripple-spreading related 
parameters are defined as input. Unlike those stochastic 
models, once the values of input are fixed, the output network 
topology will also be fixed and unique in the new model. 
Therefore, we can adjust these ripple-spreading parameters in 
order to improve the network topology in terms of concerned 
network properties. Further more, the proposed 
ripple-spreading network model can easily be extended to a 
semi-deterministic version and a stochastic version.   

Another big advantage of this ripple-spreading network 
model is: it is friendly to genetic algorithms (GAs) and 

Ripple-Spreading Model and Genetic Algorithm for Random 
Complex Networks: Preliminary Study 

X. B. Hu, E. Di Paolo and L. Barnett

C 



 
 

compatible to all classic evolutionary operations. The 
network topology optimization problem is a NP-complete 
problem. As large-scale parallel stochastic search and 
optimization algorithms, GAs, if properly designed, have the 
capability of producing high quality solutions to the network 
topology optimization problem in an acceptable period of 
time. Actually, attempts have already been made to apply 
GAs to optimize some network structures, e.g., the topology 
optimization of CCS7 network [8], of MPLS Network [9], of 
airline route networks [10] and of truss [11]. In these 
applications of GAs, permutation representation, e.g., based 
on the conventional adjacent matrix, was used to record the 
network topology, and the chromosome structure and 
evolutionary operators were then designed based on the 
adjacent matrix. As a result, memory-inefficiency and 
feasibility problems often arise. Stochastic models are seldom 
used by GAs to optimize the network topology, because, as 
mentioned before, they do not offer one-to-one mapping from 
input parameters to output network topology. Hopefully, the 
ripple-spreading deterministic model of random networks 
proposed in this paper enables the very basic binary GAs to 
optimize the network topology by evolving the 
ripple-spreading related parameters. As will be discussed 
later, a GA based on the ripple-spreading model is free of 
memory-inefficiency and feasibility problems. 

II. RIPPLE-SPREADING MODEL OF RANDOM NETWORKS 
In the complex network theory, there are many network 

properties which can partially determine the topology of a 
random network. For instance, degree distribution, 
preferential attachment and initial attractiveness can 
determine the category of a network, e.g., a small-world 
network or a scale-free network [1], [2]. However, these 
network properties are seldom used by GAs to construct 
chromosomes in order to optimize the network topology, as 
they do not give unique output. In the following 
ripple-spreading model, we propose a few parameters which 
can thoroughly determine the network topology, and 
therefore are suitable candidates for GA to evolve.   

A. Basic idea of ripple-spreading model 
The basic natural ripple-spreading phenomenon is as 

following. Suppose a bunch of stakes are randomly 
distributed in a quiet pool. Then suddenly a stone is thrown 
into the pool, and an initial ripple is generated from the point 
where the stone hits the quiet water. When the ripple reaches 
a near stake, a new ripple is generated around the stake due to 
the reflection effect. Hereafter, for the sake of consistency, we 
call such a new ripple as a responding ripple, and the ripple 
which triggers the responding ripple as a stimulating ripple. 
As the initial stimulating ripple is spreading, more and more 
responding ripples are stimulated around stakes. However, 
since the point energy on the initial stimulating ripple decays 
as it spreads out, those responding ripples triggered at a late 
phase could hardly be noticed.  

 
Now, we replace the stakes with a set of wireless vibration 

sensors. Each sensor can detect and measure the point energy 
when a stimulating ripple reaches the sensor. If the point 
energy is above a preset threshold, then the sensor will 
generate a responding ripple, whose initial energy is a 
function of the point energy of the stimulating ripple, e.g., 
multiplying the point energy by an amplifying factor. If the 
stimulating ripple comes from another sensor, then the 
current sensor will compare the point energy against another 
preset threshold, once above which a permanent 
communication will be established between the two sensors. 
Obviously, the amplifying function of a sensor makes it 
possible for the information associated with the stone hitting 
the quiet pool to propagate through the whole wireless sensor 
network, even though the point energy of the initial 
stimulating ripple may decrease quickly below the threshold. 
Suppose each sensor can generate no more than one 
responding ripple, in other words, each sensor can be 
activated no more than once. Then, after all ripples decay, we 
will get a network according to those permanent 
communications, i.e. links, established between wireless 
sensors, i.e. nodes. Clearly there are some factors affecting 
the final network topology. For instance, how many stones hit 
the pool to generate initial stimulating ripples, where do they 
hit the pool, what is the mass of each stone (will determine the 
initial energy of the associated stimulating ripple), what are 

 

 
Fig.1. Mechanism of using ripple-spreading method to model networks. 



 
 

the preset values for the thresholds, and what is the 
amplifying factor of each sensor? By mathematically 
formulating these factors and the relationships between them, 
we can get a deterministic model for random networks. The 
mechanism of this ripple-spreading model is intuitively 
illustrated in Fig.1.  

B. Ripple-spreading related parameters 
Here we give the mathematical descriptions of those 

factors discussed above, which hereafter we call as 
ripple-spreading related parameters.  

The first group of ripple-spreading related parameters are 
related to the epicenters of initial stimulating ripples (EISRs). 
Suppose NEISR stones of different mass hit the pool in 
different points at different time instants, i.e., there are NEISR 
EISRs, EISR i, i=1,…,NEISR, has an initial point energy of 
EEISR(i), its coordinates are (xEISR(i),yEISR(i)), and it is not 
active until time instant TEISR(i).  

The second group of parameters associate with the nodes 
which are to be connected in order to generate a network. In 
this paper, it is assumed that the total number of nodes, NN, 
and their locations, (xN(i),yN(i)), are already given and fixed. 
To get different topologies from this fixed set of nodes, we 
introduce three ripple-spreading related parameters to each 
node: α(i), βR(i) and βL(i), which are the amplifying factor, the 
threshold to generate a responding ripple, and the threshold to 
establish a link, for node i, i=1,…, NN, respectively.  

With above ripple-spreading related parameters, the 
proposed random network modeling process can be 
mathematically described as follows:    

Step 1: Initialize the current time instant, i.e., t=0. Initialize 
the current point energy of each EISR as 

)(),( iEtie EISREISR = , i=1,…,NEISR.             (1)  
Since each node has no initial energy, i.e., EN(i)=0, 
therefore its current point energy is 

0)(),( == iEtie NN , i=1,…, NN.               (2) 
Assume each EISR or node has a ripple with a current 
radium of 0, i.e., rEISR(i,t)=0 or rN(i,t)=0.  

Step 2: If the stopping criteria is not satisfied, do: 
Step 2.1: Let t=t+1.  
Step 2.2: Check t against TEISR(i). If t>TEISR(i), then 

update the current radium and point energy of EISR i 
as following 

stirtir EISREISR +−= )1,(),( ,              (3) 

)),,(),((),( ttiriEftie EISREISRDecayEISR =    (4) 

Where s is the spreading speed of ripples, i.e., the 
change in the radium of a ripple during one time 
instant, and fDecay is a function defining how the point 
energy decays as the ripple spreads out. A typical 
decaying function may be 

),(2
)()),,(),((
tir

iEttiriEf
EISR

EISR
EISREISRDecay π

η=   (5) 

where η is coefficient, and π is the mathematical 

constant. Clearly η has an important influence on the 
decaying speed of ripples, and will therefore affect 
the final network topology. As a result, η should be 
optimized along with other ripple-spreading related 
parameters.  

Step 2.3: Check which new nodes are reached by the 
ripples of EISRs. Suppose DEISR(i,j) is the distance 
between EISR i and node j. If EN(j)=0 and 
DEISR(i,j)≤rEISR(i,t), then node j is reached by the 
ripple associated with EISR i. If eEISR(i,t)≥ βR(j), then 
node j is activated by EISR i, and generates a 
responding ripple with 

),()()( tiejjE EISRN α= ,             (6) 
and eN(j,t)= EN(j). 

Step 2.4: If eN(i,t-1)>0, i=1,…,NN, then update the 
current radium and point energy of node i in a similar 
way to EISRs, i.e., 

 stirtir NN +−= )1,(),( ,               (7) 

)),,(),((),( ttiriEftie NNDecayN = .       (8) 

Basically, Eq.(3), Eq.(4), Eq.(7) and Eq.(8) show 
that, no matter where the ripples originate, they 
should have the same spreading speed and the same 
decaying function, just like in the nature world. 
However, this may be amendable in order to get a 
more complicated artificial model.  

Step 2.5: Check which new nodes are reached by the 
ripples of other nodes. Suppose DN(i,j) is the 
distance between node i and node j. If EN(j)=0 and 
DN(i,j)≤rN(i,t), then node j is reached by the ripple 
generated by node i. If eN(i,t)≥ βR(j), then node j is 
activated by node i, and generates a responding 
ripple with 

),()()( tiejjE NN α= ,              (9) 
and eN(j,t)= EN(j). If eN(i,t)≥ βL(j), then a connection 
between node i and node j is established, i.e.,  

1),(),( == ijAjiA                 (10) 
where A is the adjacency matrix which records the 
network topology.    

Different stopping criteria may be used in Step 2. For 
instance, the current time instance is beyond a specific time 
window, no EISR or node has current point energy above any 
threshold, or the upper bound for the number of total links is 
reached.   

From the modeling process proposed above, one can see 
that the network topology is largely determined by the 
ripple-spreading related parameters. Given different values 
for the parameters, different topologies will be generated. 
Therefore it is possible to improve the network topology by 
optimizing the ripple-spreading related parameters. 

Also from the above network modeling process, one can 
see there are two basic behaviors for each node: being 
activated and being connected. The evolving of a random 
network is based on these two behaviors, which are mainly 
determined by two thresholds: βR(i) and βL(i). These two 



 
 

behaviors may have 4 combinations, as illustrated in Fig.2, 
which contribute to the complex evolving behavior of a 
random network. 

  
C. Three sub-models 
As mentioned in Section I, one motivation of this paper is 

to develop a deterministic model of random networks, i.e., 
describe a random network with a few parameters, and once 
the values of the parameters are given, the network topology 
will be uniquely determined. This is obviously achieved by 
the ripple-spreading model proposed above. However, the 
deterministic model is just one sub-model achievable by the 
idea of ripple-spreading model. Actually, by slightly 
modifying some parts in the deterministic model, one can get 
a semi-deterministic model and a stochastic model with 
exactly the same idea of ripple-spreading model. 

Step 2.3 and Step 2.5 in the network modeling process 
defines the details of the two behaviors of each node. In the 
deterministic model, if and only if a threshold is reached, the 
associated behavior will occur. Therefore, once the 
distribution of nodes are given and fixed, the network 
topology is thoroughly determined by the ripple-spreading 
related parameters, as illustrated in Fig.3(a).  

Based on the deterministic model, one can easily introduce 
some stochastic features as following. In Step 2.3 or Step 2.5, 
suppose a node is newly reached by a ripple. If the current 
point energy of the stimulating ripple is above a threshold of 
this node, then the node behaves as described in Step 2.3 or 
Step 2.5. In the case where no threshold of the node is 
reached, no action is defined for the node in the deterministic 
model, while in the semi-deterministic model, the node may 
still be activated or connected according to a certain 
probability function. For instance, when no threshold is 
reached, i.e., 

),()( tjei EISRR >β  or ),()( tjei NR >β ,        (11) 

),()( tjei EISRL >β  or ),()( tjei NL >β ,        (12) 
node i, the node which is newly reached by a ripple, will 
generate a responding ripple at a probability of pR(i),  
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and/or establish a connection at a probability of pL(i), 
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where ωR>0 and ωL>0 are tail-off coefficients. The 
probability functions defined by Eq.(13) and Eq.(14) implies 
that less point energy, smaller probability of being activated 
or connected, as illustrated in Fig.3(b). Obviously, in a final 
network topology of the semi-deterministic model, some 
connections are thoroughly determined by the 
ripple-spreading related parameters, just like in the 
deterministic model, while the other connections are largely 
established in a random manner. 

The third sub-model is a stochastic model, where all 
connections in a final network topology are determined 
partially by the ripple-spreading related parameters, e.g., the 
distribution of EISRs, and partially by chance, i.e., according 
to certain probability functions such as following 
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where 

))()(max(max iEjE EISRα= , i=1,…,NEISR, j=1,…,NN. (17) 
Clearly, Eq.(17) guarantees no probability is larger than 1. 

From the three sub-models discussed above, one can see 
that, although the ripple-spreading model originally aims to 
provide a deterministic method to describe random networks, 
it is completely compatible to the stochastic features of 
random networks. The stochastic features can be introduced 
at two levels. One level is composed of the ripple-spreading 
related parameters. By assigning random values to these 
parameters, one can get random topologies, even in the 
deterministic model. The other level includes the probability 
functions such as given by Eq.(13) to Eq.(16). These 
probability functions allow stochastic features even for a set 
of fixed ripple-spreading related parameters, just like in the 
semi-deterministic model and the stochastic model. 

Actually, the ripple-spreading model proposed in this paper 
has a considerable degree of freedom for further extensions 
and modifications. One can easily introduce some new 
parameters into the ripple-spreading process to increase the 
complexity of the model. For example, to model the 
preferential attachment behaviour in scale-free networks, one 
can define a multi-activating behaviour for each node, i.e., 
each node may be activated more than once, or the point 
energy of a node can be enforced over time by any ripple 
whose point energy is above the threshold βR when reaching 
the node. The probability functions given in Eq.(13) to Eq.(16) 
are just some examples, and may be modified according to the 
requirements on the statistic features of random networks. For 
instance, The probability functions given in Eq.(13) to Eq.(16) 
are more likely to generate small-world networks. This is 

 
Fig.2. Two behaviors and four combinations. 



 
 

because the probability decreases as the point energy decays, 
which is actually the result of the increase in distance. 
Therefore, basically, nodes closer to each other are more 
likely to be connected together according to Eq.(13) to 
Eq.(16). However, for some networks, e.g., hub-and-spoke 
airline route networks, this feature might be desirable at a 
local level, but the hub nodes should be reasonably far away 
from each other. In this case, one may use a 
semi-deterministic model with the following probability 
functions 

),(2)( tje
R

EISRRip ω−=  or ),(2)( tje
R

NRip ω−= ,      (18) 
),(2)( tje

L
EISRLip ω−=  or ),(2)( tje

L
NLip ω−= ,      (19) 

if no threshold is reached. Applying Eq.(18) and Eq.(19) 
along with the multi-activating behaviour, hub-connection 
are more likely to be established between nodes far way from 
each other. Obviously, a stochastic model with U-shaped 
probability functions may also exhibit similar statistic 
features. 

 

III. BINARY GA FOR TOPOLOGY OPTIMIZATION 
This section explains, based on the above ripple-spreading 

model, how to apply the baisc binary GA to the topology 
optimization of random networks. 

A. Basic idea of applying binary GAs to combination 
problems 
As large-scale parallel stochastic search and optimization 

algorithms, GAs have a good potential to be applied to a wide 
range of optimization problems [12], [13]. The choice of 
representation of solutions and the design of evolutionary 
operators play crucial roles in a successful application of 
GAs. Permutation representations are usually used when 
applying GAs to combination problems, but they make it 
difficult to design effective and efficient evolutionary 
operators, because these evolutionary operators based on 
permutation representations are often confronted with 
feasibility and memory-inefficiency problems. 

  
This sub-section explains an idea of using very basic binary 

GAs to solve combination problems which usually require 
permutation representations. The binary GAs used must, free 
of feasibility problem, be compatible to all classic 
evolutionary operators. To this end, we propose a hybrid GA, 
the basic idea of which is illustrated in Fig.4. Basic binary 
GAs are easy to design for those problems where the 
solutions are based on value, and to such problems all classic 
evolutionary operators, such as mutation, one-point crossover 
and uniform crossover, are usually applicable. However, if 
the solutions are based on combination of elements, such as a 
random network, it is very difficult to design binary GAs, and 
crossover is often discarded because it is usually more 
destructive rather than effective in such problems. In our 
hybrid GA scheme, an original problem, whose solutions are 
based on combination and therefore are unsuitable for binary 
representation, needs to be cast into a pre-problem whose 
solutions are based on value. Then we design a binary GA for 
this new pre-problem, and most classic GA techniques can 
apply straightforwardly. In the implementation of the hybrid 
GA, the only thing different from a conventional GA is that, 
before the fitness of a chromosome is calculated, the 
represented solution to the pre-problem needs to be mapped 
into the associated solution to the original problem. 
Obviously the most important and also the most difficult step 
in the hybrid GA scheme is to design a proper pre-problem, 
which depends largely on each individual original problem. 
The ripple-spreading model proposed in Section 2 is a well 
designed pre-problem for applying binary GAs to optimize 
the topology of random networks. 

 
Fig.4. Apply binary GAs to combination problems. 

 

 

 
Fig.3. 3 ripple-spreading sub-models of random networks. 



 
 

B. Chromosome structures 

 
In this paper, we only consider deterministic chromosome 

structures, i.e., a chromosome must be able to determine a 
unique network topology. For comparative purposes, we give 
two widely used structures based on actual connections 
between nodes. One is a vector representation, where each 
gene records the serial number of an actual connection, as 
illustrated in Fig.5(c); the other is a matrix representation, 
where a gene C(i,j)=1 indicates node i and node j are 
connected, and C(i,j)=0 otherwise, as illustrated in Fig.5(d). 
Since both the vector structure and the matrix structure are 
directly based on the link combination information, they both 
belong to permutation representation. In our GA, a 
chromosome has no direct link to the represented network, 
because it is simply a binary string of the values for those 
ripple-spreading related parameters, as shown in Fig.5(e). 
Table I summarizes the features of different structures, from 
which one can see that: (I) the vector representation has no 
serious memory-inefficiency problems as long as the upper 
bound for actual connections LUB<<N×(N-1)/2, but it may be 
confronted with feasibility problems during evolutionary 
operations, particularly, the traditional crossover, such as 
one-point crossover and uniform crossover, can easily violate 
the feasibility constraint, unless some additional 
computationally expensive feasibility checking and repairing 
operations are introduced; (II) basically, the matrix 
representation has no serious feasibility problems, but it may 
suffer from a huge memory demand when a large scale 

network is under consideration, for instance, if N=1000, then 
the size of single chromosome is 1Mb, and a generation with 
a population of 1000 (a larger N requires a bigger population 
in order to maintain the level of solution quality) demands a 
memory capacity of at least 1Gb, which is not affordable for 
many standard personal computers, let along there are many 
real networks having millions of nodes; (III) owing to the 
ripple-spreading model, a chromosome in our new GA is 
simply a binary string of encoded parameter values, and has 
nothing explicit to do with the represented network topology, 
therefore it has no feasibility constraints, and the 
chromosome size is independent of the network scale and 
then always manageable, for instance, for each 
ripple-spreading related parameter, a 64-bit binary string can 
provide a very satisfactory sampling quality, and therefore the 
memory demand for a chromosome is just 64×NP, given 
there are NP ripple-spreading related parameters used in the 
model (obviously NP<<N, particularly in the  case of complex 
networks). As a conclusion, compared with the permutation 
representations, the binary chromosome in our new GA is free 
of both feasibility and memory-inefficiency problems. 
Further more, as will be discussed later, this binary 
representation of parameter values is compatible and friendly 
to all classic evolutionary operators and techniques.  

    

C. Evolutionary operators 
Thanks to the ripple-spreading model given in Section 2, 

the original network topology optimization problem, which 
requires permutation representation, is transformed into a 
pre-problem whose solution is simply composed of the values 
of those ripple-spreading related parameters. As a result, no 
effort is needed to design any problem-specific evolutionary 
operator, but all classic techniques can apply 
straightforwardly. The mutation operator simply reverses the 
value of a randomly chosen gene, i.e., 

C(i)=1-C(i).                                 (20) 
Crossover may cause feasibility problems to permutation 
representations, and therefore is often discarded in 
combination problems. Fortunately, in the binary GA, we can 
use any traditional crossover operators, such as one-point 
crossover and uniform crossover. One-point crossover uses 
two parents to produce two offspring: randomly choose a 
location where parent chromosomes shall be divided, and 
then exchange the first section of one parent with the first 
section of the other parent. Uniform crossover uses two 

 
Fig.5. Uniform crossover vs one-point crossover. 

TABLE I 
FEATURES OF DIFFERENT REPRESENTATIONS  

 Meaning of a gene Meaning of a 
chromo.  

Size of a 
chromo. 

Constraints 

Vector 
represen-tation

C(j)=i>0 means 
link i is 
deployed 

Which links 
are deployed 

LUB≤ 
N×(N-1)/2 

C(j)≠C(h) if 
h>j, C(h)>0 

Matrix 
representtation

C(i,j)=1 means 
node i and node 
j are linked 

Which links 
are deployed 
or not 

N2 C(i,j)=C(j,i) 
undirected 
networks 

Binary 
representtation

A digit bit in the 
binary string 

Ripple-spread-
ing related 
parameters 

Relying on 
sampling 
steps 

None 



 
 

parents to produce only one offspring, and the principle is 
simple: the ith gene in the offspring inherits the ith gene of 
either parent at a half-and-half chance [14]. As illustrated in 
Fig.6, with the binary representation, both crossover 
operators can automatically keep sections that are same in 
parent chromosomes. On the other hand, uniform crossover 
offers more freedom to evolve chromosomes than one-point 
crossover does and in this way maximizes the sampling of 
non-shared genes between parents.  

  
D. Heuristic rules 
In permutation representation based GAs for combination 

problems such as network topology optimization, many 
problem-specific heuristic rules are integrated into their 
evolutionary operations. Differently, in the evolutionary 
operations of our binary GA with the ripple-spreading model, 
we mainly focus on some pure GA-related heuristic rules. For 
example, evenly distribute a certain proportion of 
chromosomes within the solution space to the pre-problem 
when initializing a generation; online adjust mutation 
probability and crossover probability according to the fitness 
of each individual chromosome as well as the overall fitness 
level of the current generation of chromosomes [15]; 
dynamically restrict the mutation operation to a certain part of 
a chromosome based on its fitness [16]; some GA-related 
parameters may be included in the chromosome structure and 
then get evolved along with those ripple-spreading related 
parameters, just like genetic strategies do [13]. As for 
problem-specific knowledge, it should be mainly integrated 
into the ripple-spreading model. 

IV. PRELIMINARY SIMULATION RESULTS 
This section only provides some preliminary simulation 

results in order to demonstrate the potential of the proposed 
ripple-spreading random network model and the associated 
binary GA for the optimization of network topology. For the 
sake of simplicity, in the simulation, the deterministic 
sub-model is used, and it is assumed NEISR=4, TEISR(i)=0, 
EEISR(i)=EEISR, i.e., all EISRs have the same active time and 
the same initial energy, and NN=100, α(i)=α, βR(i)=βL(i)=β, 
i.e., all nodes have the same amplifying factor, and the same 
threshold both for being activated and for being linked. In the 
simulation, we only evolve the distribution of EISRs, i.e., 
(xEISR(i),yEISR(i)), in order to generate evenly distributed 
connections between nodes. Assuming the desirable average 
degree is dave=6, then the mathematical description of the 
optimization problem in the simulation is 
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(21) 
where d(j) is the degree of node j. Fig.7 gives some networks 
resulted from different distributions of EISRs, where one can 
see that the distribution of EISRs can effectively affect the 
network topology, and therefore may be used as tuning 
parameters to be evolved by GAs in order to improve the 
topology in terms of concerned network properties. From 
Fig.7, one may notice that the ripple-spreading model of 
random networks is particularly suitable for describing spatial 
embedded networks, which have a solid real-world 
background. For instance, communications networks may 
involve range-dependent links; social networks may involve 
distance-limited interactions between agents existing in some 
(possibly abstract) space; transport networks have an obvious 
spatial embedding; certain spatial patterns often exist in 
breakout of infectious diseases  while, more generally, 
technological/commercial networks frequently feature some 
cost-per-distance constraint on connectivity.   

However, this paper only reports the very initial work on 
the ripple-spreading model of random networks and the 
design of the associated binary GAs. Clearly, in the 
optimization problem defined by Eq.(21), we do no use the 
full range of ripple-spreading related parameters as input, 
neither do we employ an objective function especially 
constructed for certain real-world networks. Therefore, the 
true potential and usefulness of our ripple-spreading model 
and GA to optimize real complex networks are not fully 
understood or exploited. As will be discussed in the following 
section, more efforts, improvements, statistical analyses and 
comparative experiments need to be carried out in order to 
complete the picture of the proposed methodology for 
studying random complex networks.        

V. CONCLUSIONS AND FUTURE WORK 
This paper attempts to develop a methodology to apply 

basic binary Genetic Algorithms (GAs) for the general 
topology optimization of random complex networks. When 
GAs are used to optimize random networks, permutation 
representation, memory inefficiency, stochastic modeling, 
and difficulties in the design of problem-specific evolutionary 
operators are some common problems. Inspired by the natural 
ripple-spreading phenomenon, this paper reports a 
deterministic method to model random networks. Some 
ripple-spreading related parameters can completely determine 
the topology of a random network. In other words, the 
randomness of complex networks is transferred to the 
randomness of these ripple-spreading related parameters. As 
a result, the very basic binary GA, free of 
memory-inefficiency problems, compatible to all classic 
evolutionary operators, can be applied straightforwardly to 
optimize these parameters in order to improve the topology of 
random networks. The potential of the proposed model and 
GA is illustrated by preliminary simulation results. Future 
research include: (I) Study the ripple-spreading model in 

 
Fig.6. Uniform crossover vs one-point crossover. 



 
 

more depth, e.g., conduct a full-scale statistic analysis of the 
model in terms of complex network properties; (II) Develop 
some problem-specific sub-models, e.g., to generate 
small-world networks and to generate scale-free networks 
probably require different sets of ripple-spreading related 
parameters; (III) Test on some real-world networks and 
compare with other models and methods; (IV) Extend the 
basic idea, i.e., develop a ripple-spreading model, and then 
use the basic binary GA to optimize, to other combination 
problems such as scheduling problems.   
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Fig.7. How the distribution of EISRs affects network topology. 


