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Tononi et al. �Proc. Natl. Acad. Sci. U.S.A. 91, 5033 �1994�� proposed a measure of neural complexity
based on mutual information between complementary subsystems of a given neural network, which has at-
tracted much interest in the neuroscience community and beyond. We develop an approximation of the measure
for a popular Gaussian model which, applied to a continuous-time process, elucidates the relationship between
the complexity of a neural system and its structural connectivity. Moreover, the approximation is accurate for
weakly coupled systems and computationally cheap, scaling polynomially with system size in contrast to the
full complexity measure, which scales exponentially. We also discuss connectivity normalization and resolve
some issues stemming from an ambiguity in the original Gaussian model.

DOI: 10.1103/PhysRevE.79.051914 PACS number�s�: 87.18.Sn, 87.19.lo, 87.19.lj, 89.75.Fb

I. INTRODUCTION

Over the last decade, considerable use has been made of a
measure of neural complexity developed by Tononi et al. �1�.
Their CN measure is motivated by the tension between local
and holistic perspectives on neural systems. According to the
authors, the hallmark of neural complexity is the combina-
tion of functional modularity and global unity of behavior
across many anatomical scales. Their measure is an attempt
to capture this theoretical position by employing calculations
of mutual information shared between processes occurring
on complementary subsystems of a neural network in order
to identify networks that simultaneously support relatively
segregated local behavior and relatively integrated global dy-
namics �2�.

Although conceived within a specific neuroscience con-
text, CN has received widespread attention across the behav-
ioral and brain sciences, from fields as diverse as autono-
mous robotics �3�, neural imaging �4,5�, local dynamics of
the mammalian brain �6�, and the exploration of theories of
sleep, consciousness, and schizophrenia �7�. Increasingly it is
being seen as part of a family of statistical measures of com-
plexity derived from information theory �8� with particular
relevance within networks science �9–11�.

Network complexity is typically characterized as a struc-
tural phenomenon, with complex networks occupying a re-
gime between the totally ordered �as exemplified by lattice-
like structures� and the totally disordered �as exemplified by
Erdös-Rényi random graphs�. CN by contrast, while suggest-
ing a consonant order-disorder balance, is essentially a dy-
namical measure, defined in terms of a time-varying process
running on a system of interconnected neural components. It
thus seems natural and useful to inquire into the relationship

between the connectivity structure of a network and the dy-
namical complexity of processes running on that network
�6,10�. Specifically, we might ask what type of connectivity
structure is likely to host neural processes measuring high
complexity under CN. Tononi et al. �1�, for instance, demon-
strate that network structures inspired by the properties of the
cerebral cortex score highly, and that artificial networks op-
timized for high neural complexity share structural motifs
with real cortical networks �12�. In this paper we attempt to
establish a framework under which we may elucidate the
structure-complexity relationship. We approach the problem
via an analytic model which allows expression of an approxi-
mation to CN directly in terms of the underlying network
connectivity structure. The approximation also turns out to
be useful in its own right as a computationally cheap proxy
for CN under the model assumptions.

It must be emphasized that CN is a statistical measure: it
requires that, on the time scale under consideration, interac-
tions between neural components may be approximated as
statistically stationary. This may be viewed as a restriction
on the scenarios for which it makes sense to apply the mea-
sure; thus while it would be inappropriate for application,
say, to the short-term behavior of an embodied neural system
reacting to temporally unpredictable external stimuli, it
might be appropriate to, e.g., categorize neural states associ-
ated with long-term neurocognitive phenomena such as sleep
states, epileptogenesis, or anesthetic action �13,14�.

Various approaches can be taken in calculating the com-
plexity measure. Here we are concerned with one popular
analytic model that proceeds on the assumption that neural
dynamics may be �approximately� characterized by a station-
ary multivariate stochastic process and that, furthermore, this
can be taken to be Gaussian, enabling interactions between
network components—and thence mutual information—to
be expressed via a covariance matrix �1�. Some comments
are perhaps in order regarding the Gaussian assumption. The
model we consider lacks explicit extrinsic inputs; rather, neu-
ronal activity is triggered by uncorrelated Gaussian noise
�15�, which we may think of, in the spirit of statistical me-
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chanics, as a rough approximation to the statistical structure
of signals sampled from the environment. Implementations
of Gaussian neural models as linear autoregressive processes
�see, e.g., �1� and Sec. IV below� might be considered as
approximations in the weakly coupled near-linear regime of
the nonlinear dynamics present in more detailed neurocom-
putational models and, indeed, biological neural systems.
While there is no dispute that linear stationary dynamics are
likely to represent a poor model on the level of individual
neurons, in the neuroscience literature a linear stationary
Gaussian approximation is quite commonly invoked for
large-scale systems and in particular neural mass models
�16–21�. We remark that, from a practical point of view, the
Gaussian assumption vastly simplifies estimation of CN from
real or simulated data since reliable estimation of entropies
from multivariate samples is highly nontrivial �20�. We
should, however, be wary of inferring results of highly non-
linear systems from linear Gaussian models as featured in
this and related studies.

We proceed to derive a computationally cheap approxima-
tion of CN for the weakly coupled Gaussian model in terms
of the correlation matrix. We then address a problem in �1�
regarding calculation of the covariance matrix �we stress that
the complexity measure itself is not called into question but
rather its operationalization for a particular model process�.
The issue is resolved by introduction of a continuous-time
analog of the original, apparently discrete time, formulation.
Our approximation is then reformulated for the continuous-
time Gaussian model in terms of the associated connection
matrix. We discuss how the resultant approximate measure
elucidates the relationship between neural complexity and
structural network connectivity, flagging reciprocal and
�more generally� cyclic connectivity motifs as the principal
contributors to neural complexity. We also indicate how
moving to continuous time may in effect mitigate the impact
of the problematic covariance matrix calculation. Issues re-
garding connectivity scaling and normalization are dis-
cussed. Finally, we illustrate our analysis by example of a
simple ring lattice connectivity scheme, where connectivity
strength decays with interneuron distance. The example rati-
fies the accuracy of our approximation and demonstrates,
under suitable conditions, a complexity peak at intermediate
decay values in line with the complexity peak found in �1�
for an ad hoc covariance matrix with off-diagonal covariance
decay. We have made available for download MATLAB® code
implementing some of the analytical methods presented in
this paper �22�.

II. NEURAL COMPLEXITY

The scenario we address �1,12,23,24� is that of a system
of n “neural components” �nodes for brevity� and a station-
ary multivariate stochastic process X�t���Xi�t� � i=1, . . . ,n�,
where Xi�t� is to represent the activity at time t associated
with the ith node. This process may be in discrete or con-
tinuous time. In �1� the authors introduced a neural complex-
ity measure based on mutual information between sub-
systems of the given system. The idea behind the measure is
that complex neural systems should be expected to exhibit a

balance between “integration” and “segregation” of neural
subsystems. The measure is defined as follows: first the in-
tegration associated with the system is introduced as

I � 	
i=1

n

Hi − H , �1�

where H denotes the entropy H(X�t�) of the full joint process
X�t� and Hi denotes the entropy H(Xi�t�) of the individual
activation Xi�t�. Note that by stationarity these quantities and
hence I itself do not depend on time t. I may be interpreted
as a measure of the deviation from independence of the in-
dividual components of the system. Neural complexity is
then defined to be

CN � 	
k=1

n−1 
 k

n
I − �I�k , �2�

where �·�k denotes an average over all subsystems of size k;
more precisely, a k subsystem of the neural system may be
specified by an ordered vector of unique indices: i
= �i1 , . . . , ik�, with 1� i1� i2� ¯ � ik�n. If we then have
some measurable quantity Z�i�, say, associated with k sub-
system i we denote by �Z�k, the average � n

k �−1 	iZ�i� of Z
where the sum ranges over all � n

k � k-subsystem indices i.
Entropy and hence integration I may be naturally restricted
to k subsystems and are therefore such quantities. We note
that �I�n=I so that the k=n term in Eq. �2� would be iden-
tically zero.

It can be shown �1� that neural complexity may be ex-
pressed in the equivalent and somewhat more computation-
ally tractable form

CN � 	
k=1

n−1 
�H�k −
k

n
H . �3�

In the special case where the X�t� is multivariate Gaussian,
the entropy H may be expressed simply in terms of the
n�n covariance matrix ��X�t�⊺X�t� �25�, where the over-
bar represents an average over the statistical ensemble �26�.
By stationarity � does not depend on time t and we have
H= 1

2 ln��2�e�n����, where � · � denotes the determinant. Now
it is easy to see that the X�t� restricted to any k subsystem i
will also be multivariate Gaussian and that the associated
covariance matrix ��i� will be just the k�k submatrix of �
defined by the indices i1 , . . . , ik; i.e., ��i�����i�i�

. From Eq.
�3� then, neural complexity may be expressed as �22�

CN =
1

2	
k=1

n−1 
�ln����k −
k

n
ln��� . �4�

For the remainder of this paper we assume that X�t� is mul-
tivariate Gaussian.

Let R be the correlation matrix for the multivariate
Gaussian system, with entries rij ��ij /��ii� j j. Then ���
=�11. . .�nn�R� and it is straightforward to show �the log
variance terms cancel out in the average over subsystems�
that we can write CN in terms of R as
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CN =
1

2	
k=1

n−1 
�ln�R��k −
k

n
ln�R� . �5�

III. APPROXIMATING NEURAL COMPLEXITY

There does not seem to be any convenient analytic ex-
pression for CN as defined by Eq. �4� and �5� and computing
it numerically involves averaging over all 2n possible sub-
systems. Thus it seems appropriate to ask whether a compu-
tationally cheaper approximation for CN might be found. We
now derive such an approximation in terms of the correlation
coefficients rij. Making use of the matrix identity �exp�A��
�exp�trace�A�� for any square matrix A and using the
Taylor-series expansion for ln�1+x�, we find

ln�R� = − 	
m=2

�
�− 1�m

m
trace�R̂m� , �6�

where we define R̂�R− I. Note that R̂ is symmetric and

zero on the diagonal. Setting 	��R̂�, with � · � as any con-
sistent matrix norm �27�, the mth term of the expansion is
O�	m�. We note that the spectral radius of a matrix is the
infimum of all induced matrix norms and that all induced

norms are consistent �27�. If the spectral radius 
�R̂� of R̂ is
small, then—we might reasonably describe such a system as
weakly coupled since correlations between neural compo-
nents will be small—we can expect the first few terms of
expansion �6� to furnish a good approximation for ln�R�.

We now use Eq. �6� to calculate the first two terms for the
corresponding expansion of expression �5� for CN. From Eqs.
�B1� and �B2�, respectively, we have

�trace�R̂2��k =
k�k − 1�
n�n − 1�

trace�R̂2� , �7�

�trace�R̂3��k =
k�k − 1��k − 2�
n�n − 1��n − 2�

trace�R̂3� . �8�

Using the identity

	
k=1

n−1

k�k − 1� ¯ �k − m + 1� =
n�n − 1� ¯ �n − m�

m + 1
, �9�

it then follows from Eq. �5� that

CN = CN
� �R� + CN

���R� + O�	4� , �10�

where �22�

CN
� �R� =

n + 1

24
trace�R̂2� , �11�

CN
���R� = −

n + 1

24
trace�R̂3� , �12�

with CN
� �R�=O�	2� and CN

���R�=O�	3�. We can in principle
calculate the approximation to successively higher orders al-
though the mathematical labor involved quickly becomes
prohibitive.

Extensive experimentation with a variety of covariance
matrices suggests that, at least if the coupling strength is not
too high, Eq. �10� provides a good approximation to CN.
Even when the approximation error is large the qualitative
behavior of CN appears to be well reflected. We note that the
approximation is considerably cheaper to compute than the
full measure CN, scaling polynomially, as opposed to expo-
nentially, with system size n.

To validate the accuracy of the approximation we ran the
following experiment: 104 random covariance matrices of
size 20�20 were generated and the exact neural complexity
CN �Eqs. �2�–�5�� was calculated for each, along with the
first- and second-order approximations CN

� �R� and CN
� �R�

+CN
���R�, respectively �Eqs. �11� and �12��. Covariance ma-

trices were generated as �= �I−wC⊺��I−wC� with off-
diagonal elements of the square matrix C �28� drawn from a
normal distribution N�0.8,0.64� and on-diagonal elements
from N�0,0.04�. The parameter w controls coupling
strength, and was varied between 0 and 0.04. For each
sampled covariance matrix we binned the relative errors
�CN−CN

� �R�� / �CN� and �CN−CN
� �R�−CN

���R�� / �CN� of the
first- and second-order approximations with respect to the

exact neural complexity, against the spectral radius 
�R̂� of

the dediagonalized correlation matrix R̂. Results are dis-
played in Fig. 1. Mean relative errors scale roughly linearly

with 
�R̂�, confirming that 
�R̂� provides a good measure of
the accuracy of the approximations.

Figure 2 displays the approximations against exact neural
complexity as a scatter plot. We see that the accuracy of the
approximations degrade somewhat with the magnitude of
neural complexity.

For systems that may reasonably be modeled as Gaussian,
all that is required to calculate approximation �10� is a cova-
riance matrix, which might, e.g., be bootstrap sampled from
time-series data: we thus propose that the approximation be
considered as a practicable and computationally cheap proxy
for CN. We remark that in �12,24� the authors introduce the
simplified measure C�X�, defined as the k=n−1 term of ex-
pression �2� for the full measure CN �see, e.g., Fig. 3c of
�24��. From the above derivation it is clear that the corre-
sponding O�	2� and O�	3� terms for the measure C�X� will
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FIG. 1. Mean relative error of first and second approximations
relative to exact neural complexity plotted against spectral radius of
the dediagonalized correlation matrix. Error bars indicate one stan-
dard deviation.
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differ from those for CN by constant factors depending just
on system size n. This goes some way to justifying those
authors’ intuition that C�X�—itself computationally cheaper
than CN—is a reasonable proxy for the full measure CN.

IV. GAUSSIAN MODEL IN CONTINUOUS TIME

Tononi et al. �1� consider a model in which we are given
an n�n connectivity matrix C, where Cij is to be interpreted
as the weight on the connection from node i to node j �i.e.,
node i is efferent while node j afferent�. The neural process
is described as linear and driven by uncorrelated Gaussian
noise. We note that this model effectively reframes neural
complexity as a “structural” property of neural connectivity
rather than a “functional” property of neural dynamics.

The covariance matrix is then stated to be

� = Q⊺Q , �13�

where Q��I−C�−1, based on an equation of the form �29�

X = X · C + R , �14�

for the stationary process, where R represents uncorrelated
mean-zero unit-variance Gaussian noise. But there are prob-
lems with this derivation; it appears to be based on the erro-
neous assumption that stationarity of X�t� implies equality of
the X�t� rather than the correct inference that the X�t� all
have the same distribution. We consider the implications of
this issue in Sec. VI.

In fact a correct derivation of the covariance matrix re-
quires explicit specification for the Gaussian process X�t�. In
�1� it is not entirely clear whether the neural process is in-
tended to be in discrete or continuous time although the form
of Eq. �14� suggests the former; we return to this point in
Sec. VI. Although it might be argued that in any case a
discrete time model will be unacceptably unrealistic: real
�biological� neural processes certainly cannot be said to oc-
cur in globally synchronized discrete time steps and even

computational models in nonbiological information process-
ing applications are frequently simulated in continuous time.
Below we introduce a continuous-time model and calculate
the associated covariance matrix �, from which neural com-
plexity CN may be calculated via Eq. �4�. In the section fol-
lowing we derive an approximation for CN in terms of con-
nectivity C.

We propose, as a continuous-time model in the spirit of
the model presented in �1�, the multivariate Ornstein-
Uhlenbeck process �30,31�

dX�t� = − X�t� · �I − C�dt + dW�t� , �15�

where I is the identity matrix and W�t� a multivariate Wiener
process with identity covariance matrix representing uncor-
related Gaussian noise. The process is multivariate Gaussian
so that Eq. �4� applies. If we allow noise levels to differ per
node, then we may recover an equivalent equation to Eq.
�15� by a simple linear transformation of the connectivity
matrix and a rescaling of activation levels. We note that Eq.
�15� is entirely equivalent to the linearized version of a noisy
neural network of Wilson-Cowan type �32� presented, e.g., in
�33�. Alternatively, it may be viewed as a linearized noisy
continuous time recurrent neural network �34�. While we
view the impact of nonlinearity on neural dynamics as an
important issue �cf. our remarks in Sec. I and see also �5��, it
is not one that we address in this study.

Note that the decay �i.e., relaxation rate� of all nodes in
Eq. �15� appears to be the same. This is arguably unrealistic;
but it is moot whether the diagonal elements of C should
properly be regarded as decay parameters, as opposed to self-
activations �i.e., weights on self-connections�. We remark
that the issue of self-activation remains somewhat controver-
sial in the computational neuroscience literature �35,36�.
Now we could incorporate decay explicitly into Eq. �15�;
however, it complicates the mathematics considerably so we
prefer to remain deliberately noncommittal on the question
of decay vs self-activation �cf. Secs. VII and VIII�.

Figure 3 illustrates an instantiation of process �15� with
20 variables �only six are plotted�. The connectivity matrix C
was constructed over a randomly generated directed graph
with 20 vertices, 70 edges, and no self-connections. Weights
Cij, for i� j were assigned to the connections at random
from a normal distribution N�0.2,0.09� and the on-diagonal
weights Cii from N�0,0.0001�. The process was simulated
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FIG. 2. Scatter plot of first approximation CN
� �R� and second

approximation CN
� �R�+CN

���R� �Eqs. �11� and �12�� against exact
neural complexity CN �Eqs. �2�–�5�� for randomly generated corre-
lation matrices �see text for details�. The closer a point is to the
diagonal �dashed line�, the better the approximation.
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FIG. 3. An instantiation of the Ornstein-Uhlenbeck process �Eq.
�15��. See text for details.
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using the exact method �Appendix A�, sampled over 4 units
of time t at intervals of dt=0.001.

We may approximate continuous process �15� by the dis-
crete process

X�t + dt� = X�t� · �I − �I − C�dt� + R�t��dt , �16�

for a small time step dt, where R�t� is uncorrelated mean-
zero unit-variance Gaussian noise. Setting for convenience

K � I − �I − C�dt , �17�

we have then

X�t + dt�⊺X�t + dt� = K⊺ · X�t�⊺X�t� · K + K⊺ · X�t�⊺R�t��dt

+ R�t�⊺X�t� · K�dt + R�t�⊺R�t�dt .

�18�

Averaging this equation over the ensemble at a given time t
gives

X�t + dt�⊺X�t + dt� = K⊺ · X�t�⊺X�t� · K + Idt , �19�

noting that R�t�⊺R�t�� I for all t, and that all other terms in
the average vanish since R�t� is uncorrelated with X�t�. At
this point we invoke stationarity, as a consequence of which
all �joint� moments of the process X�t�—and hence the co-
variance matrix ��X�t�⊺X�t�—do not vary with time so
that the covariance matrix satisfies the relation

� = K⊺�K + Idt . �20�

Substituting back the value of K from Eq. �17� and working
to O�dt�, we find that in the continuous limit dt→0

2� = I + C⊺� + �C . �21�

If C is symmetric we may solve Eq. �21� explicitly to get

� = 1
2 �I − C�−1. �22�

Otherwise it may be solved in terms of the eigenvalues and
eigenvectors of C �see, e.g., �33��. For our purposes, how-
ever, it suffices to note that we may expand � in the matrix
power series �22�

2� = 	
m=0

�

2−m	
k=0

m 
m

k
�Ck�⊺Cm−k

= I + 1
2 �C⊺ + C� + 1

4 ��C2�⊺ + 2C⊺C + C2� + ¯ , �23�

insofar as it converges.
For stationarity of Eq. �16�, for fixed dt we need ����1

for all eigenvalues � of K. But the eigenvalues of K are
precisely 1− �1−��dt, where � are the eigenvalues of C. We
thus need �1− �1−��dt��1 which, in the continuous limit
dt→0, yields the stationarity condition for process �15�

Re��� � 1 for every eigenvalue � of C . �24�

We note that, however, Eq. �24� does not appear to guarantee
convergence of series �23�. However, it is not too difficult to
show �37� that a sufficient condition for convergence is

�C��1, where 
�C� is the spectral radius �38� of C; that is,
the maximum of ��� over all eigenvalues � of C. Note that

�C��1 implies Eq. �24�.

Looking forward in time, process �15� decorrelates with
exponential decay. Specifically, we may calculate that the
lagged covariance is given by

X�t�⊺X�t + s� = � exp�− �I − C�s� . �25�

To verify analytical expression �21� for � we carried out
the following experiment: connectivity matrices C were gen-
erated over 20-node directed random graphs with no self-
connections and connection probability p=0.3 �disconnected
graphs were rejected�. Weights were then assigned to the
�off-diagonal� connections at random from a normal distribu-
tion N�0.2,0.09� and on-diagonal weights from a normal dis-
tribution N�0,0.0001�. Connectivity matrices with spectral
radius 
�C��1 were rejected in order to guarantee existence
of a stationary solution and convergence of power series
�23�. For each connectivity matrix C, the stationary covari-
ance matrix � was calculated via an iterative procedure �22�
based on the series �23�. 100 independent instantiations of
the Ornstein-Uhlenbeck process were then simulated using
the exact method for a number 10�S of time steps of size
dt=1, with S as the sample size. The resulting time series
�the process would first be run long enough to attain station-
arity� was then bootstrap sampled S times and a covariance
matrix was constructed from the sample. We then calculated
the relative error ��−�†� / ��� for each instantiation, where
�† is the sample covariance matrix and � · � denotes the
Frobenius norm �M�� trace�M⊺M� on matrix space �27�.
The relative errors were averaged over the 100 trial instan-
tiations, and the mean and standard deviations were calcu-
lated. This procedure was repeated for a sequence of sample
sizes S; the results, plotted on a log-log scale are illustrated
in Fig. 4. They indicate that sample stationary covariance
matrices indeed approach the value predicted by Eq. �21�,
with sample relative error related to sample size by an in-
verse power law.

V. APPROXIMATING NEURAL COMPLEXITY FOR THE
ORNSTEIN-UHLENBECK PROCESS

From the approximation formula �10� for CN we now de-
rive a corresponding approximation—this time in terms of
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FIG. 4. Mean relative error of sample covariance matrices with
respect to the value predicted by Eq. �21�, plotted against sample
size �log-log scale� for instantiations of the Ornstein-Uhlenbeck
process �Eq. �15�� on connection matrices constructed over random
graphs �see text for details�. Error bars indicate one standard
deviation.
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the connectivity matrix C—for the Ornstein-Uhlenbeck pro-
cess �Eq. �15��. Let ��C� with � · � again as any consistent
matrix norm. Writing

U � 1
2 �C⊺ + C� , �26�

V � 1
4 ��C2�⊺ + 2C⊺C + C2� , �27�

we have from Eq. �23� that 2�= I+U+V+O�3� with U
=O�� and V=O�2�. We may then calculate that for i� j the
correlation coefficients are given by

rij = Uij + Wij + O�3� , �28�

where

Wij � Vij − 1
2 �Uii + Ujj�Uij �29�

is O�2�. It is clear that  will be of the same order of mag-

nitude as the 	��R̂� of Sec. III. We then have

trace�R̂2� = 	
i�j

Uij
2 + 2	

i�j

UijWij + O�4� , �30�

trace�R̂3� = 	
i�j�k

UijUikUjk + O�4� , �31�

and from Eq. �10�, gathering terms of the same order in , we
may calculate

CN = CN
� �C� + CN

���C� + O�4� , �32�

where �22�

CN
� �C� �

n + 1

24 	
i�j

Uij
2, �33�

CN
���C� �

n + 1

24 	
i�j

Uij�2Vij − U2
ij� , �34�

with CN
� �C�=O�2� and CN

���C�=O�3�. As for the
correlation-based approximation �Eq. �10��, we may expect
that the spectral radius 
�C� of C will be an appropriate
indicator of the accuracy of approximation �32�.

The approximation may be expressed directly in terms of
the connectivity matrix as a decomposition into sums over
distinct indices:

CN
� �C� =

n + 1

48 	
i�j

�Cij
2 + CijCji� , �35�

CN
���C� =

n + 1

96 	
i�j�k

�3CijCjkCik + CijCjkCki�

+
n + 1

24 	
i�j

Cii�Cij
2 + CijCji� . �36�

Equations �35� and �36� have much to tell us about the rela-
tionship between dynamical complexity as measured by CN
and structural connectivity as specified by the connection
matrix C. First, they provide an insight into the scaling of
neural complexity with connectivity �cf. Sec. VII�. At a more

detailed level we may break down the equations as follows:
the sum over Cij

2 in Eq. �35� represents the overall connec-
tivity strength �excluding self-connection�. The CijCji sum-
mation represents an average over reciprocal connections.
The first two summations in Eq. �36� represent averages over
two types of directed three cycles while the following two
summations represent averages over connectivity strength
and reciprocal connections modulated by self-connection. As
for the correlation-based version �Eq. �10��, we could in prin-
ciple calculate the approximation to successively higher or-
der. The picture that emerges is that, as the coupling strength
of the system �as measured by 
�C�� is increased, succes-
sively higher-order cyclic motifs begin to exert an influence
on neural complexity. In �39� we follow this line in more
detail; there, we take Eqs. �35� and �36� as the starting point
for a more thorough exploration of the graph-theoretic im-
plications for neural complexity �cf. �10�, although there the
authors consider a discrete time process which we have ar-
gued may not be suitable for neural modeling; see also Sec.
VI below�.

VI. IMPACT OF THE COVARIANCE MATRIX
CALCULATION ERROR

If we expand the erroneous formula �13� of �1� for the
covariance matrix as a power series in C analogous to Eq.
�23�, we obtain

� = I + C⊺ + C + �C2�⊺ + C⊺C + C2 + ¯ . �37�

This yields a corresponding first-order approximation exactly
twice that of our value of CN

� �C� �the corresponding second-
order approximation will differ more markedly�. Thus, some-
what fortuitously, results based on the erroneous calculation
will be, at least to a first approximation, consonant with
those obtained under our derivation. The error might, on this
basis, be said to have had—notwithstanding its quite exten-
sive propagation through the literature �3,6,12�—a reduced
impact.

We remarked earlier that it is not clear from �1� exactly
what form of Gaussian process was intended there. If, as
their formula �14� suggests, it was the discrete time multi-
variate Gaussian AR�1� process

X�t + 1� = X�t� · C + R�t� , �38�

then a parallel analysis to that in Secs. IV and V above yields
the equation �=C⊺�C+ I �cf. Eq. �20�� for the correspond-
ing covariance matrix which leads to the series expansion

� = I + C⊺C + �C2�⊺C2 + . . . , �39�

and the approximation CN=CN
� �C�+O�	6�, where

CN
� �C� =

n + 1

24 	
i�j�k�l

CkiCkjCliClj

+
n + 1

24 	
i�j�k

�4CiiCijCkiCkj + Cki
2Ckj

2�

+
n + 1

12 	
i�j

�Cii
2Cji

2 + CiiCjjCijCji� �40�
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is O�	4� �cf. our Eqs. �35� and �36��. This is evidently a very
different measure from our continuous-time version and does
not appear to chime with the intuition of the authors of �1�.
In particular, it suggests a strong role for self-connections
�rather than reciprocal�, and does not, we think, reflect the
ideas of the authors of �1� and subsequent papers. We believe
that, in contrast, our reformulation of the Gaussian model in
continuous time remains true to the spirit of the intuitions
underpinning the measure.

VII. CONNECTIVITY NORMALIZATION, AND TIME/
ACTIVATION RESCALING

It is clear that neural complexity CN will be sensitive to
scaling of the connection matrix, which relates to the cou-
pling strength of the associated process; that is, if we con-

sider a new connection matrix C̃�wC, where w�0 is a

scalar, then the covariance matrix �̃—and hence neural
complexity—depends, in highly nonlinear fashion, on w.
This raises some awkward issues as to how we should com-
pare neural complexity across different neural systems:
should we, for instance, be prepared to label one system
more complex than another if they differ merely in the scal-
ing of the connection weights? This suggests that we might
wish to impose some parsimonious “standard” scaling of
connectivity; i.e., some form of normalization of the connec-
tivity matrix C.

Now we note that connectivity scaling cannot be arbi-
trary; as mentioned previously, we require condition �24� to
guarantee stationarity for Eq. �15�. As the infimum of all
induced matrix norms, the spectral radius 
�C� seems a rea-
sonable candidate measure of overall connectivity strength.
We shall refer to normalization of C by w /
�C�, where 0
�w�1 is a given scale parameter, as spectral normalization
�40�. Spectral normalization then guarantees stationarity and
also convergence of the covariance matrix series expansion
�Eq. �23�� from which our neural complexity approximations
derive. From previous remarks and empirical evidence �cf.
Secs. III and VIII�, we expect that under spectral normaliza-
tion the scale parameter w will furnish a good predictor of
the accuracy of our approximation. Other approaches to nor-
malization include use of a matrix norm such as the Frobe-
nius norm as a measure of overall connectivity strength �4�.

But this is not the end of the story. Ultimately, how we
choose to normalize should be motivated by physical consid-
erations. We are entitled to ask, for instance, whether spectral
normalization makes any physical sense in the context of
modeling some “real” �biological� neural system. Tononi et
al. �1� adopted a different approach. They imposed the con-
straint that the sum of the afferent synaptic weights per node
be equal to a constant value w; that is, they demand 	 jCij
=w for every node i; we refer to this as Tononi normaliza-
tion. Their �unstated� motivation may stem from evidence
suggesting that in biological neural systems weights on af-
ferent connections tend to adjust so that, for example, a neu-
ron with few incoming connections will tend to weight those
inputs more heavily than a neuron with many incoming con-
nections �41,42�. This approach, however, raises its own set
of issues: how are we to deal with inhibitory connections

�i.e., negative weights�? We note that under Tononi normal-
ization the scale factor w is always an eigenvalue of C. If all
weights are non-negative then it is also the eigenvalue with
largest modulus so that 
�C��w and stationarity is guaran-
teed. However, this may not hold true in the presence of
inhibitory connections and it is unclear how we should then
proceed.

A further subtlety is the following: any transformation of
the form

C → �C + �1 − ��I , �41�

with ��0 simply multiplies the covariance matrix by the
factor 1 /� and thus leaves CN invariant. The transformation
can be effected by rescaling time according to t→ t /� and
then rescaling activations by X→X /��. But the transforma-
tion does not leave the approximations CN

� �C� and CN
���C�

invariant; rather, they transform as

CN
� �C� → �2CN

� �C� , �42�

CN
���C� → �3CN

���C� + 2�2�1 − ��CN
� �C� . �43�

So transformation �41� is arbitrary; any ��0 will do. In
practice, if � is too large then the spectral radius of C blows
up and series �23� fails to converge. This suggests that for
any connectivity matrix C there should be some optimal
value of � for which CN

� �C� �CN
� �C�+CN

���C�� furnishes the
best approximation for CN. There is one “natural” � value:
precisely that � which yields a transformed C with zero
trace, namely,

�̂ �
1

1 − trace�C�/n
. �44�

Since trace�C�=	i�i�n, where �i are the eigenvalues of C
and �by assumption� Re����1 for all eigenvalues �43�, it

follows that �̂�0 always. We may view this detracing—i.e.,

application of Eq. �41� with �= �̂—as a normalization of the
“average decay” of process �15�. We have found in practice
that detracing appears quite generally to yield the best ap-
proximation CN

� �C� �CN
� �C�+CN

���C�� for CN. So far we have
not been able to justify this analytically.

As regards neural complexity, we shall consider time/
activation rescaling—and detracing in particular—as a
purely mathematical device. We take the view that C repre-
sents the “true” connectivity and hence that any normaliza-
tion should be performed before rather than after such res-
caling.

VIII. EXAMPLE: EXPONENTIAL
CONNECTIVITY DECAY

In �1� the authors find a complexity peak at intermediate
“covariance decay” levels for covariance matrices of Toeplitz
form �38�. Their covariance matrices are constructed in ad
hoc fashion with Gaussian off-diagonal decay rather than
from connection matrices. Here, as a case study, we echo this
construction—now explicitly for the continuous-time process
�Eq. �15��—using circulant Toeplitz connection matrices
with exponential connectivity decay.
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Consider an n�n connection matrix given �prenormaliza-
tion� by

Cij = c�i−j�, �45�

where ck=amin�k,n−k� for k=1, . . . ,n−1 with 0�a�1 as a
decay parameter. Thus �excitatory� connection strength di-
minishes with distance between nodes, which may be
thought of as arranged on a circular lattice. The constant
diagonal term c0�s may be thought of as either self-
activation or as a node activation decay parameter �cf. the
remarks at the beginning of Sec. IV�. It is set independently
of connectivity decay a and is permitted to be negative �in-
hibitory�. Previous studies �1,23� suggest that under this sce-
nario neural complexity should be expected to peak at some
intermediate value of a between zero and one: for a→0
nodes become isolated and the network maximally segre-
gated, whereas for a→1 nodes become uniformly connected
and the network thus maximally integrated.

We consider the large system limit n→�. Since C is cir-
culant, its eigenvalues �m ,m=0,1 , . . . ,n−1 may be calcu-
lated explicitly �38�. Let 
�e−2�i/n, an nth root of unity.
Then the eigenvalues, which are all real, may be calculated
as

�m = 	
k=0

n−1

ck

mk � s +

2a�cos �m − a�
1 − 2a cos �m + a2 , �46�

where �m�2�m /n. For large n we approximate �m as a con-
tinuous real parameter 0���2� and the �m as a function,

���� � s +
2a�cos � − a�

1 − 2a cos � + a2 , �47�

of �. It is straightforward to calculate that ���� takes on
extremal values at �=0,� and we have �in the large n limit�

��0� = s +
2a

1 − a
, �48�

���� = s −
2a

1 + a
. �49�

We always have ��0������, so that ��0� is the largest �real�
eigenvalue. To identify the eigenvalue with largest absolute
value—i.e., the spectral radius 
�C�—we observe that

���0�� � ������ ⇔ s � −
2a2

1 − a2 . �50�

Noting that since C is symmetric U�C and V�C2, we may
calculate from Eq. �33� �Eq. �34�� that in the large system
limit n→�, without normalization or scaling

CN
� �C� �

n�n + 1�
12

a2

1 − a2 , �51�

CN
���C� �

n�n + 1�
12

a2

1 − a2
2s + 3
a2

1 − a2 . �52�

CN
� �C� must then be multiplied by �w /��2 and CN

���C� by
�w /��3, where � is the normalization factor and w the scale

parameter. To detrace, we apply transformations �42� and

�43� with �� �̂= �1− �w /��s�−1.
First we consider the case where there is no normalization

�i.e., �=1� but we have a scale parameter w�0. Stationarity
condition �24� demands that ��0��1. This implies s�1 /w,
in which case we require 0�a� � 1

w −s� / �2+ 1
w −s�. Within

this range we see from Eqs. �42� and �43� that for fixed s in
the large system limit, for both the first and second approxi-
mations there is no complexity peak: neural complexity sim-
ply increases monotonically with increasing a. Simulation
reveals that this holds as well for finite system size and for
the full measure CN. This is unsurprising: increasing a just
boosts the overall connectivity strength.

For spectral normalization, in the large system limit the
normalization factor ��
�C� switches from ���0�� to ������
at the value of a for which the inequality �Eq. �50�� fails.
Stationarity condition �24� is automatically satisfied for all
parameter values. Figure 5 compares the first approximation
CN

� �C� under spectral normalization, as calculated from Eq.
�33�, as well as the large system limit �Eq. �51�� with the
exact value of CN calculated from Eq. �4�, with covariance
matrix calculated according to Eq. �22�. Figure 6 compares
the second approximation CN

� �C�+CN
���C� as calculated from

Eqs. �33� and �34� as well as the large system limit �Eqs. �51�
and �52�� with the exact value of CN. In both cases detracing
was applied after normalization. We see that the first ap-
proximation is reasonably accurate, the second approxima-
tion more so, and both are qualitatively similar to the full
measure CN. The large system limit approximations are gen-
erally less accurate for larger values of a. Further simulation
confirms that—as might be expected—the accuracy of all
approximations deteriorates with increasing scale factor w;
although qualitatively, the approximations continue to reflect
the full measure well.

We see that as a→1, in the large system limit CN
� �C�

tends linearly to zero with a, independently of s. If s�0, we
may calculate that as a→0, CN

� �C�→0 quadratically with a.
For s�0 we see the expected complexity peak at an inter-
mediate value of a. For s�0 complexity rises to a peak at
the “kink” a=�−s / �2−s�, where the spectral radius 
�C�
transitions discontinuously from ���0�� to ������ according to
Eq. �50�, and then falls away again.

For s=0, somewhat surprisingly, we see that there is no
intermediate complexity peak; neural complexity simply de-
creases monotonically from the finite value 1

48n�n+1�w4 at
a→0. Effectively, as s→0 from either the positive or nega-
tive side, the complexity peak shifts toward a=0. However,
as alluded to at the beginning of Sec. IV, if we take the view
that the diagonal elements of C represent node activation
decay parameters, then we could expect that in a more real-
istic scenario these will vary somewhat among nodes. In this
case, simulations indicate that any inhomogeneity in node
decay produces a similar effect to a nonzero fixed s param-
eter as in our analysis; that is, we do indeed �with normal-
ization� see a complexity peak. See, e.g., Fig. 6�a�, where for
the “s variable” plot, diagonal elements of C were drawn at
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random from a normal distribution with zero mean and small
variance.

Two major points emerge from this exercise: first, it is
clear that some form of normalization will be required to
produce the characteristic peak in complexity at intermediate
connectivity decay. Second, some form of self-activation—
or, if we prefer, some variation in the node decay
parameters—emerges as a crucial factor. Both factors are
strongly reinforced in further research by the authors �39�.
We note with interest that in the ad hoc covariance decay
model of �1�, while the issue of self-activation/node decay is
obscured, it was apparently deemed necessary to add noise to
the diagonal of the covariance matrices.

IX. DISCUSSION

The relationship between the dynamic complexity of a
neural system as measured by CN and the structural connec-
tivity of the network underlying that system might hitherto
be regarded as somewhat opaque, in the sense that it may not
be easily discerned from the actual definition of the measure.
In this study, we have developed what we consider to be a
viable analytical framework that goes some way toward elu-
cidating this relationship. Our methodology, appropriate to
weakly coupled complex neural systems for which a station-
ary Gaussian approximation represents a valid approach,
proceeds as follows: first, we derive an asymptotic series
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FIG. 5. First approximation: neural complexity under spectral normalization for a ring lattice with exponential connectivity decay, plotted
against decay a for several values of the parameter s. Symbols give the exact value CN of Eq. �4�, with covariance matrix calculated
according to Eq. �22�. Solid lines plot the first approximation CN

� �C� as calculated from Eq. �35� while dashed lines plot the large system limit
�Eq. �51��. For the approximations, detracing was applied after normalization. Parameters: n=20, w=0.2. �a� s�0 �b� s�0.
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FIG. 6. Second approximation: neural complexity under spectral normalization for a ring lattice with exponential connectivity decay,
plotted against decay a for several values of the parameter s �for the s variable plot diagonal elements of C were drawn at random from a
normal distribution with zero mean and standard deviation=0.2�. Symbols give the exact value CN of Eq. �4�, with covariance matrix
calculated according to Eq. �22�. Solid lines plot the second approximation CN

� �C�+CN
���C� as calculated from �Eqs. �35� and �36�� while

dashed lines plot the large system limit �Eqs. �51� and �52��. For the approximations, detracing was applied after normalization. Parameters:
n=20, w=0.2. �a� s�0 �b� s�0.
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expansion for CN in terms of the correlation matrix �and
hence the coupling strength� of the process. The first few
terms of the expansion are calculated explicitly �in principle
the expansion could be extended to higher-order terms�. We
then introduce, via the continuous-time stochastic process of
Sec. IV, a principled basis—in the spirit of statistical
mechanics—for a Gaussian model of neural dynamics. The
model establishes an explicit link between the structural con-
nectivity of the system as represented by the connection ma-
trix C, and its functional dynamics as represented by the
stochastic process X�t�. Reframing our approximation for CN
in terms of the connection matrix then yields insight into the
structure-complexity relationship.

The picture that emerges of this relationship foregrounds
the role of cyclic connectivity motifs which, in functional
terms, translate into recurrent dynamics. With increasing
coupling strength, higher-order cycles become successively
more significant. Thus for very weakly coupled systems, re-
ciprocal connectivity dominates complexity. As coupling
strength increases, three cycles begin to contribute signifi-
cantly, and so on. Although there is still much work to be
done; it remains challenging to impute from the approxima-
tion precisely what types of connectivity structure might give
rise to high neural complexity under given �physically moti-
vated� constraints. There are suggestions in the literature
that, for instance, high complexity may be associated with
small world network topologies �11,44–47� �but see also
�48�� or with modular hierarchical structures �46,49�. We
propose that our analytical approach may clarify these is-
sues; this line is pursued in �39� and further work in progress
where, taking the results presented here as a starting point,
the dependence of neural complexity on the graph topology
of a putative network underlying a neural system is analyzed
in detail.

Other points of interest—which emerge clearly from the
worked example of Sec. VIII—include the crucial role of
connectivity scaling/normalization, and the significance �and
indeed interpretation� of self-activation and activation decay
variance. As a spinoff from our approach, we have already
noted that the approximation to CN in terms of the correlation
matrix furnishes a practical and computationally cheap proxy
for the full measure. The approximation is applicable to
time-series data, and is not only accurate for weakly coupled
systems, but even at higher coupling strengths appears to
reflect well the qualitative behavior of CN.

Regarding the problematic covariance matrix calculation
of �1�, our view is that while results obtained under that
formulation might be viewed as suspect within the assump-
tive framework of a discrete neural process, they are none-
theless largely validated by reinterpretation within the frame-
work of an appropriate continuous-time process.

We have expressed caveats over the ambit of stationary
linear Gaussian models as deployed in this and other studies.
Much work is required—not least empirical—to identify
more precisely the limitations of the approach and, ulti-
mately, to develop viable analytical techniques for situations
where such models turn out to be inappropriate.

Finally, we are hopeful that the mathematical tools
developed in this study might have wider application to

information-theoretic complexity analyses; we are actively
pursuing several such applications in our current research.
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APPENDIX A: EXACT SIMULATION OF THE
MULTIVARIATE ORNSTEIN-UHLENBECK PROCESS

Process �15� may be simulated exactly �rather than, e.g.,
by naive iteration of Eq. �16� with a small finite time step dt�
as follows: we may calculate that, conditional on X�t�=x,
the expected value of X�t+s� is given by x exp�−�I−C�s�
while the covariance matrix M�s� satisfies the matrix differ-
ential equation

dM

ds
= I + C⊺M + MC − 2M , �A1�

with initial condition M�0�=0 �comparing with Eq. �24�, we
may check that as s→�M�s� tends toward the stationary
covariance matrix ��. For a univariate Ornstein-Uhlenbeck
process this equation may be solved explicitly �50�; in the
multivariate case it may be solved numerically. We can also
solve it explicitly in the case that C is symmetric, as

M�s� = 1
2 �I − C�−1�I − exp�− 2�I − C�s�� . �A2�

Now since we know that X�t+s� is always multivariate
Gaussian, and we know that it’s mean and covariance matrix
conditional on X�t�=x, given a past state of the process we
thus know the precise distribution of the state at an arbitrary
time s in the future. Specifically, given a previous value xt
for the state of the process, we may generate a subsequent
state xt+s as a deviate drawn from a multivariate normal dis-
tribution with mean xt exp�−�I−C�s� and covariance matrix
M�s�. This may be achieved by a Cholesky decomposition
�27� of M�s� applied to uncorrelated unit-variance Gaussian
noise �note that s need not be small�. MATLAB® code imple-
menting the simulation may be found in �22�.

APPENDIX B: AVERAGING THE TRACE
OVER SUBSYSTEMS

Let M be a symmetric n�n matrix that is zero on the
diagonal. Below, in summing over k-subsystem indices i, for
mathematical convenience we count all permutations of the
i� so that the number of indices �still distinct but now unor-
dered� is n!

�n−k�! rather than n!
k!�n−k�! . We have then

n!

�n − k�!
�trace�M2��k = 	

i
trace�M�i�2�

= 	
i1�¯�ik

	
�,�

Mi�i�
2

= 	
i1�¯�ik

	
���

Mi�i�
2
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= k�k − 1� 	
i1�¯�ik

Mi1i2
2

= k�k − 1�
�n − 2�!
�n − k�! 	i�j

Mij
2

= k�k − 1�
�n − 2�!
�n − k�!

trace�M2� ,

so that

�trace�M2��k =
k�k − 1�
n�n − 1�

trace�M2� . �B1�

Next, we have

n!

�n − k�!
�trace�M3��k = 	

i
trace�M�i�3�

= 	
i1�¯�ik

	
�,�,�

Mi�i�
Mi�i�

Mi�i�

= 	
i1�¯�ik

	
�����

Mi�i�
Mi�i�

Mi�i�

= k�k − 1��k − 2� 	
i1�¯�ik

Mi1i2
Mi2i3

Mi3i1

= k�k − 1��k − 2�
�n − 3�!
�n − k�! 	

i�j�l

MijMjlMli

= k�k − 1��k − 2�
�n − 3�!
�n − k�!

trace�M3� ,

so that

�trace�M3��k =
k�k − 1��k − 2�
n�n − 1��n − 2�

trace�M3� . �B2�
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