
Behaviour of Granger causality under filtering:
Theoretical invariance and practical application

Lionel Barnett∗, Anil K. Seth

Sackler Centre for Consciousness Science and School of Informatics,
University of Sussex, Brighton BN1 9QJ, UK

Abstract

Granger causality (G-causality) is increasingly employed as a method for identifying directed functional connectivity in
neural time series data. However, little attention has been paid to the influence of common preprocessing methods such
as filtering on G-causality inference. Filtering is often used to remove artifacts from data and/or to isolate frequency
bands of interest. Here, we show [following Geweke (1982)] that G-causality for a stationary vector autoregressive
(VAR) process is fully invariant under the application of an arbitrary invertible filter; therefore filtering cannot and
does not isolate frequency-specific G-causal inferences. We describe and illustrate a simple alternative: integration of
frequency domain (spectral) G-causality over the appropriate frequencies (“band limited G-causality”). We then show,
using an analytically solvable minimal model, that in practice G-causality inferences often do change after filtering, as a
consequence of large increases in empirical model order induced by filtering. Finally, we demonstrate a valid application
of filtering in removing a nonstationary (“line noise”) component from data. In summary, when applied carefully, filtering
can be a useful preprocessing step for removing artifacts and for furnishing or improving stationarity; however filtering
is inappropriate for isolating causal influences within specific frequency bands.
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1. Introduction

A key theme in contemporary neuroscience is to move
from localisation of function to characterisation of func-
tional networks. In particular, analysis methods aimed
at extracting directed functional (i.e., causal) connectiv-
ity from neural signals are increasingly in demand1. G-
causality analysis is widely employed to identify causal
connectivity in neural time series data. G-causality is a
statistical measure of causality based on precedence and
predictability. Put simply, if a variable A contains infor-
mation that helps predict another variable B, better than
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Abbreviations: G-causality, Granger causality; iid, identically

and independently distributed; MVGC, multivariate Granger causal-
ity; VAR, vector autoregressive; VMA, vector moving average;
VARMA, vector autoregressive moving average; FIR, finite im-
pulse response; IIR, infinite impulse response; OLS ordinary least
squares; AIC, Akaike information criterion; BIC, Bayesian informa-
tion criterion; CV, cross-validation; EEG, electroencephalography;
MEG, magnetoencephalography; fMRI, functional magnetic reso-
nance imaging; BOLD blood oxygen level dependent; HRF, hemo-
dynamic response function; DTF, directed transfer function; PDC
partially directed coherence.

1We prefer the term causal connectivity, a description of the data,
to effective connectivity, which implies a model of the underlying
mechanism; see Bressler and Seth (2010).

can be done knowing only the past of B itself, then A
is said to “G-cause” B. The concept has typically been
operationalised in the context of linear VAR models and
its uptake within neuroscience has been facilitated by the
appearance of dedicated software toolboxes implementing
the methods (Seth, 2010; Cui et al., 2008). However, the
interaction of G-causality with standard data preprocess-
ing procedures is not well understood and presents a pos-
sibly serious confound to many applications. In this pa-
per, we focus on the effects of (temporal) filtering on G-
causality. This is a crucial issue since filtering is often ap-
plied semi-automatically as a preprocessing step in many
analyses. Most applications of filtering attempt to achieve
one (or both) of two objectives: (i) removal of artifacts
such as electrical line noise and (non-neural) physiologi-
cal influences, and (ii) isolation of effects within a spe-
cific frequency band [e.g., the beta or gamma ranges in
M/EEG, (Pollonini et al., 2010; Wilson and Yan, 2010)].
Anticipating our results, we show that G-causality is the-
oretically invariant under the application of arbitrary (in-
vertible) multivariate filters, and so cannot achieve the
second objective. However, the invariance holds strictly
for stationary data—stationarity being a prerequisite for
G-causality analysis—so that filtering can be useful for
artifact removal if it is able to render a previously non-
stationary time series stationary. In practice, filtering can
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pose challenges for the effective estimation of the autore-
gressive models on which G-causality is based, hence the
need for its careful application in the context of achieving
or improving stationarity. Although our analysis is tar-
geted at “explicit” filtering imposed by an experimenter
as a data (pre)processing stage, our results may also have
implications for “implicit” filtering that may arise as a re-
sult of physiological processes intervening between neural
variables and observables, for example as manifest in the
hemodynamic BOLD signal measured using fMRI.

In his seminal 1982 paper Geweke (1982) noted, but did
not justify or explore, the invariance of G-causality under
filtering via the somewhat oblique aside “[G-causality] is
invariant with respect to scaling of X and Y ; in fact it
remains unchanged if X and Y are pre-multiplied by dif-
ferent invertible lag operators.” Perhaps because there is
no explicit reference to “filtering” this note appears to have
been overlooked as G-causality has been taken up within
neuroscience. More recently, researchers have worried that
filtering does in fact affect G-causality (Florin et al., 2010;
Seth, 2010). A recent study by Florin et al. (2010) sug-
gested that application of filtering to neural data disturbs
the information content and time ordering of the data,
leading to spurious and missed causalities (Type I and
Type II errors, respectively). Their conclusion is based on
the correct observation that filtering in general alters the
regression coefficients of VAR models of the data. They
then show using numerical simulations that filtering in-
duces Type I and Type II errors in sample2. However,
they did not make any analytical connection between the
two observations. In fact, as we argue, the errors observed
in simulation by Florin et al. derive from the difficulties in-
herent in fitting VAR models to filtered data, not from the
filtering process per se. In particular, filtering generally
induces a large increase in the empirical model order (the
number of lagged observations incorporated into a VAR),
leading to model mis-specification given limited data.

Our paper is organised as follows: in Section 2 we define
G-causality in both the time and frequency domains, for
unconditional and conditional situations, and for both uni-
variate and multivariate (block, ensemble) variables. We
also discuss estimation for finite-sample empirical data and
significance testing. Readers familiar with the mathemat-
ical basis of G-causality may wish to skip this section,
referring to it where needed for notation. In Section 3
we demonstrate analytically the invariance of G-causality
under the application of an (almost) arbitrary stable, in-
vertible, multivariate filter. The invariance is completely
general, applying to all the varieties of G-causality just
mentioned. We then consider issues arising in empirical
estimation of G-causality, suggesting several reasons why
filtering may corrupt empirical estimates despite the the-
oretical invariance. As mentioned, these turn principally
on an increase in empirical model order induced by fil-

2A similar corruption of G-causality inferences by filtering was
shown in another set of recent simulations (Seth, 2010).

tering; filtering may also induce near-nonstationarity and
other numerical instabilities. Consequently, we argue that
(i) filtering can be useful for preprocessing nonstation-
ary (or near-nonstationary) time series and (ii) estima-
tion of G-causality within specific frequency bands can
be accomplished by integrating the frequency domain G-
causality over the appropriate frequencies (“band limited
G-causality”). Section 4 introduces a minimal VAR sys-
tem for which G-causalities can be obtained analytically.
We use this model to test how empirical estimates of G-
causality are influenced by both FIR and IIR filters. We
compare estimates of model order for unfiltered and fil-
tered processes, showing a large increase in optimal (em-
pirical) model order following filtering, as well as an in-
crease in the likelihood of unstable VAR models. We then
analyse the effects of model order and filtering on statis-
tical significance testing, showing [consistent with Florin
et al. (2010); Seth (2010)] increases in both Type I and
Type II errors after filtering. We explain this result by
showing a strong association between increased error rates
and an increase in VAR model order entailed by filter-
ing. Based on these findings, we demonstrate a useful
example of filtering to remove line noise. Finally, we show
that band-limited G-causality on unfiltered data correctly
identifies frequency specific causal interactions, whereas
G-causality on filtered data does not. Our conclusions are
summarised and discussed in Section 5.

2. Multivariate G-causality (MVGC)

Consider a covariance-stationary, n variable, VAR(p)
process Ut (the “universe” of measurable variables) spec-
ified by the model3

p∑
k=0

Ak ·Ut−k = εt (1)

for −∞ < t <∞, where the n×n square matrices Ak, k =
0, 1, 2, . . . , p are the regression coefficients with A0 ≡ I, the
identity matrix, and εt are serially uncorrelated iid residu-
als (white noise) with covariance matrix Σ ≡ cov(εt). We
allow the model order p to be infinite. Introducing the lag
operator L so that LUt = Ut−1, L2 Ut = Ut−2 etc., we
can write (1) in the form

A(L) ·Ut = εt (2)

where the pth order square matrix polynomial A(z) is de-
fined to be A(z) ≡

∑p
k=0Akz

k, with A(0) = I.
Covariance-stationarity requires that A(z) exists and is

invertible for all z on the unit disk |z| ≤ 1 in the complex

3In all that follows, bold type indicates a vector quantity and
upper-case type denotes either a matrix or a random variable, de-
pending on context. Vectors are considered to be column vectors.
The symbol ᵀ indicates matrix transpose; an asterisk denotes the
conjugate transpose of a (complex) matrix, and det(·) denotes the
determinant of a (square) matrix.
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z-plane (Hamilton, 1994); a VAR model of the form (2)
is described as stable if it satisfies this condition. For the
finite order case, this requires that all roots of the charac-
teristic polynomial det

(
A(z−1)

)
lie strictly inside the unit

circle. The maximum modulus of the roots of the charac-
teristic polynomial is the spectral radius of the VAR model,
written ρ(A). Intuitively, ρ(A) determines how rapidly au-
tocorrelation of the VAR decays with increasing lag time,
and stability requires that ρ(A) < 1.

Since the VAR (2) is assumed covariance-stationary, by
the Wold decomposition theorem (Hamilton, 1994) it may
be written equivalently in VMA form as

Ut = H(L) · εt (3)

where the transfer function H(z) for the model is the ratio-
nal matrix function defined by H(z) ≡ A(z)−1. In general,
the VMA representation will be of infinite order.

2.1. Time domain

We consider firstly unconditional G-causality. Suppose
that Ut is decomposed into two jointly distributed, mul-

tivariate processes Ut =

(
Xt

Yt

)
with dim(X) = k and

dim(Y ) = l, k + l = n. We wish to ascertain the causal
effect of the variable Y on the variable X; i.e., the G-
causality FY→X .

We may decompose the autoregression (2) as(
Axx(L) Axy(L)
Ayx(L) Ayy(L)

)
·
(
Xt

Yt

)
=

(
εx,t
εy,t

)
(4)

with VMA representation(
Xt

Yt

)
=

(
Hxx(L) Hxy(L)
Hyx(L) Hyy(L)

)
·
(
εx,t
εy,t

)
(5)

and residuals covariance matrix

Σ =

(
Σxx Σxy
Σyx Σyy

)
(6)

Since the sub-process Xt is covariance-stationary, by Wold’s
theorem it will itself have an (in general infinite order)
VMA representation

Xt = H ′xx(L) · ε′x,t (7)

with transfer function H ′xx(z), serially uncorrelated resid-
uals ε′x,t and residuals covariance matrix Σ′xx ≡ cov

(
ε′x,t
)
.

We then have a corresponding VAR form

A′xx(L) ·Xt = ε′x,t (8)

with A′xx(z) ≡ H ′xx(z)−1. We refer to (8) as the restricted
regression, as opposed to the full or unrestricted regression
(4). Importantly, even if the original VAR (2) is of finite
order, the restricted VAR (8) will in general be of infinite
order.

The (unconditional) MVGC from Y to X in the time
domain (Geweke, 1982) is then defined to be4:

FY→X ≡ ln

(
det
(
cov
(
ε′x,t
))

det(cov(εx,t))

)
= ln

(
det(Σ′xx)

det(Σxx)

)
(9)

The rationale behind (9) is as follows: the magnitude of the
residuals εx,t of the full regression (4) indicates how well
both X and Y together predict the future of X, while the
magnitude of the residuals ε′x,t of the restricted regression
(8) indicates how well X predicts its own future. Thus
FY→X may be considered as a measure of the extent to
which Y helps predict the future of X over and above the
degree to which X already predicts its own future. It is
strictly in this sense that MVGC should be considered a
“causal” measure. In sample, (9) has a simple interpreta-
tion as a likelihood ratio test statistic under the null hy-
pothesis of zero causality, H0 : Axy,k = 0 for k = 1, . . . , p
(Geweke, 1982).

We have previously shown that, for Gaussian processes,
FY→X is equivalent to the transfer entropy from Y to
X (Barnett et al., 2009), a measure of the time-directed
information flow from the process Y to the process X
(Schreiber, 2000; Kaiser and Schreiber, 2002). This information-
theoretic interpretation is significant, as it implies that
G-causality may be considered an absolute quantity (mea-
sured in bits) so that comparison of causalities between
different sets of variables is valid (although validity may
be undermined by differences in statistical bias; see Sec-
tion 4.1.2).

2.2. Frequency domain

We write A(λ) for the Fourier transform of the re-
gression coefficients Ak, which is just A(z) evaluated at
z = e−iλ (it should be clear from context and notation
when we refer to the frequency-domain version). The fre-
quency domain transfer function is then H(λ) = A(λ)−1

and the (cross) spectral power density of the multivariate
process Ut is given by

S(λ) = H(λ)ΣH(λ)∗ (10)

A principled formulation of G-causality in the frequency
domain was developed originally by Geweke (1982) as fol-
lows: the power spectrum may be decomposed as:

S(λ) =

(
Sxx(λ) Sxy(λ)
Syx(λ) Syy(λ)

)
(11)

4det(cov(ε)) is known as the “generalised variance” (Barrett
et al., 2010) of the residuals ε. For a full discussion as to why
the generalised variance is to be preferred to the “total variance”
trace(cov(ε)) in the context of G-causality [cf. Ladroue et al. (2009)],
please see Barrett et al. (2010).
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Then Sxx(λ) is just the spectral density of Xt—which by
(7) is also equal to H ′(λ)Σ′H ′(λ)∗—and from (10) we have

Sxx(λ) = Hxx(λ)ΣxxHxx(λ)∗

+ 2 Re{Hxx(λ)ΣxyHxy(λ)∗}
+Hxy(λ)ΣyyHxy(λ)∗ (12)

Geweke then notes that in the case that Σxy ≡ 0, which
may always be effected by a linear transformation of vari-
ables leaving FY→X invariant (Barrett et al., 2010), (12)
takes the simpler form

Sxx(λ) = Hxx(λ)ΣxxHxx(λ)∗ +Hxy(λ)ΣyyHxy(λ)∗ (13)

whereby the power spectrum of X splits into an “intrinsic”
term and a “causal” term. The (unconditional) spectral
MVGC from Y to X is then defined as

fY→X(λ) ≡ ln

(
det(Sxx(λ))

det(Hxx(λ)ΣxxHxx(λ)∗)

)
(14)

or, in terms of untransformed variables (i.e., where Σxy 6=
0),

fY→X(λ) ≡

ln

(
det(Sxx(λ))

det
(
Sxx(λ)−Hxy(λ)Σy|xHxy(λ)∗

)) (15)

with Sxx(λ) as in (12) and the partial residuals covariance
matrix Σy|x is defined to be Σyy − ΣyxΣ−1xxΣxy. Geweke
then establishes the fundamental decomposition of MVGC
by frequency:

1

π

∫ π

0

fY→X(λ) dλ ≤ FY→X (16)

with equality when det
(
Ayy(z)− ΣyxΣ−1xxAxy(z)

)
6= 0 on

the unit disk |z| ≤ 1. We note, following Geweke (1982),
that this condition for equality is usually satisfied (in par-
ticular it is satisfied for the model we examine in Sec-
tion 4).

2.3. The conditional case

Suppose that Ut decomposes into three jointly distributed

multivariate processes Ut =

Xt

Yt
Zt

 with dim(X) = k,

dim(Y ) = l and dim(Z) = m, k + l + m = n. We now
wish to calculate the causal effect of the variable Y on the
variable X, controlling for any common effects of Z on
both X and Y ; i.e., the G-causality F Y→X |Z . Following
Geweke (1984), consider the full regressionAxx(L) Axy(L) Axz(L)

Ayx(L) Ayy(L) Ayz(L)
Azx(L) Azy(L) Azy(L)

 ·
Xt

Yt
Zt

 =

εx,t
εy,t
εz,t


(17)

and the restricted regression(
A′xx(L) A′xz(L)
A′zx(L) A′zz(L)

)
·
(
Xt

Zt

)
=

(
ε′x,t
ε′z,t

)
(18)

The conditional MVGC (Geweke, 1984) from Y to X
given Z in the time domain is then defined as:

F Y→X |Z ≡ ln

(
det
(
cov
(
ε′x,t
))

det(cov(εx,t))

)

= ln

(
det(Σ′xx)

det(Σxx)

) (19)

with similar rationale as for the unconditional case: F Y→X |Z
is to be considered as a measure of the extent to which Y
helps predict the future of X over and above the degree
to which X and Z together already predict the future of
X. (Note that the transfer entropy equivalence (Barnett
et al., 2009) carries through to this conditional case.)

The spectral conditional case is less straightforward;
Geweke notes that, defining the new variables X†

t ≡ ε′x,t,

Z†
t ≡ ε′z,t (i.e., the residuals of the restricted regression

(18)) and setting YZ† ≡
(

Yt
Z†

t

)
, we have the identity

F Y→X |Z ≡ FYZ†→X† (20)

Thus in the time domain the conditional MVGC may be
expressed as an unconditional MVGC in terms of new vari-
ables defined as the residuals of the restricted regression.
The frequency domain conditional MVGC is accordingly
defined as

f Y→X |Z(λ) ≡ fYZ†→X†(λ) (21)

and the spectral decomposition

1

π

∫ π

0

f Y→X |Z(λ) dλ ≤ F Y→X |Z (22)

again holds, with equality under a corresponding condition
to that for (16).

2.4. Application to empirical data

To apply the above formalism to empirical data, sup-
pose we are given covariance stationary multivariate time
series data, and that we may assume the underlying gener-
ative process to be reasonably modelled as a stable VAR(p)
(of unknown order) of the form (1). There are then several
strategies available for obtaining estimates of the necessary
quantities for calculation of (time or frequency domain,
unconditional or conditional) MVGCs. Most straightfor-
wardly, an appropriate empirical model order p is first de-
termined by, for example, the Akaike or Bayesian infor-
mation criterion, cross-validation, or other standard tech-
nique5 (McQuarrie and Tsai, 1998). Regression coeffi-
cients may then be estimated by one of several standard

5Strictly speaking, following our remarks in Section 2.1, model
orders should be estimated separately for the full and restricted re-
gressions; however this seems rarely implemented in practice.

4



procedures, such as OLS, solution of the Yule-Walker re-
lations or Whittle’s multivariate extension of Levinson-
Durbin recursion (Hamilton, 1994; Whittle, 1963). Once
known, residuals may be calculated directly from the data
and estimates obtained for their covariance matrices. For
frequency-domain MVGC, the transfer function may be
calculated by Fourier transforming regression coefficients,
from which spectral power densities are then easily cal-
culated according to (10). This is the approach taken
in the empirical study (Section 4) in this paper; spec-
tral MVGCs are calculated as just described, and time-
domain MVGCs by integration of the corresponding spec-
tral causalities6. Alternative approaches, not considered
here, include the “nonparametric” method proposed by
Dhamala et al. (2008a,b), in which the transfer function
and residuals covariance matrices are obtained by canon-
ical factorisation of the spectral density matrix (Wilson,
1972), which may be estimated directly from time series
data by Fourier or wavelet transform.

2.4.1. Significance testing

For the univariate predictee case [i.e., where k ≡ dim(X) =
1], since the residuals covariance matrices are simple vari-
ances, a standard F -test on the restricted and full regres-
sions under the null hypothesis H0 : F Y→X |Z = 0 (and
assumptions of normality for the residuals) yields, in both
the unconditional and conditional case

N − p(l +m+ 1)

pl

[
exp

(
F̂ Y→X |Z

)
− 1
]
∼

F (pl,N − p(l +m+ 1)) (23)

where F̂ Y→X |Z is the maximum likelihood estimator for
F Y→X |Z , N is the sample size (time series length) and
F (d1, d2) denotes the F -distribution with d1, d2 degrees
of freedom. For the unconditional case, (23) holds with
m = 0. Unfortunately, for the multivariate predictee case
k > 1, there does not appear to be an equivalent result.
Geweke (1982) states that, at least for the unconditional

case7 , N F̂Y→X approaches a χ2(pkl) distribution asymp-
totically for large sample size N , although it is not clear
what constitutes a “sufficiently large” sample for the ap-
proximation to be useful (cf. Section 4.1.2 below). For
spectral MVGC (both uni- and multivariate, unconditional
and conditional) nothing appears to be known about the
distribution of the maximum likelihood estimator. For
these reasons, non-parametric methods such as permuta-
tion testing (Anderson and Robinson, 2001) are generally
preferable in order to obtain an empirical null distribu-
tion for significance testing. In the models analysed in

6Note that this approach—at least in the unconditional case—
avoids having to fit a separate restricted regression.

7It appears that Geweke’s argument applies equally to the con-
ditional time domain statistic, again implying a χ2(pkl) asymp-

totic distribution for N F̂ Y→X |Z , although in his subsequent paper
(Geweke, 1984) introducing multivariate conditional G-causality this
is not mentioned.

Section 4, we compare all three methods (F , χ2, and per-
mutation testing).

3. Invariance of MVGC under multivariate filter-
ing

Fig. 1 provides an example of the result we will de-
rive analytically in this section. The left panel shows
frequency-domain G-causality from one variable to an-
other, before and after lowpass filtering (right panel). It
is apparent that the G-causality in the stop-band (shaded
area), although noisy due to the sample estimation pro-
cedure (cf. Section 3.1), is essentially unchanged by the
filtering process. We now explain the theoretical basis for
this possibly counterintuitive result.

Suppose given a multivariate discrete digital filter with
rational transfer functionG(z) = P (z)−1Q(z), whereQ(z) =∑r
k=0Qkz

k and P (z) =
∑s
l=0 Plz

l are n×n square matrix
polynomials8, normalized so that P (0) = I (the identity
matrix). The filter is of FIR type iff P (z) ≡ I; otherwise it
is of IIR type. We demand, furthermore, that the filter be
stable and invertible. Stability requires that det(P (z)) 6= 0
on the unit disk |z| ≤ 1; i.e., that all poles of G(z) lie out-
side the unit circle (Antoniou, 1993), while invertibility
requires that the Q(0) be invertible. Intuitively, a filter
is stable if an impulse does not “blow up”. Invertibility
guarantees that a pure lag inverse filter exists9. We note
that a FIR filter is always stable.

We indicate filter-transformed quantities by a tilde, so
that for a multivariate time series ut the filter action in
the time domain may be represented as ũt = G(L) ·ut, or

s∑
l=0

Pl · ũt−l =

r∑
k=0

Qk · ut−k (24)

In practice it is frequently the case that the same filter is
applied individually to each component of ut with no cross
terms; i.e., G(z) = diag(g(z)) for a univariate discrete dig-
ital filter with transfer function g(z) of the more familiar
form

g(z) =
q0 + q1z + . . .+ qrz

r

p0 + p1z + . . .+ pszs
(25)

If now Ut is a covariance-stationary VAR(p) process
as specified by (2) then the filtered process Ũt ≡ G(L) ·
Ut satisfies A(z)G(z)−1 · Ũt = εt. Thus it has the VAR
representation

Ã(L) · Ũt = ε̃t (26)

with coefficients polynomial

Ã(z) ≡ G(0)A(z)G(z)−1 (27)

8We take G(z) as a rational matrix function of z rather than, as
is more common in the signal processing literature, of z−1. This is
consistent with the usage of Section 2; again, in the time domain z
may be replaced by the lag operator L, and in the frequency domain
by e−iλ.

9Note that this is rather a stringent condition: for example the
simple delay FIR filter ũt = ut−1, although stable, is not invertible.
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Figure 1: Left-hand panel: frequency-domain (unconditional) G-causality from one variable to another, estimated in sample, before and after
lowpass filtering. Time series data were generated from a simulated two variable VAR(30) process. Right-hand panel: frequency response of
the 8th order least-squares linear-phase FIR filter. Shaded areas indicate the filter stop-band.

and residuals ε̃t ≡ G(0) · εt. Since the filter is assumed
invertible, G(0)−1 exists and thus Ã(0) = I as required,
while from the filter stability assumption it is clear that
the VAR model (26) will be stable, since the zeros of
det(Ã(z)) are the zeros of det(A(z)) together with the ze-
ros of det(P (z)). Importantly, even if the unfiltered VAR
(2) has finite model order, the filtered VAR (26) will in
general have infinite model order; this may be seen from
the presence of the G(z)−1 term in the expression (27) for
the filtered VAR coefficients polynomial10.

Starting with the unconditional case, given a decompo-

sition Ut =

(
Xt

Yt

)
as before, we ask how the corresponding

G-causality F Ỹ→X̃ transforms under the filter, where the
filtered decomposition is(

X̃t

Ỹt

)
=

(
Gxx(L) Gxy(L)
Gyx(L) Gyy(L)

)
·
(
Xt

Yt

)
(28)

From (28) we see that as long as Gxy(z) ≡ 0—i.e., the
filtered components of X do not depend on Y —we have

X̃t = Gxx(L) ·Xt (29)

whence from (8) the restricted filtered process has the VAR
representation

Ã′xx(L) · X̃t = ε̃′x,t (30)

with coefficients polynomial Ã′xx(z) ≡ Gxx(0)A′xx(z)Gxx(z)−1

and residuals ε̃′x,t ≡ Gxx(0) · ε′x,t. Now the filtered full re-

gression (26) has residuals covariance matrix Σ̃ = G(0)ΣG(0)ᵀ,
so that in particular Σ̃xx = Gxx(0)ΣxxGxx(0)ᵀ, while the

10The exception is an all-pole IIR filter, in which case the order of
the filtered VAR is the sum of the VAR order and the filter order;
such filters are unusual in practice and are not considered here. In
general, digital filtering preserves finite order in VARMA processes,
but not in VAR processes.

filtered restricted regression (30) has residuals covariance
matrix Σ̃′xx = Gxx(0)Σ′xxGxx(0)ᵀ. Now Gxy(z) ≡ 0 and
G(0) non-singular imply that Gxx(0) is also non-singular.
It follows immediately from (9)–the determinants det(Gxx(0))
factor out and cancel—that

F Ỹ→X̃ = FY→X (31)

so that G-causality in the time domain remains invariant11

under any stable, invertible filter G(z) with Gxy(z) ≡ 0.

In the frequency domain, H̃(λ) = G(λ)H(λ)G(0)−1, so
that S̃(λ) = G(λ)S(λ)G(λ)∗. Thus in particular, H̃xy(λ) =

Gxx(λ)Hxy(λ)Gyy(0)−1 and S̃xx(λ) = Gxx(λ)Sxx(λ)Gxx(λ)∗,
while the partial residuals covariance matrix transforms
as Σ̃y|x = Gyy(0)Σy|xGyy(0)ᵀ. Thus in (15) the determi-
nants det(Gxx(λ)) factor out and cancel and we have at
(almost12) all frequencies λ

fỸ→X̃(λ) = fY→X(λ) (32)

Thus spectral G-causality demonstrates the same invari-
ance as in the time domain.

It may be verified along similar lines that the invari-
ance extends (in both time and frequency domain) to the
conditional case, where we now require Gxy(z) = Gxz(z) =
Gzy(z) ≡ 0. This result may be considered a generalisation
of the invariance of MVGC under the group of (unlagged)
linear transformations of variables given in Barrett et al.
(2010, Sec. 4.2).

11Note that for the trace version of MVGC (Ladroue et al., 2009)
the invariance will not hold in general, since the trace of Gxx(0) does
not factor out.

12It is possible that Gxx(λ) vanishes at some frequencies, at which
the spectral G-causality becomes undefined. At worst, however, this
may only occur at a finite, discrete set of frequencies. We note that
this situation cannot arise if we impose the further restriction that
the inverse filter also be stable; in fact it appears that this restriction
is required to guarantee preservation of equality in (16).
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3.1. Non-invariance in practice

Given the theoretical invariance demonstrated above,
how can we account for the disruptions of G-causality es-
timates by filtering that have been noted in simulations
[e.g., Seth (2010); Florin et al. (2010)]? First, we empha-
sise that the invariance holds strictly for stationary pro-
cesses which may be reasonably modelled as VARs. If
the data is to begin with non-stationary, then G-causality
analysis is inappropriate13 and the resulting (in any case
spurious) results may well be altered by filtering. In fact
it can be useful to apply filtering to attain stationarity,
for example by the use of notch filtering to remove line
noise (cf. Section 4.1.3), or highpass filtering to remove
low-frequency transients. Even the common preprocessing
step of differencing may be viewed as a (stable, invertible)
FIR filter.

Assuming a stationary VAR process, there are several
interlinked reasons why filtering may corrupt G-causality
estimates in sample:

I The first and most important is the increase in model
order entailed by filtering. As noted, filtered processes
will in general have infinite model order; yet in sam-
ple a finite model order must be chosen. This means
that (i) any finite (estimated) model order approx-
imation to the filtered VAR process will inevitably
result in a poorer model fit than for the unfiltered
process, and (ii) the increase in number of model pa-
rameters will result in poorer estimates of those pa-
rameters. For short time series (where high model
order also decreases significantly the available time se-
ries length) these effects may make it virtually impos-
sible to estimate the “real” (high) filtered model or-
der parameters without overfitting. Standard model
order selection procedures, along with noisy parame-
ter estimation (Section 2.4) are thus likely to result
in substantially sub-optimal estimated models and,
consequently, poor causal estimates with an increased
likelihood of type I and type II errors in significance
testing. To aid intuition on this issue, recall that in
practice highpass, lowpass, bandpass and notch filters
are often applied for which the frequency response14 is
very close to zero in the stop band, where filtered se-
ries will consequently have power spectra very close to
zero. Further, for high-order filters (and particularly
IIR filters) there may be steep roll-off on the edges
of the stop band (e.g., elliptic filters) and/or broad,
flat spectra in the pass band (e.g., Butterworth fil-
ters). Filtering thus “distorts” the power spectrum of

13It is possible to define (and estimate) G-causalities for non-
stationary time series if multiple (synchronised) realizations of a pro-
cess are available (Ding et al., 2000). We do not address this case
here.

14For a multivariate filter with transfer function G(z), we measure
the magnitude of the frequency response (i.e., the gain) by ‖G(λ)‖,
where ‖·‖ denotes some matrix norm.

the process so that filtered data will need to be mod-
elled by a high order VAR to capture the detail in the
modified spectrum.

II A related cause of error is that, even though in theory
a stable filter acting on a stable VAR process yields
another stable VAR process, filtering may increase
the likelihood that empirical estimates of VAR pa-
rameters yield unstable or near-unstable models. The
reason is again poor parameter estimation due to in-
creased model order as discussed above. Furthermore,
Eq. (27) shows that this effect is likely to be exacer-
bated in the case of IIR filters for which the poles of
the filter transfer function lie closer to the unit circle
than the poles of the VAR transfer function, effec-
tively increasing the spectral radius for the filtered
process. Note that an unstable estimated model pre-
cludes any further causal analysis.

III A final source of error is the potential appearance of
numerical instabilities in the causal estimation pro-
cedure following filtering. In the frequency domain,
since S̃(λ) = G(λ)S(λ)G(λ)∗ we have det(S̃(λ)) =
det(G(λ))2 · det(S̃(λ)) and from (14) or (15) we see
that as the filter response approaches zero at some
frequency λ, the spectral MVGC fY→X(λ) becomes
singular. In sample these relationships will not be ex-
act, but may nevertheless result in numerical instabil-
ities when calculating causalities from empirical data,
in both the time and frequency domains. To see how
such instabilities might occur in practice, consider the
autoregressions necessary for calculation of both time
and frequency domain G-causality. For a covariance-
stationary VAR(p) as in (2) it may be shown by a
Yule-Walker, OLS or equivalent procedure that the
regression coefficients Ak can be expressed in terms
of the autocovariance sequence Γk ≡ cov(Ut,Ut−k),
k = . . . ,−2,−1, 0, 1, 2, . . . of the process Ut as(

A1 A2 . . . Ap
)

= −
(
Γ1 Γ2 . . . Γp

)
×

Γ0 Γ1 . . . Γp−1
Γ−1 Γ0 . . . Γp−2
...

...
. . .

...
Γ−(p−1) Γ−(p−2) . . . Γ0


−1

(33)

For empirical data, computation of (33), with the
Γk replaced by their sample estimates, is implicit in
any standard15 solution of the regression (1). The
power spectrum of a covariance-stationary process Ut

is (by definition) the Fourier transform of the auto-
covariance sequence: S(λ) ≡

∑∞
k=−∞ Γk e

−iλk. Sup-
pose that Ut has been pre-filtered such that at some
frequency λ, we have S(λ) ≈ 0. Then we see that

15An exception is the nonparametric approach of Dhamala et al.
(2008a,b) mentioned in Section 2.4. It is not clear how accuracy and
numerical stability of this technique compare with more conventional
regression-based methods, particularly for short time series.
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near-colinearities arise among the Γk with the conse-
quence that the matrix inversion in (33) may become
ill-conditioned, and estimation of both time and fre-
quency domain G-causalities unreliable. One might
consider alleviating such instabilities by adding (min-
imal) white noise; however, simulations (not reported)
indicate that even very low level added noise in con-
junction with severe filtering introduces artefacts which
skew causal estimation.

Looking ahead, our simulation results (Section 4) show
that degraded parameter estimation due to increased model
order is the principal cause of poor G-causality estimation
in sample. We expect this effect to be very general across
all applications of filtering to stationary VAR processes.
This effect also accounts for the observed increase in the
incidence of unstable estimated models (Fig. 5). We note
that for the IIR filter used, the poles lie further from the
unit circle than the poles of the VAR transfer function
(Fig. 4), so that there is no (theoretical) increase in spec-
tral radius. Nor was there evidence of numerical instability
in our simulations, due most likely to the low order VAR
and comparatively low order of the filters used; it is not
difficult, though, to construct examples where this effect
is evident.

3.2. Band-limited MVGC

As mentioned, a common application of filtering is to
restrict analysis to frequency ranges of prior interest. Our
analysis indicates that this strategy is inappropriate for
G-causality. We now suggest an alternative method for
analysing G-causality in specific frequency bands, in both
time and frequency domains. In the frequency domain the
solution is trivial: we simply disregard values of fY→X(λ)
or f Y→X |Z(λ) at frequencies λ outside the desired range.
In the time domain, suppose that B ⊂ [0, π], the fre-
quency band of prior interest, is a (not necessarily con-
nected) measurable subset of the full (normalised) fre-
quency range; that is, we wish to suppress causal con-
tributions at frequencies lying outside B. The spectral
decomposition relations (16) and (22) may be viewed as
averaging spectral causality over the full range frequency
range λ ∈ [0, π]. Therefore causal contributions within the
desired pass band B are given simply by the average (un-
filtered) spectral causality over B. Accordingly, we define

FX→Y (B) ≡ 1

µ(B)

∫
B

fY→X(λ) dλ (34)

FX→Y |Z(B) ≡ 1

µ(B)

∫
B

f Y→X |Z(λ) dλ (35)

where µ(B) ≡
∫
B dλ is the measure (length) of B. We term

FX→Y (B), [resp. FX→Y |Z(B)] the unconditional [resp.
conditional] band-limited multivariate G-causality over the
frequency band(s) specified by B. As with spectral G-
causality, there is no known empirical null distribution for

FX→Y (B) or FX→Y |Z(B), so for significance testing non-
parametric methods such as permutation testing should be
employed (cf. Section 2.4.1).

4. A minimal example

In this section, we introduce a simple VAR model for
which G-causalities can be analytically derived16. We use
this model to explore the empirical issues described above.
Consider the two-variable VAR(1) model

Xt = aXt−1 + cYt−1 + εx,t (36)

Yt = bYt−1 + εy,t (37)

with uncorrelated, unit variance residuals. It is stable iff
|a| < 1 and |b| < 1. This is the simplest system with
non-trivial G-causalities; we therefore refer to it as the
“minimal VAR(1)”.

In the previous notation we have Σ = I, and A1 =

−
(
a c
0 b

)
, so that

A(z) =

(
1− az −cz

0 1− bz

)
(38)

and

H(z) =
1

(1− az)(1− bz)

(
1− bz cz

0 1− az

)
(39)

By (10), since Σ = I, we have

S(z) = H(z)H(z)∗ =

1

|1− az|2|1− bz|2

(
|1− bz|2 + c2|z|2 cz(1− az̄)

cz̄(1− az) |1− az|2
)

(40)

and setting z = e−iλ, from (14) we may derive

fY→X(λ) = ln

(
1 +

c2

1− 2b cosλ+ b2

)
(41)

We see that fY→X(λ) doesn’t depend on the autoregres-
sive coefficient a of Xt and is monotonic decreasing (resp.
increasing) according as b > 0 (resp. b < 0). From (16) (it
may be verified that the condition for equality is trivially
satisfied) the time domain MVGC is given by17

FY→X =
1

π

∫ π

0

ln

(
1 +

c2

1− 2b cosλ+ b2

)
dλ (42)

= ln

1 + b2 + c2 +

√
(1 + b2 + c2)

2 − 4b2

2


(43)

16As far as we are aware, this analysis is the first G-causality ex-
ample in the literature to be solved in full analytically.

17The definite integral may be evaluated from its partial derivative
with respect to c, which is integrable over λ ∈ [0, π] by elementary
methods; FY→X may then be calculated simply as an indefinite
integral over c, with the initial condition that FY→X = 0 at c = 0.
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Figure 2: Lowpass filter frequency response: the FIR (solid line)
filter is an order 8 linear-phase least-squares, the IIR filter (dashed
line) an order 4 Butterworth, both applied in forward and reverse
directions for zero-phase filtering. Cutoff (normalised) frequency for
both filters is at π/2 radians.

4.1. Experiments

Two types of (stable, invertible) digital filters were
tested: a FIR linear-phase least-squares filter of order 8,
and an IIR Butterworth filter of order 4 (Antoniou, 1993).
Both filters were lowpass, with cutoff at normalised18 fre-
quency λ = π/2 radians. For consistency with standard
practice, data was filtered in both the forward and reverse
directions for zero-phase filtering19; note that this has the
effect of squaring the transfer function, thus doubling the
filter order. All filters were stable and invertible, with sta-
ble inverse filters (cf. our remarks in Section 3). Fig. 2
shows the frequency response in dB for both filter types.
Note that neither filter is all-pole (cf. Section 3) so the
filtered VAR will thus always be of infinite order.

We performed several experiments using the minimal
VAR(1) specified by (36), (37) to investigate the effects
of filtering. In all experiments the system was simulated
with parameters a = 0.3, b = −0.8 and c = csig ≈ 0.2104
calculated from (43) so that FY→X = 0.1 for a “signifi-
cant causality” model. For a “null model” (no causality) c
was set to zero so that FY→X = 0. The theoretical spec-
tral G-causality (41) for the significant causality model is
plotted along with components of the power spectrum of
the process in Fig. 3. We see that fY→X(λ) peaks as the
frequency approaches π radians, so that the lowpass filter

18Frequencies are normalised throughout, so that π radians cor-
responds to the Nyqvist frequency f /2 where f is the sampling fre-
quency in Hz.

19Experiments (not included) suggest that zero-phase filtering in
fact has minimal qualitative impact on results.
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Figure 3: Spectral G-causality fY→X(λ) of (41) (left axis) and power
spectra S(λ) calculated from (40) (right axis, logscale) of the minimal
VAR(1) with a = 0.3, b = −0.8 and c = csig ≈ 0.2104, plotted
against normalised frequency λ.

(Fig. 2) suppresses power in a broad band where spectral
causality is highest.

To illustrate clearly finite-sample effects, comparatively
short stationary time series of length N = 29 = 512 were
generated20. In all experiments regression coefficients were
calculated by a standard OLS procedure, via QR decom-
position of the stacked, lagged series. It is during this stage
of computation that numerical instabilities as discussed in
Section 3.1 under point III, might arise. As noted, this
did not occur during any of our experiments. Frequency-
domain causalities were then calculated according to (15)
at a frequency resolution of 210 = 1024 over the normalised
frequency range λ ∈ [0, π]. Finally, time-domain causal-
ities were calculated by numerical quadrature of spectral
causality according to (16) (cf. Section 2.4). Again we note
that for the IIR filter, since all poles lie further from the
unit circle than the poles 1/a, 1/b of the transfer function
(39) (Fig. 4), the potential confounding effect of increased
spectral radius does not arise here (cf. Section 3.1).

4.1.1. Model order estimation and stability of estimated
VAR for sample filtered process

We first examine model order estimation for the un-
filtered and filtered time series. This involves calculating
sample estimates Â1, . . . , Âp of the regression coefficient
matrices for a range of model orders p. Optimal model
orders are then computed by various methods which bal-
ance model complexity against model fit (see below). Be-
fore this, it is first important to test whether estimated

20Powers of two were used to maximise efficiency of the FFT (Fast
Fourier Transform) algorithm used in spectral calculations.

9



-6

-4

-2

 0

 2

 4

 6

-4 -2  0  2  4

Im

Re

Figure 4: Poles of the minimal VAR transfer function (crosses) and
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z-plane along with the unit circle.

coefficients will in general define stable VARs as model
order increases. As noted, we can rule out unstable VAR
estimates arising from the location of the filter poles. How-
ever, as model order increases, more parameters need to
be estimated given the same data, which will eventually
lead to unstable VAR estimates, for both unfiltered and
filtered time series.

To test this, we ran 1000 trial simulations of length
N = 29 of the minimal VAR(1), for model orders ranging
from 1−120. The trials were repeated with and without fil-
tering, both for the significant c = csig and null c = 0 sys-
tems. Regression coefficients for each trial were estimated
as described above, and stability assessed via calculation
of the spectral radius ρ(Ã) of the model (Section 2). Re-
sults for c = 0 (there was little difference for c = csig)
are displayed in Fig. 5. The percentage of unstable VAR
estimates increase sharply from order p = 60, reaching
close to 100% by p = 120. As anticipated, instability rates
are higher for filtered data given the increased difficulty of
fitting VAR models following filtering (Section 3.1).

Three techniques were tested to assess an appropri-
ate order for a VAR(p) model of the filtered (and unfil-
tered) data: the Akaike and Bayesian error criteria (AIC,
BIC) and a cross-validation (CV) procedure (McQuarrie
and Tsai, 1998). All are based on the maximised value of
the log-likelihood function which, for an estimated VAR(p)
model of the form (1), is given (up to a constant depend-
ing only on the sample size N , which remains fixed in our
experiment) by

L ≡ −N
2

ln det(Σ̂) (44)

where Σ̂ is the sample estimate of the residuals covariance
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Figure 5: Percentage of unstable VAR estimates plotted against
model order for filtered and unfiltered series of length 29, for the
minimal VAR(1) with c = 0.

matrix. Then

AIC = −2L+
N(N + d)

N − d− 2
(45)

BIC = −2L+ d lnN (46)

where d ≡ pn2 is the number of parameters in the model.
Optimal model orders are specified by the AIC/BIC reach-
ing a minimum. We used a version (45) of the AIC which
incorporates a second-order small sample correction as pro-
posed by Hurvich and Tsai (1989), without which the AIC
frequently failed to attain a minimum. For the cross-
validation, VAR coefficients were estimated for training
(in-sample) data and residuals calculated for independently
simulated validation (out-of-sample) data of the same num-
ber of time steps. The CV model order estimation crite-
rion was then to maximise the log-likelihood calculated
from the out-of-sample residuals21. Note that for real-
world data without the benefit of a known generative pro-
cess, CV estimates may be derived by standard techniques
involving partitioning of the data into training and valida-
tion subsets.

For 1000 realisations of both the filtered and unfiltered
minimal VAR(1) the various estimation criteria were cal-
culated for model orders ranging from p = 1 to 120; un-
stable VAR estimates were discarded, as were cases where
the criterion failed to achieve a minimum before the upper
limit p = 120. Results for c = 0 (again, there was little dif-
ference for c = csig), showing the mean estimated optimal
model order and 95% confidence intervals are displayed
in Fig. 6. As expected, all estimation methods agreed on

21Minimising the mean squared out-of-sample residuals gave vir-
tually identical results.
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filtered time series of length 29, for the minimal VAR(1) with c = 0
and various model order selection criteria. Error bars indicate 95%
confidence intervals.

model order p ≈ 1 for unfiltered data. For filtered data
there is substantial disagreement between selection crite-
ria; AIC and BIC tend to select model orders roughly half
that of CV (interestingly, AIC and BIC are in agreement
for the IIR but not the FIR filter). The cross-validation
estimates are arguably the most reliable in principle (al-
though in practice they require more data), yielding opti-
mal mean values of p ≈ 44 for the FIR filter and p ≈ 80
for the IIR filter. Although the precise choice of model or-
der does not affect our qualitative conclusions (see below),
these values are clearly very much in excess of the actual
unfiltered model order p = 1.

4.1.2. Statistical bias and significance testing

We next examined how filtering affected bias and sig-
nificance testing of the G-causality test statistic. We per-
formed another 1000 minimal VAR(1) simulations of length
N = 29, filtered and unfiltered, for both the null and sig-
nificant causality models, over a range of model orders.
Again, unstable VAR estimates were discarded. Empir-
ical distributions of F̂Y→X were calculated by Kaplan-
Meier estimation (Kaplan and Meier, 1958), along with
the F and asymptotic χ2 null distributions. Results are
displayed in Fig. 7.

We note firstly that, since the G-causality statistic
FY→X is positive, the corresponding finite-sample statis-
tic F̂Y→X will suffer from systematic positive bias; thus,
even for the null model, for which FY→X = 0, the sample
statistic will generally be > 0. The bias is seen clearly in
Fig. 7; it increases strongly with model order, but is not
substantially affected by filtering. One implication of this
is that comparison of estimates from limited-sample data

may be highly misleading, since the bias may vary between
estimates (cf. Section 2.1). Note, however, that bias does
not in itself affect hypothesis testing (Section 2.4.1 and be-
low) since it will be reflected in the null distributions, both
theoretical and empirically derived. For this reason, here
we do not attempt to debias the G-causality test statistic
[see e.g., Geweke (1984, Sec. 4) and Efron (1982)].

We now examine the effects of model order and filter-
ing on statistical significance testing. First, for our small
sample size it is not clear how accurately the asymptotic
χ2 or the F distribution of Section 2.4.1 will approximate
the distribution of F̂Y→X under the null hypothesis of
zero causality (recall that the latter test is not available
for a multivariate predictee variable). For the null model
(Fig. 7, left column), sampled causalities above the criti-
cal lines indicate Type I errors (false positives) at 5% sig-
nificance according to the corresponding null distribution
(F , χ2, or empirical22), while for the significant causality
model (right column), causalities below the critical lines
indicate Type II errors (false negatives). The figure shows
that the χ2 null distribution substantially underestimates
the critical value of F̂Y→X at 5% significance, while the F -
distribution slightly overestimates it. These discrepancies
increase strongly with model order, rather than with fil-
tering per se; i.e., filtering impacts on significance testing
via the increase in (estimated) model order, as indicated
by the thick horizontal lines on the x-axes of Fig. 7: for
the χ2 distribution filtering effectively results in a sharp
increase in Type I errors, while for the F -distribution, the
picture is reversed, with a sharp increase in Type II errors
(see also Fig. 8).

To gauge the effects of filtering on significance test-
ing under a more realistic scenario where a null model
is not known in advance, we also performed permutation
tests. For both the significant and null VAR(1) models, for
each of the 1000 trial sequences, 500 random permutation
sequences were generated from the trial sequence by the
method of Freedman and Lane (Anderson and Robinson,
2001); these were used to simulate an empirical null distri-
bution which was then employed to test for significance at
p-value 0.05. Fig. 8 shows Type I (left column) and Type
II (right column) errors generated by permutation, χ2 and
F distributions, for unfiltered data, and for filtered data
using both FIR and IIR filters. The top row shows results
using optimal model orders; middle and bottom rows use
model orders of 16 and 4 respectively (see below). Consid-
ering first the top row (optimal model orders): For Type
I errors, without filtering all null distributions give the
expected error rate of ≈ 0.05. Consistent with Fig. 7, af-
ter filtering Type I error rates are generally higher both
for the permutation-test empirical distribution and, espe-
cially, for the χ2 distribution. The effect is stronger for

22Because the empirical null distribution is calculated from the
known null model, the Type I error probability at p-value = α will
always be exactly α by design. Thus in the left column the empirical
null distribution critical lines coincide with the upper 95% confidence
limit.
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Figure 7: Sample G-causality distributions F̂Y→X plotted against model order for filtered and unfiltered data, for the null model (left column)

and significant causality model (right column). Shaded areas denote 95% confidence ranges for the F̂Y→X distribution. Bold solid lines

indicate critical values for F̂Y→X at a 5% significance level (i.e., p-value = 0.05) under the null hypothesis FY→X = 0, calculated from the

empirical null distribution; i.e., the sample distribution of F̂Y→X for the null model. Normal solid and dashed lines denote critical values
at 5% significance for the theoretical F - and asymptotic χ2 null distributions respectively. The thick horizontal bars on the x-axis indicate
95% confidence intervals for the estimated optimum model order. For the significant causality model the horizontal line indicates the actual
causality FY→X = 0.1.
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Figure 8: Significance testing: probabilities of Type I errors (false positives, left) and Type II errors (false negatives, right) at 5% significance
level for the different filter types, estimated from the permutation-test empirical (“p-t emp.”), and F - and χ2 null distributions. Error bars
indicate standard errors. Top row: model orders are estimated optimal values: 1 for unfiltered, 44 for FIR and 80 for IIR filters (cf. Fig. 6).
Middle row: model orders all set to 16. Bottom row: model orders all set to 4.
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the IIR filter, reflecting the higher model order. For Type
II errors, without filtering errors are negligible under all
null distributions. After filtering, Type II error rates are
increased, for the permutation-test empirical distribution
and, especially, for the F -distribution. Again, the effect is
stronger for the IIR filter. In summary, results indicate an
increase in both Type I and Type II errors under filtering,
mostly attributable to an increase in estimated model or-
der. In addition they support concerns (cf. Section 2.4.1)
on the use of the theoretical null distributions for short
time series.

In many applications, researchers may use model or-
ders based on prior knowledge of the data generating pro-
cess (the underlying mechanism) rather than on formal
model order selection criteria such as AIC, BIC, etc., es-
pecially if the latter are specifying excessively high model
orders or not reaching a minimum. The middle and bot-
tom rows show results from repeating the above experi-
ments using fixed model orders of 16 (reflecting an “in-
formed guess”) and 4 (reflecting a drastic underestima-
tion) respectively. For model order 16, for unfiltered data,
Type I error rates are slightly higher as compared to the
corresponding optimal model order results; Type II error
rates remain negligible. For the filtered data, results show
a complex pattern. Type I error rates are similar (as com-
pared to optimal model order) for both the permutation
test and F -distributions following FIR filtering, and are
slightly higher under IIR filtering. For the χ2 distribution,
Type I errors are actually lower when using a model order
16 as compared to optimal, for both FIR and IIR filter-
ing. Type II error rates are negligible under FIR filtering
for all distributions (lower than the optimal model order),
and are high and roughly equal under IIR filtering (corre-
sponding to lower error for F , higher for χ2, and similar
for permutation distributions, as compared to the optimal
model order). Summarising, an informed guess (underes-
timate) of model order performs well and in fact shows
greater invariance with respect to the selected null distri-
bution (F , χ2, or permutation); these properties may re-
flect a tradeoff between “poor estimation of a good model”
(at the estimated optimal model order), against “good es-
timation of a poor model” (at the arbitrarily chosen lower
model order).

Results using model order of 4 (Fig. 8, bottom row),
reflect a more drastic underestimation of model order; such
low model orders are however often employed in practical
applications in neuroscience (Bressler and Seth, 2010; Ding
et al., 2006). For the filtered data, both Type I and Type
II errors rates are now substantially higher, reflecting a
poor model for the (known to be high order) filtered VAR.
Interestingly, there is now very little difference between
results obtained using the various null distributions.

4.1.3. Eliminating line noise by notch filtering

As mentioned, G-causality is (theoretically) invariant
to filtering only for stationary processes, leaving open the
possibility that filtering may be useful for achieving sta-
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Figure 9: Notch filter frequency response: the FIR (solid line) filter
is an order 64 linear-phase least-squares, the IIR filter (dashed line)
an order 4 Butterworth, applied in forward and reverse directions.
Both have a notch of width 0.2 radians centred at π/4 radians.

tionarity, and/or for reducing model order of a nearly non-
stationary process. To illustrate this usage, we examine
notch filtering of time series data contaminated by fixed-
frequency harmonic components (e.g., 50/60 Hz electrical
line noise). We simulated line noise by adding a fixed sinu-
soidal signal of amplitude 1 and normalised frequency π/4
radians to both the X and Y component time series gen-
erated from the minimal VAR(1). Data was then filtered
(in both forward and reverse directions) by two types of
digital notch filters: a FIR linear-phase least-squares filter
of order 64 (a high order was needed in order to allevi-
ate ripple in the passband and curtail power sufficiently
in the stopband), and an IIR Butterworth filter of or-
der 4, both with a notch of width 0.02 radians (Fig. 9).
Although strictly speaking the process with an added si-
nusoid is non-stationary, in finite sample it may be approx-
imated and modelled as a VAR(p). As in Section 4.1.1 we
estimated model order using AIC, BIC and CV in 1000
trials of filtered and unfiltered time series of length 29. Se-
lected model orders (for the null model c = 0) are shown
in Fig 10. As expected, addition of line noise increases the
model order considerably (although again with substantial
disagreement among the selection criteria). Notch filters
(both FIR and IIR) effectively reduce the model order to
close to the value 1 of the original noiseless process.

Fig. 11 plots sampled causalities against model order
(cf. Fig 7), and Fig. 12 plots Type I and Type II error rates,
for contaminated and filtered data (cf. Fig 8). For unfil-
tered (i.e., contaminated) data, both the theoretical F -
and, more markedly, the asymptotic χ2 null distribution
greatly underestimate the critical 5% significance level. In
contrast to the filtered data in Fig 7, this effect is stronger
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Figure 11: Sample G-causality distributions F̂Y→X plotted against model order for filtered and unfiltered data with line noise, for the null
model (left column) and significant causality model (right column). See caption to Fig 7 for details.
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notch-filtered time series of length 29, for the minimal VAR(1) with
simulated line noise. Error bars indicate 95% confidence intervals.

at lower model orders. The result is a very high Type I
error rate (and a negligible Type II error rate). Notch fil-
tering reduces the Type I error rate to roughly the 5% level
expected for an uncontaminated signal, without increasing
the Type II error rate.

4.1.4. Filter invariance and band-limited G-causality

In a final experiment, we test our proposal (Section 3.2)
that an appropriate way to identify causal interactions in a
specific frequency band is to use band-limited G-causality,
i.e., in the frequency domain to simply ignore causal esti-
mates outside the range of interest, and in the time domain
to integrate over the specified range. We simulated an en-
semble of 10000 minimal VAR(1) process with significant
causality c = csig and other parameters as before (see in-
troduction to Section 4.1), but with N = 212 time points
to decrease statistical bias and improve accuracy of causal
estimates. Simulations were run unfiltered and with the
FIR and IIR lowpass filters as previously described (Sec-
tion 4.1). Model orders were 1 for unfiltered, 44 for FIR
filtered and 80 for IIR filtered data (selected as in Sec-
tion 4.1.2). Spectral G-causalities were calculated with a
frequency resolution of 1024 as before, and plotted (with
95% confidence intervals) against normalised frequency,
along with the analytically calculated spectral G-causality
of (41). We note that statistical significance testing re-
quires permutation testing in the absence of a known null
distribution for the sample estimate of band-limited G-
causality (Section 2.4.1).

Results are displayed in Fig. 13. Consistent with our
analysis and with Figure 1 (Section 3), it is clear that
for the (FIR and IIR) filtered data spectral G-causality is
not suppressed in the filter stop band λ ∈ [π/2, π]. Note
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Figure 12: Significance testing with line noise: probabilities of Type
I errors (false positives) at 5% significance level for the different filter
types, estimated from the permutation-test empirical (“p-t emp.”),
F - and χ2 null distributions. Error bars indicate standard errors.
Type II errors (false negatives) were insignificant in all conditions
and are not shown. Model orders were the estimated optimal values:
16 for unfiltered, 2 for FIR and IIR filters.

that the “ripple” on the spectral causalities for filtered
data is an artefact of the in-sample finite order used to
model the effectively infinite-order filtered VAR process23

[cf. Section 3, in particular (26)].
Time-domain G-causalities including, for unfiltered data,

band-limited causality over the pass band B = [0, π/2] cal-
culated according to (34) by numerical quadrature, are dis-
played (with 95% confidence intervals) in Fig. 14. Invariance
under filtering is clear within the bounds of finite-sample
estimation; filtered G-causalities are close to the unfiltered
G-causality value of 0.1, even though the filters strongly
suppress spectral power in the filter stop band [π/2, π]
where spectral G-causality is much higher than in the pass
band. The band-limited (unfiltered) G-causality, on the
other hand, reflects correctly the much lower G-causality
in the pass band. Again, accuracy of estimation—and, by
implication, significance testing—is compromised by fil-
tering. Note that the ripples evident in the spectral G-
causality results (Fig. 13) do not affect the invariance in
the time domain.

23The ripple makes filter invariance in the spectral domain less
clear; in theory, at high model order (which would necessitate long
time series for reliable estimation) ripples would be expected to be-
come smaller (and higher frequency) and the invariance would be
more apparent. The increased variance of the two lower plots in-
dicates that filtering also reduces the accuracy of spectral causal
estimation and thus increases the risk of mis-identification of causal-
ities.
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ple of 10000 minimal VAR(1) processes, along with analytically cal-
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5. Discussion

In this paper we have shown analytically, and corrobo-
rated experimentally in simulation, that G-causality is in-
variant under very general digital filtering. In practice, fil-
tering cannot and does not suppress G-causal interactions
in filter stop-bands; however certain filtering operations
(e.g., notch filtering) can be useful for achieving stationar-
ity or for reducing the model order of near-non-stationary
processes, facilitating better VAR model fitting and hence
more accurate G-causality estimation. If the objective
is to restrict G-causality inferences to specific frequency
ranges, we have shown that band-limited G-causality is
both theoretically valid and practicable. In the frequency
domain, band-limited G-causality simply amounts to ig-
noring causal estimates outside the range of interest; in
the time domain, it involves integrating over the range of
interest.

5.1. Summary of findings and comparison with previous
studies

The theoretical finding that G-causality is invariant
under general filtering was alluded to almost thirty years
ago (Geweke, 1982) but seems to have gone unnoticed in
the subsequent literature, at least in neuroscience (Florin
et al., 2010; Seth, 2010). Building on Geweke’s early in-
sight, we have shown here that the invariance arises from
a generalisation of a fundamental property of G-causality,
namely its invariance under the group of (unlagged) linear
transformations of variables (Barrett et al., 2010). Con-
sequently, the invariance is completely general, applying
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to all invertible multivariate digital filters and to time-
domain, frequency-domain, and multivariate [generalised
variance form (Barrett et al., 2010)] varieties of G-causality.
Given this generality, how then to account for simulation
results showing corruption of G-causal estimates follow-
ing filtering (Florin et al., 2010; Seth, 2010)? We have
shown that a primary cause is the large increase in empir-
ical model induced by filtering; high model orders become
necessary in order to properly fit the modified aspects of
the power spectrum (low power in stop band, steep roll-
off, etc.). Indeed, in theory (almost) any filtered VAR pro-
cess becomes infinite order. In sample, high model orders
can enable adequate model fitting but at the cost of esti-
mating large numbers of parameters given the same data,
which in turn leads to inflated Type I and Type II error
rates. This explanation differs from that offered by Florin
et al. (2010), who suggested that the errors are adequately
accounted for by alteration of the VAR regression coeffi-
cients following filtering. Our analysis has shown that, on
the theoretical level, G-causality is unaffected despite this
alteration. We also identified two further potential causes
of error post-filtering, (i) estimation of unstable or near-
unstable models due to increased spectral radius and (ii)
numerical instabilities in G-causality estimation, caused
by near-vanishing spectral power. Our simulations were
designed to avoid these latter two causes; however it is
easy to construct examples in which they arise.

Using a minimal exactly solvable model, we investi-
gated the effects of filtering on small-sample data with
respect to statistical bias and null-hypothesis significance
testing. Bias, while strong for small samples and high
model orders, does not appear to be much affected by fil-
tering. By contrast, significance testing, as reflected in
Type I and Type II error rates, can be substantially af-
fected by filtering. The inflation of error rates is apparent
under the χ2 and F distributions, as well as under permu-
tation sampling. Interestingly, the precise pattern of errors
depends on the distribution used. For sample sizes of the
order 29 (512) generated by our minimal VAR(1) model,
the theoretical asymptotic χ2 distribution of the sample
estimator for the G-causality statistic (under the null hy-
pothesis of zero causality) is a poor approximation at the
higher model orders implied by filtering, leading in partic-
ular to increased Type I error rates. The (non-asymptotic)
F -distribution, while closer to the actual null distribution,
also becomes less exact at higher model order leading, by
contrast, to increased Type II error rates. These results
imply that it is generally safer to estimate a null distribu-
tion for significance testing by a non-parametric technique
such as permutation sampling. Even so, following filter-
ing, error rates under permutation testing remain severely
inflated due to the higher model orders required.

Using model orders that are substantially lower than
those implied by filtering (and in our example closer to the
“true” model order) had the effect of reducing the differ-
ences among the various methods of significance testing,
probably reflecting a trade-off between poor estimation of

a good model (high model order) and good estimation of a
poor model (low model order). Error rates remain inflated
in all cases, indicating that the effects of filtering on VAR
modelling cannot be avoided simply by a priori knowledge
of the underlying process.

The theoretical invariance of G-causality under filter-
ing holds strictly for stationary processes which may be
reasonably modelled as VARs, leaving open the possibility
that filtering could remain useful in rendering a nonsta-
tionary sequence stationary, for example by notch filtering
of (nonstationary) artifactual components such as electri-
cal line noise, or the removal of low frequency transients
by high-pass filtering; both effects might be detectable by
a preliminary spectral analysis. Confirming this, we used
our minimal model to show that notch filtering of data
contaminated by line noise can indeed recover a station-
ary VAR amenable to G-causality analysis. On the other
hand, we have stressed that filtering is entirely unsuit-
able for identifying causal interactions within specific fre-
quency bands. Our final set of simulations shows that
band-limited G-causality provides an effective alternative
for estimation of time-domain G-causality within specific
frequency bands.

It is worth emphasising that our simulation results were
obtained using a model for which G-causality could be
computed analytically. This approach allowed us to vali-
date and explore the implications of our theoretical results
with greater precision and confidence than would be possi-
ble by analysis of real data or numerical simulation alone.
Moreover, to our knowledge, no analytical derivation of
G-causality from a generative model has previously been
described in the literature. Our model therefore provides
a unique platform for further methodological studies, es-
pecially on the effects of data preprocessing methods on
G-causality analyses.

5.2. Related measures

In this paper we have considered only linear VAR mod-
els and G-causality measures. It might be thought that
nonlinear measures (Marinazzo et al., 2010; Gourévitch
et al., 2006) may offer greater robustness to filtering: since
the detrimental effects of filtering follow from the large
increase in empirical (linear) model order, it is plausible
that nonlinear G-causality methods could lessen these ef-
fects by fitting the filter-induced power spectra distortions
with fewer parameters than equivalent linear VAR mod-
els. Although we have not tested this possibility, note
that the question of model fitting in sample is distinct
from the question of whether linear and nonlinear mea-
sures are equivalent in theory. It is worth emphasising
that for Gaussian processes the theoretical invariance of
G-causality under filtering obtains for both linear and non-
linear versions. Indeed, we have previously shown that for
Gaussian processes, G-causality and transfer entropy are
equivalent, and that, furthermore, a Gaussian VAR pro-
cess is necessarily linear (Barnett et al., 2009). The impli-
cation is that—at least where a Gaussian approximation
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is reasonable—nonlinear G-causality measures have no ad-
vantage over linear measures.

The directed transfer function (DTF) (Kaminski et al.,
2001) and partially directed coherence (PDC) (Baccalá
and Sameshima, 2001) are spectral causal measures re-
lated to G-causality. Preliminary investigations indicate
that these measures will also be invariant, albeit under a
narrower class of filtering; specifically when the component
variables are independently filtered—i.e., when the filter
transfer function is of the formG(z) = diag(g1(z), . . . , gn(z))
[cf. eq. (25)]—and the individual filters have been nor-
malised so that the gi(0) are all equal.

5.3. G-causality, filtering, and hemodynamic convolution

Although we have focused on filtering applied as an
explicit (pre)processing step, it may be that physiologi-
cal processes intervening between target neural variables
and observables can impose “implicit” filtering. For ex-
ample, a long-standing debate in functional connectivity
analysis has been whether G-causality is appropriate for
fMRI BOLD signals, given their slow dynamics relative
to the underlying neural signals, the within-subject and
between-subject variability in peak latency of the hemo-
dynamic response function, and the severe downsampling
imposed by scanner repetition times (David et al., 2008;
Bressler and Seth, 2010; Roebroeck et al., 2009; Valdes-
Sosa et al., 2011). A common suspicion is that the varia-
tion in hemodynamic latency in particular presents a fa-
tal confound to G-causality analysis, since hemodynamic
“delays” are often longer than underlying neural delays.
According to this suspicion, if hemodynamic latencies op-
pose neural latencies, G-causality will fail to detect the
“true” causality (determined by the neural delays) because
it will be determined instead by the confounding hemody-
namic latencies. Some simulation studies support this sus-
picion (Smith et al., 2011), while others show a surprising
resilience of G-causality analysis under varying hemody-
namics (Deshpande et al., 2010; Schippers et al., 2011).
However, the hemodynamic response is often modelled as
a convolution rather than as an explicit buffering or delay
of a neural signal (Friston et al., 2000; Zumer et al., 2010),
suggesting that G-causality of fMRI BOLD signals may
enjoy invariance with respect to the underlying neural sig-
nals, insofar as the HRF convolution represents a stable,
invertible filter. While stability is likely to hold (since, as
remarked in Section 3, FIR filters are always stable) it is
less clear whether the invertibility condition will be met.
In particular, if the onset of the hemodynamic response is
a pure delay then, considered as a filter, it will not be in-
vertible (cf. Section 3). Nonetheless, this suggests a useful
avenue for future work.

5.4. Summary

In summary, our results suggest that for G-causality
analysis of data one should filter as little as possible, and
only insofar as is necessary to render nonstationary data

stationary. Figure 15 provides a suggested pipeline for G-
causality analysis, as implied by our results. Note that this
flowchart has heuristic value only; it is not guaranteed to
furnish valid results for all data, and for any given data set
other analysis pipelines may be equally or more appropri-
ate. Nonetheless, we hope it will provide a practically use-
ful framework for researchers interested in inferring causal
interactions from their data.
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