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Abstract

Granger causality is a method for identifying directed functional connec-
tivity based on time series analysis of precedence and predictability. The
method has been applied widely in neuroscience, however its application to
functional MRI data has been particularly controversial, largely because of
the suspicion that Granger causal inferences might be easily confounded by
inter-regional differences in the hemodynamic response function. Here, we
show both theoretically and in a range of simulations, that Granger causal
inferences are in fact robust to a wide variety of changes in hemodynamic
response properties, including notably their time-to-peak. However, when
these changes are accompanied by severe downsampling, and/or excessive
measurement noise, as is typical for current fMRI data, incorrect inferences
can still be drawn. Our results have important implications for the ongoing
debate about lag-based analyses of functional connectivity. Our methods,
which include detailed spiking neuronal models coupled to biophysically re-
alistic hemodynamic observation models, provide an important ‘analysis-
agnostic’ platform for evaluating functional and effective connectivity meth-
ods.

Keywords: Granger causality, functional connectivity, functional MRI,
hemodynamic response function, computational modelling

1. Introduction

Granger causality (GC) is a widely used method for identifying directed
functional (‘causal’) connectivity in neural time series data, a key chal-
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lenge for contemporary neuroscience (Bressler and Seth, 2011; Valdes-Sosa
et al., 2011; Bressler and Menon, 2010). Introduced conceptually by Wiener
(1956), and operationalized using linear autoregressive modelling of stochas-
tic processes by Granger (1969) and Geweke (1982), GC is based on pre-
dictability and precedence in time-series data. The core concept is that a
variable X is said to ‘Granger-cause’ a variable Y if the past of X contains
information useful for predicting the future of Y, over and above that in-
formation already available in the past of Y (as well as other conditioning
variables Z). (Throughout this paper we follow the notational conventions
that bold symbols denote vector (multivariate) quantities and upper-case
symbols denote either random variables or matrices, according to context.)

Over the last 20 years, GC has emerged as a popular method for an-
alyzing neural time series obtained from many modalities including mag-
neto/encephalography (M/EEG) (Barrett et al., 2012; Cohen and van Gaal,
2012; Gow et al., 2008; Kaminski et al., 2001), functional magnetic reso-
nance imaging (fMRI) (Hwang et al., 2010; Bressler et al., 2008; Wen et al.,
2012; Roebroeck et al., 2011b, 2005; Goebel et al., 2003), invasively ob-
tained local-field potentials (LFPs) (Brovelli et al., 2004; Gaillard et al.,
2009), and spike train data (Cadotte et al., 2008). In this paper, we focus
on the application of GC to fMRI data (GC-fMRI), which is at once the
most popular and the most controversial application domain (David et al.,
2008; Roebroeck et al., 2011a; Friston, 2009). Although highly promising,
GC-fMRI faces a number of challenges which have not yet been adequately
addressed. Prominent among these are (i) the fact that the fMRI BOLD
signal (as captured by the ‘hemodynamic response function’, HRF) is an
indirect, sluggish, variable (inter-regionally and inter-subjectively) and in-
completely understood reflection of the underlying neural activity (Logo-
thetis et al., 2001; Handwerker et al., 2012; Magri et al., 2012), and (ii) the
constraint that fMRI protocols involve severe downsampling with sample in-
tervals (repetition times, TRs) typically ranging from 1-3 sec, substantially
longer than typical inter-neuron delays. The challenge for GC-fMRI is that
these factors may disturb information about precedence and predictability
upon which GC analysis depends. In particular, inter-regional variation in
the HRF would seem to present a potentially fatal confound to GC analysis:
if X is causally driving Y at the neural level, but if the BOLD response to X
peaks later than the BOLD response to Y, the suspicion is that GC analysis
would falsely infer that Y is driving X (David et al., 2008). Unfortunately,
inter-regional variation in HRFs are known to exist as a result of vasculature
differences, baseline cerebral bloodflow, pulse or respiration differences, and
other factors (Aguirre et al., 1998; Handwerker et al., 2004; Chang et al.,
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2008; Handwerker et al., 2012).
Here, we examine these issues using a combination of theoretical anal-

ysis and simulation modelling. Contrary to prevailing views (David et al.,
2008; Friston, 2009; Smith et al., 2011), and extending previous simulation
work showing limited robustness to HRF variation (Deshpande et al., 2010;
Schippers et al., 2011), we show that GC-fMRI is analytically invariant to
convolution of a neural signal by an HRF, even when HRF latencies appar-
ently confound the direction of the underlying neural signal. Our results are
based on considering hemodynamic responses as low-pass filters applied to
neural signals, and we take advantage of previous work in which we show
analytically that GC is invariant under a broad class of filtering operations
(Barnett and Seth, 2011). We examine the empirical implications of this
theoretical result using both simple vector autoregressive (VAR) models and
biophysically detailed models of spiking neuron populations to generate sim-
ulated neural activity. To generate simulated BOLD signals we utilize both
simple convolutions implementing a low-pass filter (difference-of-gamma ap-
proximation (Friston, 2006)) as well as the biophysically detailed extended
Balloon-Windkessel (BW) model implementing both neurovascular coupling
and blood-flow to BOLD mapping (Buxton et al., 1998; Friston et al., 2000;
Friston, 2006). In each case we demonstrate the invariance of GC analysis to
hemodynamic convolutions under a wide range of simulated hemodynamic
responses including those which confound the underlying neural influence.
We further show that, despite these invariance properties, GC-fMRI can
still lead to missed and spurious causalities as a result of downsampling and
measurement noise (these effects cannot be considered as invertible filters;
see Sections 3.4 and 3.5). Effects of hemodynamic filtering on inference of
statistical significance of GC values are also discussed.

Taken together, our results mandate refocusing the debate surrounding
lag-based functional connectivity methods in fMRI to mitigation of noise and
downsampling, as a complementary goal to deconvolution of hemodynamic
responses (Roebroeck et al., 2011a). Furthermore, our ‘full’ model incorpo-
rating both spiking neurons and the BW hemodynamic model provides a
uniquely detailed generative model for testing and comparing connectivity
analysis methods in neuroimaging, and by doing so avoids potential circu-
larities induced by using the same model class (e.g., a linear autoregressive
model, or the neural model utilized by dynamic causal modelling (DCM,
(Friston et al., 2003))) for both generating and analysing simulated data.
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2. Materials and Methods

We first describe the generative models for simulated neural activity,
both using a simple VAR model and a more detailed spiking neuron plat-
form. We then describe the generation of simulated BOLD signals from the
simulated neural activity, again using both simple (difference-of-gamma)
and more detailed (Balloon-Windkessel, BW) approaches. There follows a
summary of GC and its practical application in the context of these models.
Additional methodological details are given in Appendices A and B.

2.1. VAR generative model of neural responses

We first tested GC-fMRI on data from a simple VAR generative model.
The model is defined by (Baccalá and Sameshima, 2001):

x1(t) = 0.95
√

2x1(t− l)− 0.9025x1(t− 2l) + w1(t)

x2(t) = 0.5x1(t− 2l) + w2(t)

x3(t) = −0.4x1(t− 3l) + w3(t)

x4(t) = −0.5x1(t− 2l) + 0.25
√

2x4(t− l) + 0.25
√

2x5(t− l) + w4(t)

x5(t) = −0.25
√

2x4(t− l) + 0.25
√

2x5(t− l) + w5(t) (1)

and its connectivity structure is shown in Figure 1A; l determines the neural
delay relative to the model update rate. This network provides a nontrivial
test for GC analysis, since it includes both reciprocal connectivity (between
nodes 4 and 5) and distinctions between direct and indirect connections
(e.g., node 5 is directly driven by node 4 only but is also indirectly related
to activity in nodes 2 and 3 via a common influence from node 1). Gen-
erating dynamics, we assume a timestep of 1 ms and generate 200 sec of
data, of which we discard the first 50 sec prior to analysis to amply allow
for any numerical ‘burn-in’ effects. We set l = 20 leading to neural delays
in the range [20, 60] ms, which represents a plausible neurobiological spread
(Schmolesky et al., 1998; Smith et al., 2011; Schippers et al., 2011). To
generate simulated BOLD signals the VAR model output is convolved with
five HRF kernels generated using the difference-of-gamma approach used
within SPM81 (see Figure 1B and below). Note that HRF times-to-peak
are deliberately confounded with the underlying neural delays. In particu-
lar, node 1 (in blue) drives nodes 2, 3, and 4 at the neural level, however its
HRF peaks 2-5 sec after the HRFs of its targets, a difference considerably

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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longer than the corresponding neural delays and representing a confound
worse than might be expected in neurotypical HRF variance (Handwerker
et al., 2004). BOLD signals are also generated by implementing the biome-
chanically detailed BW model (see below). Figure 1D shows examples of the
resulting time-series data that are then submitted for GC analysis. All data
were subjected to downsampling, either at high frequency (250Hz) or at low
frequency (0.5 Hz, representing a TR of 2 sec in fMRI). All combinations of
downsampling (light, 250Hz and heavy, 0.5Hz) and BOLD generation (none,
difference-of-gamma, and BW) were tested, giving rise to a matrix of sim-
ulated observables including LFP/EEG, a typical fMRI signal (BOLD0.5),
as well as fast-sampled BOLD signal (BOLD250). The various data types
generated are summarized in Table 1.

light (250 Hz) heavy (0.5 Hz)

none EEG/LFP DOWN
conv BOLD250 BOLD0.5

BW BOLD250 BOLD0.5

Table 1: Combinations of downsampling (columns) and hemodynamic model (rows). Light
downsampling of VAR model output (250 Hz) simulates either EEG/LFP data or a fast-
sampled BOLD signal (such as in near-infrared spectroscopy). Heavy downsampling (0.5
Hz) simulates typical fMRI signals (TR = 2 sec) or very sparsely sampled LFP/EEG data
(DOWN). conv and BW represent different hemodynamic models (difference-of-gamma,
BW model respectively).

2.2. Spiking neuronal model

Selected simulations employed a biophysically detailed model of neural
activity based on interconnected populations of spiking neurons. Full details
of this model are presented in Appendix A; here we give an outline. The
model consists of two clusters (X,Y) of spiking neurons (Izhikevich, 2003a)
with 6144 neurons in each cluster, and incorporating a total of about 19 mil-
lion synapses. Synapses are modelled with explicit NMDA, AMPA, GABAa,
and GABAb conductances and short-term synaptic plasticity (Dayan and
Abbott, 2005). Inputs to cluster X originate only from cluster X, whereas
inputs to cluster Y originated from both clusters, specifying a simple func-
tional architecture (X → Y) as shown in Figure 2A.

On each instantiation of the model, axonal conductance delays are drawn
randomly from the uniform distributions of [1,10] ms for intra-cluster con-
nections and [40,50] ms for inter-cluster connections. Background noise and
synaptic weights are implemented within physiological ranges. Simulated
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Figure 1: A. The connectivity of the simple VAR generative model; internode ‘neural’
delays are set to 20 ms and the VAR model updates at 1 ms. B. HRF kernels, modelled
as the difference between two gamma functions (arbitrary units). The slope is varied
in order to achieve HRF shapes that differ in particular with respect to their time-to-
peak. Note that time-to-peaks are confounded with the underlying neural delays. C.
Frequency-power response of HRF convolutions considered as FIR filters. Inset: detail of
frequency range 0−10Hz, highlighting steep low frequency roll-off (the ‘smearing’ is due to
floating-point inaccuracy). D. Time-series generated by the model. The EEG/LFP time-
series is obtained by downsampling the VAR model output to 250Hz. The BOLD250(conv)
timeseries are generated by convolving the VAR output with the corresponding HRF kernel
while the BOLD250(BW) timeseries are generated from the VAR output by the Balloon-
Windkessel model; both are again downsampled to 250Hz. The BOLD0.5 time-series apply
the same convolution/BW models, but now downsampled to 0.5 Hz, corresponding to a
TR of 2 sec. For comparison, the DOWN timeseries downsample the VAR model output
to 0.5 Hz but without a BOLD model. Outputs from all 5 nodes are superimposed.

local field potentials (LFPs) for each cluster are obtained at each time-step
as the summed AMPA conductances across all neurons within each cluster
(Ching et al., 2010). Simulated BOLD responses are obtained by feeding the
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LFP signal into either the BW model or the difference-of-gamma approx-
imation (see below). Figure 2B shows example neuronal and LFP output
from the model for a period of 2 sec.

Note that the clusters in this model represent local neuronal populations
and are not intended to explicitly model fMRI units of analysis such as
voxels or regions-of-interest. Note also that the motivation for this model
is to examine a biophysically detailed generative model of the BOLD signal
for which a minimal two-cluster network suffices (as compared to the VAR
model described above).

1  2

Ex Inh

Ex Inh

X

Y

A B

LFP

Inh

Ex

0 sec

Figure 2: Spiking neuron model. A. Network architecture comprising two clusters of
excitatory (Ex) and inhibitory (Inh) neurons. B. Sample output (2 sec) showing simulated
LFP signals (top; X in blue, Y in red), and neural responses of Inh (middle) and Ex
(bottom) neurons in cluster X. Neural responses are shown as both raster plots of spike
timings and representative single-unit membrane potentials.

2.3. Modelling of hemodynamic responses

The BOLD signal arises from a complex interplay among blood volume,
blood flow, and increases in oxygen consumption related to neural activity
(Roebroeck et al., 2011b; Logothetis, 2008; Buxton, 2012; Buxton et al.,
1998). This interplay is reflected by the HRF. A first and simple approach to
generating simulated BOLD signals involves a widely used ‘canonical’ HRF
model based on the difference between two gamma functions (Figure 1B).
This phenomenological model captures BOLD dynamics very effectively and
is easily parameterizable to yield differences in time-to-peak. Here, we use
the default parameter settings in SPM8 (which specify a total kernel length
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of 32 sec) and we modulate the parameter governing the slope of the initial
gamma function to generate differences in time-to-peak (Figure 1B).

A second approach involves the biomechanically detailed Balloon-Windkessel
(BW) model (Buxton et al., 1998; Friston et al., 2000) which in its extended
form (Friston et al., 2000) includes a neurovascular component, linking neu-
ral activity to blood flow (rCBF) and a biomechanical hemodynamic com-
ponent, linking rCBF to the observable BOLD signal. The extended BW
model is more biophysically interpretable than the double-gamma approxi-
mation but involves a much larger parameter space. Following Friston et al.
(2000) we implemented the extended BW model using the default settings
provided within SPM8 (Friston (2006); see Table 2). In those simulations
involving trial-by-trial jitter of BW model parameters we used standard de-
viations (also shown in Table 2) again drawn from the prior distributions
specified within SPM8 (resting oxygen extraction and resting volume were
not jittered). We emphasize that these time-series were generated by di-
rectly feeding the simulated neural activity (VAR or spiking model) into the
BW model, and not by generating a convolution kernel.

parameter description default jitter

κ signal decay 0.65 0.0296
γ autoregulation 0.41 0.0108
τ transit time 0.98 0.3084
α outflow exponent 0.32 0.0004
E0 resting oxygen extraction 0.40
V0 resting volume 0.01

Table 2: SPM8 default BW model parameters and standard deviations of jitter.

The extended BW model requires a neural signal as input. For the VAR
model this is trivially the VAR model output, which we take to reflect LFP.
For the spiking model several neural signals are available (e.g., LFP, multi-
unit spiking activity). For simplicity and ease of comparison we chose to
use the full simulated LFP (see Section 2.2). Accumulating evidence sug-
gests that BOLD responses are more tightly coupled to synaptic activity
than to spiking activity (Logothetis, 2008), though both may be predictive
of BOLD activity in some cases (Rosa et al., 2011). Biophysical mecha-
nisms have been suggested linking presynaptic activity to both LFP signals
(via glutamate-induced fluctuations of postsynaptic membrane potentials)
and BOLD responses (via triggering extracellular release of vasodilatory
agents) (Logothetis, 2008; Rosa et al., 2011; Bonvento et al., 2002). While
several studies have associated the BOLD signal preferentially with spe-
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cific LFP frequencies (notably gamma-band power fluctuations (Logothetis
et al., 2001; Murayama et al., 2010; Niessing et al., 2005)), many different
LFP frequency bands appear to contribute to BOLD responses in complexly
interacting ways (Magri et al., 2012; Scheeringa et al., 2011), and the global
LFP response remains a strong predictor of BOLD activity (Magri et al.,
2012).

2.4. Granger causality (GC)

Here we describe basic properties of GC relevant for the present study:
further details are given in Appendix B. Consider two jointly distributed,
possibly multivariate, covariance-stationary stochastic processes Xt,Yt(i.e.,
“variables”), with vector autoregressive (VAR) models for X:

Xt = A1Xt−1 + . . .+ApXt−p +B1Yt−1 + . . .+BpYt−p+εt (2)

Xt = A′1Xt−1 + . . .+A′pXt−p +ε′t (3)

where εt, ε
′
t are serially uncorrelated iid residuals (white noise), Ak, Bk, A

′
k

the VAR coefficients matrices and p the VAR model order. The GC from
Y to X is then given by:

FY→X ≡ ln

(
det(Σ′)

det(Σ)

)
(4)

where Σ,Σ′ are estimators for the residuals covariance matrices cov(εt) , cov(ε′t)
respectively. The generalised variances det(Σ) ,det(Σ′) quantify the mag-
nitude of the prediction errors of (2) and (3) respectively (Barrett et al.,
2010). The quantity FY→X may be read as the degree to which the past
of Y improves prediction of X over and above the degree to which X is
already predicted by its own past. Given a third (possibly multivariate)
process Zt jointly distributed with Xt,Yt, any common causal influence of
Z on X and Y may be conditioned out by appending p lags of Zt to both
regressions (2) and (3). The resulting conditional GC (Geweke, 1984) is
written F Y→X |Z. A natural spectral decomposition of GC in the frequency
domain is also available (Geweke, 1982, 1984), allowing causal effects to be
isolated at distinct frequencies or frequency bands (Barnett and Seth, 2011,
Section 3.2).

In practice, given empirical time series data, the model order p may be
determined by standard techniques such as the Akaike or Bayesian infor-
mation criteria, or cross-validation (McQuarrie and Tsai, 1998; Edgington,
1995).
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2.4.1. Statistical inference

FY→X asymptotically follows a χ2 distribution, furnishing a simple sig-
nificance test (see Appendix B). However, for this study we note an im-
portant caveat: results presented in Section 3.2 indicate that slow, moving-
average (HRF-like) filters may render significance tests unreliable while GC
magnitude estimates remained accurate. Importantly, GC magnitudes have
meaningful information-theoretic interpretations, regardless of statistical in-
ference: under Gaussian assumptions, GC is entirely equivalent to trans-
fer entropy, an information-theoretic measure of directed (time-asymmetric)
information flow between joint processes (Barnett et al., 2009; Schreiber,
2000; Kaiser and Schreiber, 2002), and may thus be considered an absolute
informational quantity to be measured in bits. This interpretation justi-
fies foregoing formal significance testing in (most of) our simulations and
instead comparing GC magnitudes with the correct (i.e., a priori known)
causal structure in the data. Practical heuristics for statistical inference are
discussed further in Section 4.

2.4.2. Covariance stationarity and model validation

Wide-sense stationarity (i.e., that the mean and autocovariance of the
data are constant over time) is a prerequisite for VAR modelling underly-
ing the present GC analysis. Standard tests for stationarity, such as the
Augmented Dickey-Fuller (ADF) test, Phillips-Perron test or the KPSS test
(Hamilton, 1994) may be used to test a unit-root null hypothesis with drift
or deterministic trending. Here we used the ADF and KPSS tests in all sim-
ulations; all time-series satisfactorily passed these checks at significance level
α = 0.01. We also performed a further unit-root check using the spectral
radius of the (full) VAR model, which reflects how quickly autocorrelation
decays in an VAR model, and which must be < 1 for a stationary system
(see Appendix B). The spectral radius was calculated for all simulations; in
a handful of cases a value of ≥ 1 was obtained due to statistical fluctuations;
such simulations were discarded.

Model fit and consistency (i.e., how well the VAR models fit the data)
was checked in three ways: first, a Durbin-Watson residuals whiteness test
Durbin and Watson (1950) was performed on all data. Second, the adjusted
R2 statistic was calculated to test for the amount of variance accounted
for by the (full) VAR model. Finally, the consistency statistic of Ding et al.
(2000) was calculated to check for the proportion of the correlation structure
accounted for by the VAR model. Results were satisfactory for all time-
series.
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2.4.3. Practical implementation

GC analysis was implemented using the ‘Multivariate Granger causal-
ity’ (MVGC) Matlab c© toolbox2. The MVGC toolbox implements pairwise-
conditional GC calculation as follows: after stationarity checks, model order
is estimated (using the Bayesian Information Criterion, individually for each
multivariate time series.) Coefficients for the full regression (2) are estimated
in sample via the stable and computationally efficient LWR variant of Morf
et al. (1978), along with the resulting residuals covariance matrix. Model
validation procedures are performed as described above. The autocovari-
ance sequence for the model is then extracted from the VAR parameters
to a suitable number of lags to achieve near-machine precision (see Ap-
pendix B.2). Parameters for the reduced regressions (3) are computed from
the autocovariance sequence via Whittles’s spectral factorisation algorithm
(Whittle, 1963). Note that this procedure avoids explicit sample estimation
of VAR parameters for the reduced models, thus eliminating a further po-
tential source of sampling error. Finally GCs are calculated from the full
and reduced residuals covariance matrices as the appropriate log ratio of
generalised variances (4).

3. Results

3.1. GC-fMRI using a simple vector autoregressive model

Figure 3 shows the results of fully conditional GC analysis (averaged
over 100 instantiations) generated using the simple 5-node VAR model (Fig-
ure 1A) and the difference-of-gamma HRF approximation. In these results,
and in all subsequent simulation results, model orders p were estimated
independently for each instantiation (see Table 3). The middle columns
[BOLD250 (conf.) and BOLD0.5 (conf.) panels] were generated with the
HRF kernels confounding the underlying neural delay, as shown in Fig-
ure 1B. As expected, GC analysis of the simulated EEG/LFP accurately
reveals the underlying structure. Strikingly, GC analysis of the BOLD250

data (i.e., following convolution with confounding HRFs) also perfectly re-
captures the underlying connectivity. This result overturns the view (David
et al., 2008; Friston, 2009) that GC analysis will necessarily be corrupted if
hemodynamic latencies confound the underlying neural delays. However, fol-
lowing severe downsampling on top of hemodynamic convolution (BOLD0.5),

2The MVGC toolbox is currently under development. It is intended to supercede the
Granger causal connectivity analysis’ (GCCA) toolbox (Seth, 2010).
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GC analysis fails to recover the underlying structure. (Indeed, to some ex-
tent we see a reversal of causal structure, see Section 4.) Regarding model
orders (shown in Table 3); as expected (see Section 3.2 below), convolution
with an HRF increases the model order (by about threefold from the ‘true’
model order of 15), while heavy downsampling reduces the model order to
nearly 1.
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Figure 3: Conditional GC analysis of data generated from the simple VAR model (150
sec simulation time). Each panel shows the mean GC, over 100 separate simulation runs,
between each pair of nodes. EEG/LFP: VAR model output downsampled to 250 Hz.
DOWN: VAR output downsampled to 0.5 Hz. BOLD250 (conf.): VAR output convolved
with confounding HRFs (Figure 1B) and downsampled to 250 Hz. BOLD0.5 (conf.): VAR
output convolved with confounding HRFs and downsampled to 0.5 Hz. BOLD250 (jitter):
VAR output convolved with jittered HRFs and downsampled to 250 Hz. BOLD0.5 (jitter):
VAR output convolved with jittered HRFs and downsampled to 0.5 Hz.

We repeated an additional 100 simulations of the VAR model but, on
each simulation, drawing the HRF parameters for each node from a random
distribution incurring about 20% variation around equal prior values (see
Section 2.3). The right-hand column BOLD250 (jitter) and BOLD0.5 (jit-
ter) in Figure 3 shows that (conditional) GC inferences remain robust given
simulation-by-simulation jitter of HRF shapes. In the context of this model
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mean std

EEG/LFP 15.00 0.00
BOLD250 (conf.) 48.60 1.22
BOLD250 (jitter) 41.47 2.87
DOWN 1.00 0.00
BOLD0.5 (conf.) 3.30 0.50
BOLD0.5 (jitter) 2.10 0.30

Table 3: Empirical model orders (p) estimated over 100 instantiations of each data type,
corresponding to the VAR-type simulations described in Figure 3. Means and standard
deviations are given.

this jitter could reflect either variance across individuals or variance within
individuals across trials. Model orders are again shown in Table 3 and are
consistent with those reported in the previous (non-jittered) analysis. Note
that Figure 3 (and subsequent GC plots) report average GC magnitudes
without explicit statistical significance testing. The reason for this is that
hemodynamic filtering can cause standard significance tests to perform un-
reliably, while GC magnitudes nonetheless retain meaningful interpretation
in terms of information flow ((Barnett et al., 2009); see Section 2 and Section
3.2 below).

3.1.1. Simple VAR model with BW hemodynamics

Figure 4 shows conditional GC analysis of data generated by the BW
model. The BW model takes as input the VAR model output which we
assume to represent a broadband LFP signal. Results are averaged over
100 separate simulations. For each simulation BW parameters are jittered
randomly (and independently for each variable) around priors drawn from
the DCM component of SPM8 (see Section 2). As in Figure 3, GC analysis of
the simulated BOLD250 response accurately recovers the underlying causal
structure whereas heavily downsampled data (DOWN and BOLD0.5) fail to
detect any causal structure. This result shows that the empirical invariance
of GC-fMRI to hemodynamic convolution is not dependent on using a filter-
based approximation but generalizes to a biophysically detailed neuronal-
to-BOLD mapping.

3.2. Invariance of GC to HRF convolution: Analytical results

To examine the theoretical basis for the invariance properties illustrated
above, we next analyse the impact of hemodynamic convolution from the
perspective of recent results establishing the invariance properties of GC
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Figure 4: Conditional GC analysis of data generated from the simple VAR model. Details
are as for Figure 3 except here the BOLD time-series are generated from the VAR output
by the BW HRF model, rather than the HRF double-gamma approximation.

under stable invertible filtering (Barnett and Seth, 2011). (As a reminder,
in this paper we follow the notational conventions that bold symbols de-
note vector (multivariate) quantities and upper-case symbols denote either
random variables or matrices, according to context.)

3.2.1. Filter invariance of GC

Barnett and Seth (2011) showed that GC is invariant under a broad class
of stable, invertible multivariate digital filters. We briefly review the relevant
results. A multivariate digital filter is specified by a rational transfer func-
tion G(z) = P (z)−1Q(z), where Q(z) =

∑r
k=0Qkz

k and P (z) =
∑s

l=0 Plz
l

are n × n square matrix holomorphic functions (r, s may be infinite), nor-
malized so that P (0) = I; z is a complex scalar variable. We indicate
filter-transformed quantities by a tilde, so that for a multivariate time series
ut the filter action may be represented as:

s∑
l=0

Pl · ũt−l =

r∑
k=0

Qk · ut−k (5)
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The filter is of FIR (finite impulse response) type iff P (z) ≡ I; otherwise it is
of IIR (infinite impulse response) type. The filter is stable if det(P (z)) 6= 0
on the unit disk |z| ≤ 1 (i.e., all poles of G(z) lie outside the unit circle
(Antoniou, 1993)), and invertible if the matrix Q(0) is invertible. Intuitively,
a filter is stable if an impulse does not “blow up” (a FIR filter is always
stable). Invertibility guarantees that an inverse filter exists; this precludes,
for example, a pure delay such as ũt = ut−1 which, though stable, is not
invertible.

Given covariance-stationary processes Xt,Yt as before, the filtered pro-
cess X̃t may also be modelled as a full VAR regressed on its own past and
that of Ỹ as in (2), and as a reduced VAR regressed just on its own past as in
(3). Importantly, the model order for the filter-transformed regressions will
generally be higher (in theory infinite) than that of the original regressions.
We remark that there is an argument that filtering might be better stud-
ied in the context of VARMA (vector autoregressive moving-average) than
VAR modelling since, as alluded to in Barnett and Seth (2011), finite-order
VARMA—but not VAR—models are preserved under finite-order digital fil-
tering. The class of finite-order VARMA models is in addition closed under
subsampling (Bergstrom, 1984; Solo, 2007) as well under the application
of certain types of additive noise (Solo, 2007). In this study, however, we
confine our attention to VAR processes since VAR modelling is by far the
commonest operationalisation of GC analysis in neuroscience, and because
of the substantial practical difficulties of GC analysis for VARMA models.
For example, for VARMA models, the null (non-causality) condition is non-
linear as opposed to the linear condition [Appendix B, eq. B.1] for VAR
models, and there are awkward computational issues regarding system iden-
tification and maximum-likelihood parameter estimation (Lütkepohl, 2005).
In Barnett and Seth (2011) we show, under the stability and invertibility
assumptions on G(z), and provided that the cross-filter term Gxy(z) ≡ 0,
that the VAR coefficients and residuals covariances transform in such a way
that GC is left invariant: FỸ→X̃ = FY→X. If a conditioning variable Zt

is included, the conditional GC F Y→X |Z is similarly shown to be invariant
[in this case the requisite condition is Gxy(z) = Gxz(z) = Gzy(z) ≡ 0]. We
note that invertibility is a sufficient but not a necessary condition for in-
variance; see the minimal worked example below. An important caveat is
that, despite theoretical invariance, filtering may still impact adversely on
statistical inference of GC, due mostly to the increase in empirical model
order; in particular, increased incidences of Type I errors (false positives)
are to be expected. We discuss this issue in more detail below.
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3.2.2. GC Filter invariance and HRF convolutions

We now examine GC filter-invariance with regard to the HRF convolu-
tions. Firstly, note that a convolution may be considered as a FIR (and
hence stable) filter. Although different HRF convolutions may apply to
different neural variables, there are no cross-terms so that—provided they
are invertible filters—the theoretical invariance applies. Secondly, although
Barnett and Seth (2011) address the effects of filtering on accuracy of es-
timation and statistical inference, the filters analysed empirically there are
(a) the same for each variable and (b) of a rather different type to the HRF
filters considered here. In particular, Barnett and Seth (2011) examine stan-
dard high/lowpass and notch filters as might be applied in a standard signal
processing context (Antoniou, 1993); the double-gamma HRF convolutions,
on the other hand, are more akin to slow, moving-average filters.

Here we demonstrate the effects of HRF-like filtering through analysis
of the minimal two-variable stationary VAR

Xt = cYt−` + εt

Yt = + ηt
(6)

where εt, ηt are uncorrelated white noise terms, so that the residuals covari-
ance matrix is the identity matrix I. The constant c mediates the strength
of causality Y → X, with causal lag ` ≥ 1. In Appendix C we calculate the
GC from Y to X as

FY→X = log
(
1 + c2

)
(7)

(cf. Barnett and Seth (2011), Section 4). It is clear that GC in the opposite
direction is zero: FX→Y = 0.

We then apply convolutions to X,Y corresponding to a bivariate FIR
filter with transfer function

G(z) =

[
g(z) 0

0 zkh(z)

]
(8)

with g(z), h(z) invertible univariate transfer functions and k ≥ 0 an integer.
The convolution applied to the predictor variable Y is thus an invertible filter
followed by a pure k-lag onset delay for k > 0, in which case the filter is
not invertible and invariance does not necessarily apply. While for the most
part we do not consider explicit onset delays a few remarks are worthwhile;
additional details are given in Appendix C (see also Section 4). For k < `
(convolution onset delay is shorter than causal lag; this includes the case
k = 0 when the bivariate filter (8) remains invertible), the convolutions
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effectively reduce the causal lag by k, so that causalities are unchanged. If
k = ` (convolution onset delay is equal to causal lag), the original causality
FY→X is destroyed by the convolution and no causality is introduced in the
reverse direction. If k > ` (convolution onset delay is longer than causal
lag), causality in the convolved process is effectively reversed.

As mentioned, the HRF convolutions may be viewed as slow, moving-
average filters (with consequently strong lowpass characteristics), which
are also likely to feature differential times-to-peak (cf. Figure 1B,C). To
model these features, we applied binomially weighted moving-average con-
volutions of the form (8) with transfer functions g(z) = [12(1 + z)]2 and
h(z) = [12(1 + z)]3 to realizations of length 1000 time steps of the minimal
VAR (6) with causal lag ` = 1 and onset delay k = 0, so that causal-
ities are theoretically unchanged by filtering. The causal constant c was
set to ≈ 2.5277, giving the theoretical G-causality FY→X = 2 according
to (7). An empirical model order of 40 was estimated by the Bayesian In-
formation Criterion. Despite the theoretically infinite model order of the
convolved process, the model VAR coefficients as reflected in the estimated
VAR transfer function (Appendix C) are well approximated at this model
order (Figure 5). Over 1000 trial runs, the filtered G-causality F Ỹ→X̃ was
estimated with a mean of 1.9469 ± 0.0653 standard deviations, very close
to the theoretical value of 2. The theoretically zero F X̃→Ỹ was estimated
with a mean of 0.1413 ± 0.0168 standard deviations. Consistent with the
theoretical invariance, the causal structure is thus well reflected empirically.

To test for statistical significance p-values were calculated based on the
theoretical χ2 asymptotic null distribution (see Section 2.4) and tested at a
significance level of α = 0.01, with a Bonferroni correction for the dual null
hypotheses on causalities in the Y → X and X → Y directions. Causal-
ity in the Y → X direction was always correctly reported as significant;
however, causality in the X → Y direction was frequently also reported as
significant; i.e. there was a high incidence of false positives. We repeated
the experiment, but this time with the same convolution (1 + z)3 applied to
both time series. F Ỹ→X̃ was estimated with a mean of 2.0429±0.0669, and
F X̃→Ỹ with a mean of 0.0494±0.0106. The causal structure was thus again
correctly reflected, but now significances were correctly reported in both di-
rections. We repeated these experiments using permutation testing (Barnett
and Seth, 2011) instead of the theoretical χ2 asymptotic null distribution;
results were unchanged indicating that the reported effects on statistical
significance testing were not due to failure of the theoretical distribution.

In summary, the above results indicate that while slow moving-average
(i.e., HRF-like) filtering may lead to unreliable significance test results when
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Figure 5: Modulus of VAR transfer function (see Appendix C for a typical ‘minimal VAR’
convolved time series. Theoretical values are plotted in blue, estimated values in red.

different kernels are applied to different variables, the actual values of esti-
mated GC nevertheless correctly reflect causal structure. Practical heuristics
for statistical inference for GC-fMRI are discussed further in Section 4.

3.3. GC-fMRI using a spiking neuronal model

In developing analysis methods it is important to rely neither on as-
sumptions necessary for analytical approaches, nor on simulation models
leveraging the same framework as the analysis method itself (nor, of course,
on generative models that are simply inappropriate). One way to address
this need is to utilize more biologically realistic simulations of neural dynam-
ics (Valdes-Sosa et al., 2011). Following this approach, we next analyzed a
model based on large populations of spiking neurons organized into two clus-
ters (Figure 2; Section 2.2). We generated 10 sets of 260sec of data from this
model, discarding the first 60sec of each run to allow for simulation burn-in.
We used these 10 sets to generate data for 100 separate trials of GC-fMRI.
For each trial one of the 10 data sets was randomly selected, and simulated
LFP and BOLD responses were generated (BOLD responses were generated
using the BW model with trial-to-trial jitter of BW parameters affecting
time-to-peak, see Section 2.3). Again, the first 50 sec prior to analysis were
discarded to allow for HRF ‘burn-in’. Resulting GC values were averaged
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across the 100 trials. Empirical model orders are shown in Table 4 and are
consistent with those obtained from the simple VAR generative model (Ta-
ble 3). Figure 6 shows that, as with the simple VAR model, GC analysis
of both the LFP and BOLD responses, under light downsampling, reliably
identifies the underlying causal structure. However, heavy downsampling
of both the LFP and the BOLD signal leads to the causal structure being
missed. This result demonstrates that the invariance of GC to hemodynamic
responses is retained even when using biophysically detailed models of both
the BOLD signal and the underlying neural activity, escaping the circularity
of using a VAR model for both data generation and analysis.
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X Y
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Figure 6: GC analysis of data generated from the spiking neuronal model (150 sec simu-
lation time). Each panel shows the mean GC, over 100 separate simulation runs, between
the two clusters. LFP/EEG: model output downsampled to 250 Hz. DOWN: model
output downsampled to 0.5 Hz. BOLD250: generated from model output by BW model
and downsampled to 250 Hz. BOLD0.5: generated from model output by BW model and
downsampled to 0.5 Hz.

3.4. Impact of downsampling

The above results demonstrate an invariance of GC to hemodynamic re-
sponses, but not to downsampling. In theory, this is to be expected since nei-
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mean std

EEG/LFP 16.40 0.49
BOLD250 23.73 0.53
DOWN 1.00 0.00
BOLD0.5 1.97 0.59

Table 4: Empirical model orders (p) estimated over 100 instantiations of each data type,
corresponding to the full spiking model simulations described in Figure 6. Means and
standard deviations are given.

ther downsampling nor measurement noise can be characterized as invertible
filtering operations, and so will not benefit from the invariance properties
described above. In Solo (2007) it is shown that the existence of a Granger-
causal effect is in fact preserved under downsampling [see also Breitung
and Swanson (2002)] and also under certain types of additive noise (Section
3.5); however, in Solo (2007) the definition of “strong” Granger causality
is more restrictive than the conventional (“weak”) Granger causality and,
moreover, the results there do not inform about the effect on magnitude or
statistical inference of GC under downsampling and/or measurement noise.
Therefore, to better understand the interaction between hemodynamic con-
volution and downsampling in practice for standard GC, we investigated
sensitivity of GC-fMRI to different levels of downsampling using both the
VAR model and the spiking neuron model.

3.4.1. VAR model

Figure 7 shows conditional GC analysis of time-series generated by the
VAR model, convolved with confounding HRF kernels (difference-of-gamma
approximation, as in Figure 1B) and downsampled at a range of frequencies.
Again, results are averages over 100 trials. We see that GC for the simu-
lated BOLD signal (right column) degrades slightly more rapidly than GC
for unconvolved data, shown for comparison (left column). At low (fMRI-
comparable) sample frequencies there is evidence that the confounding HRFs
lead to a reversal in the direction of GC.

3.4.2. Spiking neuron model

Figure 8 shows GC analysis of time-series generated by the spiking neu-
ron model, with BOLD signal generated from the simulated LFP by the
BW model, and downsampled at a range of frequencies. Results are av-
erages over 100 trials randomly selected from the 10 simulated LFP data
sets. In this case GC for both the simulated LFP and BOLD signals de-
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grades quite rapidly. It is of interest that the ‘difference of influence’ term
(FY→X−FX→Y) (Roebroeck et al., 2005) applied to the simulated BOLD
signal would perform better on this data than GC applied to the simulated
LFP data, however this can be attributed to the fact that over 100 separate
trials the effects of jittered HRF latencies are averaged out.

3.4.3. Interaction of downsampling and hemodynamic confound

Figure 9 shows GC analysis of time series generated by the spiking neu-
ron model, with BOLD signal generated from the simulated LFP by HRF
difference-of-gamma convolutions with differential confounding delays-to-
peak around a reference delay-to-peak of 4 sec applied to both X and Y
outputs. The BOLD signal is then downsampled at a range of frequencies.
The confounding delays vary from [0, 1000] ms; note that the X→ Y causal
delay in the LFP is [40, 50] ms. Results are again averages over 100 trials
randomly selected from the 10 simulated LFP data sets. At high (EEG)
sample frequencies, causal structure estimation is robust to confounding de-
lay on the HRF time-to-peak. However, as the downsample frequency is
decreased, the impact of the confounding delays becomes more prominent
until at low (fMRI) frequencies estimated GCs are already destroyed with
no HRF confound, and are reversed with strong HRF confound.

3.5. Impact of measurement noise

The final set of simulations investigated the impact of measurement noise
on GC-fMRI, again for both the simple VAR generative model and the spik-
ing neuron model. In all experiments white noise was additively combined
with the raw or BOLD model output at a series of signal-to-noise ratios
(SNRs), and then downsampled. As mentioned (Section 3.4), measurement
noise cannot be considered as an invertible filtering operation and so the
theoretical invariance (Section 3.2) does not apply here.

Figure 10 illustrates the degrading effect of measurement noise on the
raw (unconvolved) VAR output downsampled to 250 Hz. (Conditional) GC
can be seen to degrade slowly with increasing measurement noise. However,
GCs for the BOLD timeseries (not shown) as derived from the VAR output
by either HRF convolutions or the BW model, were destroyed, even at a
(high) downsample frequency of 250 Hz and a SNR of 10 (i.e. noise level
= 0.1 of signal standard deviation). Similarly, downsampling the raw out-
put (i.e. without convolution) at a (typical fMRI) frequency of 0.5 Hz also
destroyed all GCs. These findings also held for the spiking neuron model
when measurement noise was added in the same way, as shown in Figure 11.
Summarizing these findings, even small amounts of noise in combination
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with either BOLD simulation and/or downsampling have a drastic impact
on GC estimation.

4. Discussion

In this paper, we first illustrated the invariance of GC-fMRI under HRF
variability using a simple multivariate vector autoregressive (VAR) model for
generating the underlying ‘neural’ signal. We then provided the analytical
foundation for this result by invoking a previous finding showing invariance
of GC under a broad class of digital filters (Barnett and Seth, 2011). We next
established the robustness of the result by analyzing a biophysically detailed
model implementing spiking neurons and a BW neurovascular-hemodynamic
model. We then used both this detailed model, and the comparatively simple
VAR model, to characterize systematically the effects of downsampling and
measurement on noise on GC-fMRI.

4.1. Summary of findings

The application of GC to fMRI data has been frequently challenged on
the basis that inter-regional differences in hemodynamic response latency
may readily confound directional interactions in the underlying neural dy-
namics, leading to false inferences (David et al., 2008; Friston, 2009; Smith
et al., 2011). This point has been made particularly strenuously in the
context of an ongoing discussion comparing the relative merits of GC and
alternative model-based methods (e.g., dynamic causal modelling, DCM,
(Friston et al., 2003)) for identifying directed interactions from fMRI data.
On the other hand, a series of simulations have revealed some degree of
robustness of GC when applied to fMRI signals (Roebroeck et al., 2005;
Deshpande et al., 2010; Schippers et al., 2011); however the extent and the-
oretical foundation of this resilience has so far remained unclear. Here, we
have addressed these issues by a rigorous combination of theory and simu-
lation modelling at multiple levels of biophysical detail including (i) analyt-
ically solvable VAR models, (ii) VAR models with nontrivial topologies and
realistic hemodynamics, and (iii) a detailed ‘analysis agnostic’ simulation
model involving spiking neuron populations, explicit synaptic conductances
underlying LFP generation, and biomechanically detailed hemodynamics.

Theoretically we have established that GC is invariant to hemodynamic
convolution (excluding confounding onset delays). This result is based on
recognizing that differences in hemodynamic time-to-peak do not reflect dif-
ferential ‘buffering’ (i.e., onset delays) of the underlying neuronal signal but
rather reflect different convolution kernels within the framework of low-pass
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filtering. We have built on previous results showing invariance properties
of GC under invertible filtering (Barnett and Seth, 2011) to accommodate
the case of HRF-like filters, with different kernels applied to different vari-
ables. This theoretical result was confirmed in simulation, using both VAR
models and a biophysically detailed spiking neuronal model to generate the
underlying ‘neural’ signal. The VAR model implemented a nontrivial 5 node
topology including reciprocal, direct, and indirect connections (Figure 1A)
whereas the spiking model traded increased biophysical realism for a sim-
ple 2 node functional architecture (Figure 2). In both models, simulated
BOLD responses were generated using both a standard difference-of-gamma
approximation and the extended BW model (Friston et al., 2000). In some
simulations HRFs were chosen deliberately to confound the underlying neu-
ral influences in terms of time-to-peak (Figure 1B) while in others HRF
parameters were jittered on a trial-to-trial basis within biophysically plau-
sible ranges. In all cases we observed a striking resilience of GC to vari-
able hemodynamic filtering (e.g., Figures 3,4,5). However, our simulations
also revealed that hemodynamic filtering when confounded with neural in-
fluences did corrupt GC inferences if combined with severe downsampling
(Figures 3,4,7) and/or even low levels of measurement noise (Figures 10,11),
accounting for similar effects observed in previous simulation studies (Desh-
pande et al., 2010; Schippers et al., 2011) and in empirical data (David et al.,
2008). As expected, convolution with an HRF substantially increases the
empirical model order, while heavy downsampling substantially reduces the
model order. Our results therefore do not mandate the routine application
of GC to fMRI. They do, however, transform what had previously been
considered a problem in principle (i.e., the idea that hemodynamic response
variation necessarily confounds GC inferences) to a problem in practice (i.e.,
given sufficiently fast sampling and low measurement noise, GC-fMRI will
be invariant to such variation).

Given that fMRI involves both hemodynamic filtering and downsam-
pling we carefully examined their interaction. Corroborating previous stud-
ies (Roebroeck et al., 2005; Deshpande et al., 2010; Schippers et al., 2011)
we found that when HRF latencies were confounded with neural latencies
under severe downsampling, GC inferences tended to follow the hemodynam-
ics rather than the neural mechanisms (e.g., compare the top and bottom
panels of the middle column in Figure 3). Parametrically, as downsam-
pling becomes more severe the impact of confounding HRFs is increased
(Figure 9). Interestingly, HRF filtering can allow some detection of causal
interactions even if the downsampling frequency is too low to capture these
interactions in the neural data itself (Figure 8); however the validity of these
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inferences will of course depend on the HRFs not confounding the neural
latencies. Notably, downsampling and measurement noise degrade GC infer-
ences even in the absence of HRF filtering (see Figures 7,8 for downsampling;
Figures 10,11 for noise).

Hemodynamic filtering impacted the reliability of statistical significance
testing, generating an increased preponderance of false positives (Type 1 er-
rors). This effect, observed previously (Roebroeck et al., 2005), is likely due
to the increased difficulty in adequate VAR model fitting given increases in
model order following filtering (Barnett and Seth, 2011). We quantified these
effects using slow moving-average filters applied to a simple simulation for
which GC values are analytically available (Section 3.2). Even though false
positive rates were inflated, estimated GC magnitudes closely matched their
true theoretical values. This result is significant because GC magnitudes
have a meaningful interpretation in terms of information flow measured in
bits (Barnett et al., 2009), regardless of statistical inference. Interestingly,
we observed that statistical significance testing was largely restored when
the same convolution/filter was applied to each variable. Although we can-
not fully account for this observation at present, we suspect that it will again
depend on issues of empirical model fitting. In practice, statistical inference
may be performed on distributions of GC magnitudes between experimental
conditions, using nonparametric tests such as the Wilcoxon rank sum [see
(Barrett et al., 2012) for an application to EEG data]. This approach will
determine whether the GC in one condition is significantly different from
that in another, but not whether a particular GC interaction is significant
in itself. In the latter case, the fact that GC magnitudes remain accurately
estimated warrants a simple heuristic of setting an arbitrary threshold to
distinguish between weak (or ‘insignificant’) and strong (or ‘significant’) in-
teractions.

Summarizing these results, GC is fully invariant to HRF filtering in the-
ory (excluding confounding onset delays) and strikingly invariant in practice,
given sufficiently fast sampling and low measurement noise. While even low
noise levels can disrupt GC inferences, the impact of downsampling depends
on a complex interaction between hemodynamic and neural latencies, and
in the absence of confounds HRF filtering can ameliorate the impact of
downsampling. Although filtering can induce additional false positives dur-
ing statistical testing, GC magnitudes interpreted information-theoretically
remain accurately estimated in sample.
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4.2. Comparison with previous simulations

Following the initial studies of Roebroeck et al. (2005), a number of more
recent simulation studies have addressed GC-fMRI with varying outcomes.
In an influential comparative analysis, Smith et al. (2011) found that lag-
based methods (such as GC) performed poorly in reconstructing network
topology as compared to alternative methods based on higher-order sta-
tistical moments. However, their analysis was performed using the DCM
forward model to generate simulated data, which is not appropriate for sub-
sequent GC analysis; in particular, neural dynamics were simulated by a
(non-neuronal) system of continuous differential equations modulated by bi-
nary impulse functions which is very different from the stationary stochastic
data generated by an VAR model or by our detailed spiking model of LFPs.

Deshpande et al. (2010) examined GC performance under systematic
variation of TR, measurement noise, strength of causal influence, and un-
derlying neural delay. They used experimentally obtained LFP traces as
their neural signals and simulated neural interactions via simple time-shifts
of a single LFP trace. While this strategy guarantees the biophysical plausi-
bility of the LFP signal it represents a highly oversimplified model of neural
interactions. Also, these authors used a difference-of-gamma approach to
HRF generation and did not consider the biophysically detailed BW model.
Nonetheless their conclusions were in broad agreement with those presented
here inasmuch as GC-fMRI performs better under low noise and fast sam-
pling conditions. Schippers et al. (2011) focused on group-level GC-fMRI as
opposed to single ‘subject’ analyses conducted in this paper and in Desh-
pande et al. (2010). They used a VAR model to generate ‘neural’ data and
difference-of-gamma HRF convolutions fitted to the various HRF shapes
measured in Handwerker et al. (2004). They considered only bivariate situ-
ations and assumed independent HRF variations between subjects, similar
to our ‘jittered’ HRF models (see e.g., Figure 3). Their simulations indicated
reasonable sensitivity of GC-fMRI at the group level (i.e., when averaging
across HRF variations), though in a way highly dependent on the underlying
neural delay. Our results significantly extend these previous simulations by
(i) establishing a theoretical basis for invariance of GC-fMRI to HRF vari-
ation; (ii) validating this invariance in models spanning a wide spectrum of
biophysical detail, and (iii) testing systematically the impact of downsam-
pling, TR, neural delay, HRF confound, and measurement noise in relevant
subsets of these simulations.

25



4.3. Agnostic simulation models
A key feature of our study has been to combine biophysically realistic

neurovascular and hemodynamic models (i.e., the extended BW model) with
similarly detailed models of underlying neural dynamics and the resulting
LFPs (i.e., the spiking model). The full model contained >12,000 spik-
ing neurons and ∼19 million synapses, with explicit synaptic conductances,
short-term synaptic plasticity, and realistic neural delays. Simulated LFPs
from this model were fed into the extended BW model including both neu-
rovascular and hemodynamic components, generating a simulated BOLD re-
sponse. One motivation for this additional detail is to validate our results on
time-series data generated by more biologically realistic simulations of neural
dynamics (Valdes-Sosa et al., 2011). An important benefit of this approach
is that it escapes the potential circularity of using similar model classes to
both generate data and perform subsequent analyses. To date, most simu-
lation studies of GC have used a VAR generative model (e.g., (Roebroeck
et al., 2005; Schippers et al., 2011) but see (Deshpande et al., 2010)); simi-
larly, simulation studies of DCM have tended to use the relatively abstract
DCM neuronal model (e.g. (Friston et al., 2003; Stephan et al., 2008),
though see (Marreiros et al., 2008)). These approaches, while convenient,
may lead to biases in favour of the corresponding analysis method. Here we
have sought to avoid any such biases by using ‘agnostic’ simulation models
which make no assumptions about subsequently applied analysis methods.
In future studies it will be interesting to adapt a single generative model,
such the spiking model, to generate multiple datasets suitable for GC and
DCM respectively, enabling a principled comparison among these different
approaches.

Alternative simulations approaches exploring a middle ground between
full spiking models and VAR approximations may also be useful. For ex-
ample, network simulations based on Wilson-Cowan mean-field approxima-
tions (Wilson and Cowan, 1972) could allow more complex networks to be
studied by relaxing computational constraints. However, the Wilson-Cowan
approach is more appropriate for modelling of stable states and global tran-
sitions under slowly changing inputs, which we do not consider here (but
which forms an interesting topic for future research). Moreover, the spik-
ing neural model allows us to verify that fast (correlated) fluctuations in
simulated neuronal time-series do not affect the GC analysis.

We made one simplifying assumption in the combination of the spik-
ing and extended BW models, which was to use the full LFP signal as the
neuronal input to the BW model. Although this is consistent with an ob-
served strong association between global LFP and BOLD responses (Magri
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et al., 2012), the relation between neuronal activity and BOLD remains in-
completely understood and is undoubtedly complex (Logothetis, 2008; Rosa
et al., 2011; Magri et al., 2012; Buxton, 2012). Future studies could examine
more complicated neurovascular models (Rosa et al., 2011) or band-limited
LFP inputs, as well as more complex topologies and interactions between
changing neural-level parameters and GC analysis of the resulting LFP and
BOLD signals. An important caveat is that simulation data, no matter
how detailed, can never be taken to replace empirical data. Analysis of em-
pirical data will always face additional challenges such as stationarity and
absence of a ground-truth comparison; these issues are discussed further in
Section 4.6 below.

4.4. HRF variation in fMRI

Measurement and modelling of HRFs remains a challenging issue not
only for connectivity analyses but in fMRI generally (Handwerker et al.,
2012; Buxton, 2012), since all analysis methods including the ubiquitous
general linear model, as well as DCM, make assumptions about HRF shape
and variability. In a seminal study, Handwerker et al. (2004) were able to
estimate HRF shapes (and hence variation) in primary sensorimotor cor-
tex in 20 subjects performing a button-press task. However, more general
characterization of HRFs globally has remained infeasible in the absence of
corresponding knowledge of ‘ground truth’ neuronal responses (David et al.,
2008). In particular, when measuring BOLD signals alone it is impossible
to disentangle neural delays from HRF effects (Handwerker et al., 2004),
in the absence of prior assumptions (e.g., those embedded in DCM). Our
simulations utilize HRF parameters drawn either from widely-used prior dis-
tributions (Friston et al., 2003) or which explicitly impose confounds worse
than might be expected on the basis of measured HRF variation (Handw-
erker et al., 2004). Importantly, the simulated neural delays (20-50 ms) lie
well within plausible physiological ranges (Schmolesky et al., 1998; Smith
et al., 2011; Schippers et al., 2011). Together, these factors imply that our
simulations are testing situations likely worse than encountered in practice.
As described above we also use both double-gamma approximations and the
extended BW model in order to ensure that our results do not depend on
a filter-based approximation to the BOLD response; both models can be
readily parameterized to generate variation in hemodynamic time-to-peak.

HRFs vary along multiple dimensions, potentially including onset delay
as well other factors leading to differential time-to-peak (Handwerker et al.,
2004, 2012; Menon, 2012). Our results confirm that confounds in explicit
onset delays do, as expected, affect GC inference. This raises the question of
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how prevalent onset delay variations are in fMRI responses. Most descrip-
tions of HRF variation emphasize time-to-peak, width, and post-undershoot
shapes (Handwerker et al., 2012), and indeed the detailed BW model has
no explicit onset delay term (Friston et al., 2000). While onset delay vari-
ations have been observed (Menon et al., 1998; Menon, 2012) it is difficult
in practice to discriminate between onset delay and other parameters af-
fecting time-to-peak. From a theoretical perspective, the key distinction is
between a completely flat initial segment of a convolution kernel (a non-
invertible filter for which GC is not invariant) and a very shallow slope (for
which the invariance applies). Moreover, differential onset delays may in
fact reflect underlying neural delays and processing rather than variation
in neurovascular or hemodynamic properties. This is the idea underlying
fMRI-based ‘mental chronometry’, which is supported by observed trial-
to-trial correlations between onset delay and behavioral responses such as
reaction time (Menon et al., 1998; Menon, 2012) and indeed the detailed
BW model. Under this interpretation, onset delay variation will help, not
hinder, GC analysis.

4.5. Functional, effective, and causal connectivity

Connectivity analysis methods (as applied to time series data) are com-
monly divided into two classes: functional and effective (Friston et al.,
1993; Friston, 2011). Standardly, functional connectivity describes statis-
tical dependencies among observed responses and is associated with undi-
rected quantities such as correlation and synchrony. By contrast, effective
connectivity is best conceived as ‘the simplest possible circuit diagram ex-
plaining observed responses’ (Aertsen and Preißl, 1991) and is explicitly a
claim about underlying mechanisms, and especially their modulation by ex-
perimental condition (Friston, 2011). Effective connectivity has its roots in
structural equation modelling and is currently best expressed in the context
of neuroimaging via the framework of Bayesian model selection in DCM
(Friston et al., 2003). GC, in virtue of supporting causal inference, has
often been classified as effective connectivity (Deshpande et al., 2010; Schip-
pers et al., 2011; Roebroeck et al., 2005). However GC is perhaps better
thought of as directed functional connectivity, which we may also call ‘causal
connectivity’ (Bressler and Seth, 2011): GC patterns are clearly dependent
on underlying causal mechanisms but should not be taken to be identical
with them. The mislabelling of GC as effective connectivity is one possi-
ble reason for some of the confusion surrounding the relative merits of GC
and DCM (Bressler and Seth, 2011; Roebroeck et al., 2011b; Valdes-Sosa
et al., 2011). We emphasize that the methods are fundamentally different
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and complementary, with causal connectivity permitting a more exploratory
description of dynamical interactions, recognizing that (i) a single mecha-
nism may support multiple dynamics and (ii) in neural systems dynamical
patterns and their underlying mechanisms may mutually specify each other
via plasticity (Bressler and Seth, 2011).

A related distinction between GC and DCM is often made on the basis
of data-driven/exploratory (GC) versus model-driven/confirmatory (DCM)
approaches. This distinction is however not sharp and rather reflects end-
points of a spectrum, with the middle ground becoming increasingly popu-
lated (Roebroeck et al., 2011b; Bressler and Seth, 2011; Ryali et al., 2011).
Advances in Bayesian model selection are allowing more extensive reper-
toires of causal models to be compared, potentially moving DCM in the
direction of data-driven approaches (Penny et al., 2010). On the other
hand, even standard GC has a model-driven element inasmuch as observed
responses are assumed to be well represented by an VAR model (related ap-
proaches such as transfer entropy avoid this assumption (Schreiber, 2000)).
Recent developments of GC have combined VAR models with ‘observation’
equations linking VAR dynamics with observed responses in the framework
of state-space modelling, providing a compromise between standard GC and
DCM (Ryali et al., 2011); see also Smith et al. (2010).

4.6. Implications for fMRI functional connectivity analysis

Our results show that GC analysis of fMRI signals is possible in principle
given sufficiently fast sampling and low measurement noise. The finding that
hemodynamic convolution per se does not inevitably confound GC analysis
opens new avenues for advancing data-driven functional connectivity anal-
yses. Specifically, methods which can reduce (or model) measurement noise
and also increase sampling rates have the potential to allow robust GC in-
ference on fMRI BOLD signals. Fortunately, progress is already being made
in both directions. New methods are being developed for mitigation of mea-
surement noise using novel preprocessing (Rasmussen et al., 2012) and post-
processing (Nalatore et al., 2009) algorithms. High field MR scanners allow
faster sampling, and novel imaging sequences may radically increase sam-
pling rates: for example a recent multiplexed echo-planar imaging sequence
is reaching TRs in the range of 200 ms without loss of coverage (Feinberg
and Yacoub, 2012; Feinberg et al., 2010). Other developing neuroimaging
methods, notably near-infrared spectroscopy, already allow arbitrarily fast
sampling of BOLD responses (Im et al., 2010) albeit with presently low
SNRs. While statistical inference remains a problem even for fast-sampled
BOLD signals, the accurate estimation of GC magnitudes indicates that
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reliable inference can be made between distributions of GC values [as in
(Barrett et al., 2012)], and that thresholds discriminating weak from strong
GC values will also have heuristic value (see Section 4.1).

Previous discussions of GC-fMRI have recommended additional strate-
gies for coping with HRF variability. In particular, Roebroeck et al. (Roe-
broeck et al., 2005) have recommended (i) comparing the difference in GC
between experimental conditions as opposed to attempting to establish the
‘ground truth’ connectivity for a given condition, and (ii) analyzing the
‘difference of influence’ term (FY→X−FX→Y) rather than each direction
separately. The first strategy is motivated by the notion that HRFs are less
likely to vary between experimental conditions than between brain regions
or subjects, and the second by the observation of false positives in GC-fMRI
as a result of HRF smoothing; however a problem with the difference-of-
influence strategy is that it is constitutively unable to detect bidirectional
causal interactions. In this paper we have deliberately avoided these strate-
gies in order to better understand the properties of GC analysis of fMRI
signals per se. It is likely that additional research exploiting these strategies
may further enhance the potential for GC-fMRI, for example by accommo-
dating any differences in explicit onset delays, should such differences exist.
Future work should also consider the influence of different experimental de-
signs on GC-fMRI, with particular attention to event-related designs which
may challenge assumptions of covariance stationarity needed for GC analy-
sis. Finally, there may be important opportunities in further examining the
potential for examining GC-fMRI in the context of VARMA modelling (Sec-
tions 3.2, 3.4, 3.5 and (Roebroeck et al., 2011b)) in light of the properties
of these models with respect to filtering, downsampling and measurement
noise. We hope that future work might reinforce and clarify the results
presented here in that regard.
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Appendix A. Spiking neuron model

The model consists of two clusters (X,Y) with 6144 neurons in each clus-
ter (Figure 2). Neurons are modelled using Izhikevich’s phenomenological
description (Izhikevich, 2003b) of cortical pyramidal (excitatory) and bas-
ket (inhibitory) cell types, with explicit axonal conductance delays. In both
clusters, the ratio of inhibitory inter-neurons is set at 2%. Each neuron re-
ceives 1536 afferent connections, with input to each neuron calculated via
explicit NMDA, AMPA, GABAa, and GABAb conductances (Dayan and
Abbott, 2005) and incorporating short-term synaptic plasticity (Zucker and
Regehr, 2002).

The model architecture reflects two locally recurrent cortical regions,
interconnected by a single feed-forward (X→Y) pathway. Neurons in cluster
X receive excitatory input only from cluster X, while neurons in Y receive
excitatory input equally from X and Y. Inhibitory synaptic interactions are
local within each cluster, reflecting local inhibition in cortex (Mountcastle,
1998). Axonal conductance delays are drawn from the uniform distributions
of [1,10] ms for intra-cluster connections and [40,50] ms for inter-cluster
connections.

Simulations were performed on combined CPU/GPU hardware (Intel
Xeon / nVidia GeForce GTX) using C/CUDA.

Appendix A.1. Generation of neural activity

The discrete-time formulation of Izhikevich (2003b)’s model is defined
by a pair of difference equations with discrete after-spike reset:

v′ = 0.04v2 + 5v + 140− u+ I + ξ (A.1)

u′ = a(bv − u) (A.2)

if v ≥ 30, then

{
v ← c
u← u+ d

(A.3)

where v represents the membrane potential (mV), u (dimensionless) gov-
erns the relaxation dynamics of the model neuron and ′ = d

dt . Following
Izhikevich (2003b), regular-spiking excitatory pyramidal neurons are mod-
elled using a = 0.02, b = 0.2, c = −65 and d = 8, and fast-spiking inhibitory
inter-neurons are modelled using a = 0.1, b = 0.2, c = −65 and d = 2. This
model captures several important features of neuronal dynamics not found
in standard ‘integrate-and-fire’ models, such as spike-frequency adaptation
and dynamic refractoriness.
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Appendix A.2. Synaptic dynamics

Synaptic input to each neuron (I) is calculated from explicit conduc-
tances (g) for each post-synaptic neuron, as

Ij = gAMPA(v − 0)

+ gNMDA

[(v + 80)/60]2

1 + [(v + 80)/60]2
(v − 0) (A.4)

+ gGABAa(v − 70)

+ gGABAb(v − 90)

in which separate state variables (gAMPA, gNMDA, gGABAa and gGABAb) are
integrated for each of the 4 receptor types. Spikes arriving at neuron j
from neuron i step-increase the corresponding conductance variables by an
amount proportional to both the synaptic weight (ωij ∈ [0, 1]) and the state
of the synapse with respect to short-term plasticity (R and w, see below).
Specifically, spikes arriving from excitatory pre-synaptic neurons cause con-
ductance variables associated with glutamatergic receptors (gAMPA, gNMDA)
to be augmented, whereas spikes from inhibitory inter-neurons augment
GABAergic conductances (gGABAa and gGABAb) at the post-synaptic neuron.
Omitting receptor-type subscripts we have

g′j =
−gj
τ

+
S∑

i=0

δ(t− t∗i )Ωij (A.5)

where
Ω = ωRw (A.6)

Here, t∗i is the arrival time of last pre-synaptic spike of neuron i, δ is the
Dirac delta function and S is the number of afferent synapses per neuron.
Conductances for each receptor type therefore decay exponentially accord-
ing to a receptor-specific time constant τ . For NMDA and GABAb type
receptors we set τ = 0.1 ms (implementing ‘slow’ synapses) and for AMPA
and GABAa type receptors we set τ = 0.01ms (‘fast’ synapses) (Dayan and
Abbott, 2005).

External (e.g. background) synaptic input is calculated for each neuron
by a discrete random process at each time-step, such that ξ (Eq. A.1) follows
the uniform distribution

ξ ∼ U(−6.5, 6.5) (ξ ∈ R) (A.7)

which is sufficient to cause neurons to fire irregular spike trains at 1–5 Hz
without external stimulation (cf. Softky and Koch (1993)).

32



Appendix A.3. Short-term synaptic plasticity

Short-term synaptic plasticity was implemented to facilitate stable net-
work dynamics (Abbott, 1997; Zucker and Regehr, 2002). Following Markram
et al. (1998), each spike arrival updates synapse-specific variables governing
facilitation (w) and depression (R) at the corresponding synapse. For facili-
tation, w is step-increased by U(1−w) for each pre-synaptic spike, otherwise
decaying by a rate governed by parameter F :

w′ =
(U − w)

F
+ δ(t− t∗)U(1− w) (A.8)

For depression, R is step-increased by Rw for each pre-synaptic spike and
decays to 1 at a rate governed by parameter D:

R′ =
(1−R)

D
− δ(t− t∗)Rw (A.9)

We used parameter values U = 0.5, F = 1000, D = 800 for excitatory
synapses and U = 0.2, F = 20, D = 700 for inhibitory synapses, reflecting
STP as observed in cortex (Izhikevich, 2004).

Appendix A.4. Generation of simulated LFPs

Simulated LFP time-series are obtained by assuming a strong correlation
with dendritic AMPA currents (Ching et al., 2010). At each time-step an
LFP value for each cluster (VX/Y) is computed according to:

VX/Y(t) =
1

NS

N∑
j=0

SE∑
i=0

gij(t) (A.10)

where N is the number of neurons in each cluster (X,Y), SE is the number
of afferent excitatory synapses per neuron and g = gAMPA.

Appendix B. Granger causality: statistical inference and station-
arity

Appendix B.1. Statistical inference

Considering the VAR models (2) and (3), GC may be considered as a
test statistic for the null hypothesis

H0 : B1 = . . . = Bp = 0 (B.1)
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of zero GC influence. That is, Y Granger-causes X iff the ‘full’ regression
(2) provides a significantly better model of Xt than the ‘reduced’ regression
(3) at a given significance level. Standard theory (Hamilton, 1994) provides
that, since the model (3) is nested in the model (2), the appropriate test
statistic for H0 is the corresponding likelihood ratio, which (at least un-
der Gaussian assumptions on the distribution of residuals) is precisely the
GC quantity FY→X of (4), where model parameters are taken to be maxi-
mum likelihood estimators. Importantly, maximum likelihood estimates for
the full and reduced regression parameters are known to be asymptotically
equivalent to those obtained by an ordinary least squares (OLS) or equiva-
lent procedure, allowing easy computation (Hamilton, 1994).

Classical asymptotic theory (Wilks, 1938; Wald, 1943) yields that under
the null hypothesis H0, nF Y→X |Z, where n is the number of observations,
is asymptotically χ2 distributed, with degrees of freedom given by the dif-
ference in the number of parameters between the models (2) and (3), fur-
nishing a simple significance test for the GC statistic. (If X is univariate, an
alternative test is available: the R2-like statistic exp(F Y→X |Z) − 1, scaled
appropriately, has an asymptotic F-distribution under the null hypothesis
(Hamilton, 1994).) If multiple GCs are calculated for a multivariate system,
significance test results should also be adjusted for multiple hypotheses.
Standard approaches include the Bonferroni, Sidak or various “false discov-
ery rate” procedures (Hochberg and Tamhane, 1987).

Appendix B.2. Stationarity, autocovariance, and spectral radius

Given a multivariate system Ut comprising n component variables Ui,t

(the “universe” of variables), the GC between pairs of variables (Uj , Ui), con-
ditioned on the remaining variables in the system, is given by F Uj→Ui |U[ij]

,

where U[ij] denotes omission of the variables Ui, Uj . The full regressions (2)
for all such pairwise causalities is equivalent to the regression

Ut = A1Ut−1 + . . .+ApUt−p + εt (B.2)

Having estimated coefficients Ak, the autocovariance sequence of the model
Γk ≡ cov(Ut,Ut−k) can be obtained (this involves solution of a discrete
Lyapunov equation (Bartels and Stewart, 1972) and “reverse solution” of
the associated Yule-Walker equations (Hamilton, 1994)). As described in
Section 2.4.3, knowing Γk allows the parameters of the reduced regressions
(2) to be extracted directly, without additional model fitting.

Regarding stationarity, (B.2) represents a wide-sense stationary VAR
model iff all roots of the characteristic equation det

(
A(z−1)

)
= 0, where
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A(z) = I −
∑p

k=1Akz
k, lie within the unit disc |z| < 1 in the complex z-

plane (Hamilton, 1994). The spectral radius of the model is defined as the
largest modulus of all roots of the characteristic equation; it governs how
quickly autocorrelation decays in the VAR model, and must be < 1 for a
stationary system.

Appendix C. Analysis of the minimal 2-variable VAR under con-
volution with differential onset delay

To calculate the (unconditional) Granger causality FY→X for the min-
imal two variable VAR (6) we use the following theory (Doob, 1953): for
a VAR of the form (B.2) we define the pth order square matrix coefficients
polynomialA(z) ≡ I−

∑p
k=1Akz

k. The cross-power spectral density (CPSD)
at frequency ω of a stationary multivariate stochastic process Ut is defined
as S(z) ≡

∑∞
k=−∞ Γkz

k, where z = e−iω (i.e. z lies on the unit circle |z| = 1)
and Γk ≡ cov(Ut,Ut−k) is the autocovariance at k lags. A standard result
then states that for a covariance-stationary VAR process of the form (B.2),
the CPSD factorises uniquely as

S(z) = H(z)ΞH∗(z) (C.1)

where the transfer function H(z) ≡ A(z)−1 (matrix inverse) has a unique
extention to a holomorphic function on the unit disc |z| ≤ 1 with H(0) = I,
Ξ = cov(εt) is the residuals covariance matrix and ‘*’ denotes matrix con-
jugate transpose. Although efficient algorithms are available to perform the
spectral factorisation (C.1) numerically (Whittle, 1963; Wilson, 1972), no
generally applicable analytic algorithm is known. However, if the factorisa-
tion is known, it enables extraction of the residuals covariance matrix Ξ from
S(z). If Ut decomposes into jointly-continuous processes Xt,Yt then the
spectral factorisation formula (C.1) applies in particular to the component
Sxx(z) of the CPSD of Ut—which is just the CPSD of Xt—allowing calcu-
lation of the residuals covariance matrix Σ′ for the reduced VAR (3). Then
FY→X may be easily obtained from (4) (note that the residuals covariance
matrix Σ for the full VAR (2) is just the component Ξxx of the residuals
covariance matrix of Ut).

The coefficients polynomial and transfer function for (6) are

A(z) =

[
1 −cz`
0 1

]
H(z) =

[
1 cz`

0 1

]
(C.2)
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so that by (C.1) the CPSD is given by

S(z) ≡ H(z)H∗(z) =

[
1 + c2 cz`

cz̄` 1

]
(C.3)

From this we see that Sxx(z) = 1 + c2, which is constant, so that Xt is
just white noise with variance 1 + c2. This gives immediately the value
FY→X = log

(
1 + c2

)
of (7). Note that this value does not depend on the

causal lag. It is trivial to show that FX→Y = 0.
We now apply convolutions of the form (8); without loss of generality

we take g(0) = h(0) = 1. The transformed CPSD matrix is then ((Barnett
and Seth, 2011, Section 3))

S̃(z) ≡ G(z)S(z)G∗(z) =

[
(1 + c2)g(z)g(z̄) cz̄k−`g(z)h(z̄)
czk−`g(z̄)h(z) h(z)h(z̄)

]
(C.4)

The x and y autospectra factorise trivially as S̃xx(z) = g(z)·(1+c2)·g(z̄) and
S̃yy(z) = h(z)·1·h(z̄). Thus the residuals variances of the reduced regressions
for the transformed VAR are unchanged: Ξ̃′xx = 1+c2, Ξ̃′yy = 1. To calculate
the residuals variance of the full regression we need to perform a spectral
factorisation S̃(z) = H̃(z)Ξ̃H̃∗(z) as in (C.1), for a transfer function H̃(z)
holomorphic around zero with H̃(0) = I and a positive-definite covariance
matrix Ξ̃. While as mentioned there is no known general recipe for obtaining
a spectral factorisation analytically, in this simple example factorisations are
not difficult to find. There are three cases:

Case I: k < ` - convolution onset delay is shorter than causal lag (this
includes the case k = 0 when the filter is actually invertible). Then

H̃(z) =

[
g(z) cz`−kg(z)

0 h(z)

]
Ξ̃ =

[
1 0
0 1

]
(C.5)

Comparing with (C.2), we see that the convolutions effectively reduce the
causal lag by k, so that causalities are unchanged: F Ỹ→X̃ = FY→X and
F X̃→Ỹ = 0.

Case II: k = ` - convolution onset delay is equal to causal lag. Here the
factorisation is

H̃(z) =

[
g(z) 0

0 h(z)

]
Ξ̃ =

[
1 + c2 c
c 1

]
(C.6)
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which yields F Ỹ→X̃ = F X̃→Ỹ = 0, so that the original causality FY→X is
destroyed by the convolution and no causality is introduced in the reverse
direction.

Case III: k > ` - convolution onset delay is longer than causal lag. We
have

H̃(z) =

[
g(z) 0

c(1 + c2)−1zk−`h(z) h(z)

]
Ξ̃ =

[
1 + c2 0

0 (1 + c2)−1

]
(C.7)

This gives F Ỹ→X̃ = 0 and F X̃→Ỹ = FY→X , so that causality in the trans-
formed VAR is effectively reversed.
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Figure 7: Conditional GC analysis of data generated from the simple VAR model. RAW:
VAR model output. BOLD: VAR output convolved with confounding HRFs. Downsam-
pled at 250, 50, 25, 10, 5 and 0.5 Hz.
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Figure 8: Conditional GC analysis of data generated from the spiking neuronal model.
RAW: LFP output. BOLD: generated from LFP output by BW model. Downsampled at
250, 50, 20, 10, 5 and 0.5 Hz.
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Figure 9: GC analysis of data generated from the spiking neuronal model. LFP output
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convolutions with differential delays-to-peak (HRFDEL) of 0, 25, 50, 100 and 1000 ms
around a reference delay-to-peak of 4 secs. Note that the X→ Y causal delay in the LFP
is 20 ms.

48



EEG/LFP SNR = 10

1 2 3 4 5

5

4

3

2

1

to

EEG/LFP SNR = 5

1 2 3 4 5

5

4

3

2

1

 0

 0.2

 0.4

 0.6

EEG/LFP SNR = 2

1 2 3 4 5
from

5

4

3

2

1

to

EEG/LFP SNR = 1

1 2 3 4 5
from

5

4

3

2

1

 0

 0.2

 0.4

 0.6

GC

GC

Figure 10: Conditional GC analysis of data generated from the simple VAR model.
EEG/LFP: Data generated from the VAR model downsampled at 250Hz. Gaussian white
noise with given signal-to-noise ratio (SNR) then applied pre-downsampling.
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Figure 11: GC analysis of data generated from the spiking neuronal model. EEG/LFP:
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