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Abstract- Several studies have demonstrated that in the
presence of a high degree ofselective neutrality, in par-
ticular on fitness landscapes featuringneutral networks,
evolution is qualitatively different from that on the more
common model of rugged/correlated fitness landscapes of-
ten (implicitly) assumed by GA researchers. We charac-
terise evolutionary dynamics on fitness landscapes with
neutral networks and argue that, if a certain correlation-
like statistical property holds, the most efficient strat-
egy for evolutionary search is not population-based, but
rather a population-of-one netcrawler - a variety of hill-
climber. We derive quantitative estimates for expected
waiting times to discovery of fitter genotypes and discuss
implications for evolutionary algorithm design, including
a proposal for an adaptive variant of the netcrawler.

1 Introduction

In the GA community at large there is a widely-held percep-
tion of fitness landscapes as being characteristically rugged or
semi-correlated, a perception that has been reinforced by the
study of “toy” problems and highly artificial multi-peaked test
functions. This, coupled with historical factors within the de-
velopment of GA’s as a search technique (such as the Building
Block Hypothesis), have led to what might be characterised
as the “Big Bang” view of evolutionary search (see Section
2.1). At Sussex University there is a tradition of the applica-
tion of evolutionary techniques to decidedly real-world prob-
lems, such as on-chip hardware evolution [12, 27, 21, 29]
and evolutionary robotics [4, 11, 15, 16, 26], from which has
emerged a markedly different view of the nature of artificial
evolutionary fitness landscapes and their concomitant evolu-
tionary dynamics. In particular the presence and significance
of neutral evolutionhas come under the research spotlight.

The major impetus for this research has come from evolu-
tionary biology; ironically, GA research has traditionally re-
mained somewhat isolated from its biologically-inspired ori-
gins. The work of the population biologist Motoo Kimura on

selectively neutral mutation [19, 5] initiated a debate amongst
biologists which continues to this day. More recently, re-
search into the structure of RNA secondary structure folding
landscapes [8, 10, 14, 24] led to the concept ofneutral net-
works. These are connected networks of genotypes which
map to the same phenotype, where two genotypes are “con-
nected” if they differ by one (or possibly a few) point muta-
tions. It is found that the dynamics of populations of geno-
types evolving on fitness landscapes featuring neutral net-
works differ qualitatively from population dynamics on more
conventional rugged/correlated landscapes as might be en-
countered in either the biological or artificial evolution liter-
ature. Although the structures of fitness landscapes arising in
the context of artificial evolution are ill-understood, a cursory
examination of the types of genotype to phenotype mappings
deployed in many real-world applications of artificial evolu-
tion (e.g. evolution of neural network controllers in robotics,
on-chip electronic circuit evolution, etc.) suggests thatwe
might expect a substantial degree of neutral mutation. Work
here at Sussex suggests that this neutrality may well take the
form of neutral networks as envisaged by RNA researchers.

In this paper we argue that, given large-scale neutrality,
the traditional view of evolutionary dynamics may be largely
irrelevant to the GA practitioner concerned with real-world
problems. In Section 2 we characterise evolutionary search
on fitness landscapes featuring neutral networks and address
what is for the GA practitioner perhaps the most pertinent as-
pect of evolutionary search: how long can we expect to wait
to see improvements in fitness and how should we design and
tune our search algorithms so as to effect the most efficient
search? In Section 3 these issues are analysed quantitatively
for a class of fitness landscapes with neutral networks satisfy-
ing a statistical property that we term�-correlation. We show
that there is an optimal mutation scheme for such landscapes
and conjecture that there is too an optimal evolutionary search
algorithm, thenetcrawler. Section 4 presents a summary of
results.
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2 Evolutionary Dynamics on Neutral Networks

2.1 Overview

Fig. 2.1 captures many of the salient features of evolutionary
dynamics on a fitness landscape featuring neutral networks1

as identified in [14, 13, 30, 2, 3]:
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Figure 2.1: Typical evolutionary dynamics on a fitness land-
scape featuring neutral networks.

In summary:� Evolution proceeds byfitness epochs, during which the
mean fitness of the population persists close to the fit-
ness of the fittest genotype(s) currently represented in
the population.� Transitions to higher fitness epochs are preceded by the
discovery of higher fitness genotype(s) than currently
reside in the population.� Transitions may be down as well as up; the current
fittest genotype(s) may be lost.� The discovery of a higher fitness genotype does not
necessarily initiate a new epoch; the new genotype may
be quickly lost before it can become established in the
population. This may be repeated several times.� If a higher fitness genotypedoesinitiate a fitness epoch,
there is a transition period, brief compared to a typical
epoch duration2, during which the population mean fit-
ness climbs to the new epoch level.

Through the work of various researchers a consistent expla-
nation has emerged for the features presented above:� During a fitness epoch the population is localised in se-

quence space, somewhat like a classicalquasi-species
[7]. The fittest genotypes reside on a neutral network,
along which theydiffuse[14, 6], until either...� ... aportal [30] to a higher fitness neutral network is

discovered, or...� ... all genotypes on the current highest neutral network
are lost due to sampling noise - this phenomenon is re-
lated to the concept of theerror threshold[23].� If a higher fitness genotype is discovered it will survive
and drift to fixation with a certain probability [5].� During the transient period when a higher fitness
genotype is fixating, the population becomes strongly
converged genetically (this phenomenon is variously
known in the literature as “hitch-hiking” or the
“founder effect”), as the higher fitness portal genotype
and its selectively neutral mutants are strongly selected
at the expense of the old population.

Now a more “traditional” view might impute a somewhat dif-
ferent interpretation to Fig. 2.1. It might be assumed that
epochs correspond to episodes during which the population
is entrapped in the vicinity of a local fitness optimum, while
transitions to higher fitness levels signify discovery of higher
local peaks. Broadly, the traditional view might be char-
acterised thus: recombination assembles fitness-enhancing
“building blocks” present in the population into higher fit-
ness genotypes (the Building Block Hypothesis); mutation is
merely a “background operator” to prevent total loss of ge-
netic diversity. This process continues as long as there is
sufficient genetic diversity in the population for recombina-
tion to work with. Once genetic diversity has waned (in-
evitably so, due to the combined effects of selection pressure
and finite-population stochastic sampling) the populationis
deemed “converged” and no further fitness improvements are
likely.

Thus it is deemed necessary to initiate the GA with a (usu-
ally large) randomly generated population - that is, with a
“Big Bang” of genetic diversity for recombination to work
upon. This perception goes some way to explaining the ob-
session of much GA research with “premature convergence”
and the multitudinous schemes prevalent in the literature for
the avoidance thereof. In this author’s view there are several
serious flaws to this picture:� There is scant evidence that real-world artificial evo-

lution fitness landscapes conform to the rugged (non-
neutral) picture often implicitly assumed.� It is not clear whether “building blocks” in the conven-
tionally understood sense will necessarily exist.� Even if there are building blocks, serious doubt must
be cast on the Building Block Hypothesis - see for in-
stance [9]. Basically, due to the comparatively brief
takeover period of any genotype with a fitness advan-
tage (see Fig. 2.1) and the effects of hitch-hiking, mul-
tiple building blocks are never likely to be simultane-
ously present in a population.

1The landscape in Fig. 2.1 is an NKp landscape [2, 3], the GA standard fitness-proportional roulette-wheel selection, with a fixed population size.
2Indeed so brief as to be virtually indiscernible on the time-scale of Fig. 2.1.



These points lead us to question the role of recombination.
For if recombination is not assisting us byassemblingbuild-
ing blocks what is its purpose? Might it help usfind build-
ing blocks? In this author’s opinion there is no good reason
to think so; at best recombination will function as amacro-
mutationoperator - a “leap in the dark” across the fitness
landscape. Indeed, it might be remarked, inbiologicalevolu-
tion the role of recombination is almost certainlynot the as-
sembly of putative building blocks [22], although other mech-
anisms such aserror repair [20] are considered plausible.

This is not to imply that there isno role for recombina-
tion; indeed, GA practitioners commonly report a significant
improvement in search efficacy with recombination. Never-
theless, in this paper we reverse received wisdom and view
mutationas the driving force behind evolutionary search. If
recombination has a role to play we view it as secondary (and
obscure!) and thus exclude it from our current analysis.

2.2 Statistical Dynamics

Our analysis of evolutionary dynamics on fitness landscapes
with neutral networks follows the model developed by van
Nimwegenet. al. [30], termed “statistical dynamics” by
obvious analogy with classical statistical mechanics. Here
the fitness landscape iscoarse-grainedby decomposition into
neutral networks. For populations of genotypes evolving on
the landscape amaximum entropyapproximation is made re-
garding the distribution of genotypes within the constituent
neutral networks, thereby reducing thestate-spaceof popu-
lations to a manageable number of “macroscopic” variables.
As in statistical mechanics, it is difficult to predict how well
this model will approximate the actual dynamics of evolving
populations - it is thus judicious to test all theoretical predic-
tions of such models against computer simulations.

All genotypes are taken to bebinary, haploid sequences
of fixed sequence lengthL. The space of all such sequences,
with the graph structure induced by the adjacency of se-
quences connected by a single point-mutation (i.e. bit flip)
defines thesequence spaceS, anL-dimensional binary hy-
percube. Afitness landscapeis defined to be a mapping from
the sequence space to the set of real numbers (so fitness is
deterministically associated with genotype; i.e. there isno
“noise” on fitness evaluation). Given a fitness landscapeLwe
define two genotypes to beconnectediff there is a sequence
of fitness-preserving point-mutations taking one genotypeto
the other; this is evidently an equivalence relation and thus
induces a partitioning of the sequence space. Theneutral
networksare defined to be the equivalence classes of this par-
titioning; i.e. the maximal connected subsets. We label the
neutral networks�i, where�i has fitnesswi; indicesi; j; : : :
run from1 toN , whereN is the number of neutral networks.
By convention the�i’s are listed in order of ascending fitness.
For simplicity, in this paper we assume that neutral network
fitnesses arestrictly increasing; i.e.w1 < w2 < : : : < wN .

We now define a(finite) populationon a sequence spaceS to be a sequencen � (ng : g 2 S) whereng represents

the number of copies of genotypeg in the population. The
population sizeis given byS �Pg2S ng. We define anevo-
lutionary processon S to be astochastic process[17] n(t)
with state space the set of all populations onS. In this pa-
per all evolutionary processes will be assumed to satisfy the
following:� The time parametert is discrete.� Population sizeS is fixed.� The process isMarkovian[17].� At each time step a number of genotypes are se-

lected (independently and possibly with replacement)
for replication. A copy of each selected genotype then
mutatesindependently and is added to the population.
A number of genotypes are then eliminated from the
resultant (larger) population, so as to maintain a fixed
population size.

An evolutionary process iselitist if the fittest genotypes in the
population are never eliminateden masse.

Given a populationn, following our statistical mechanics
analogy, we can define the corresponding “coarse-grained”
population to be the vectorX = (X1; X2; : : : ; XN ) whereXi � Pg2�i ng represents the number of genotypes in our
population that are on the neutral network�i. Population size
is given byS � PNi=1Xi. We shall also refer to any vectorX of the above form as a “population” - it should be clear
from the context and notation to which manner of population
we refer. Likewise, given an evolutionary processn(t), we
derive a corresponding stochastic processX(t). It must be
stressed that the processX(t) will in generalnot be Marko-
vian - the transition probabilities from one population to the
next will generally depend on the distributions of genotypes
within the individual neutral networks�i. We shall, however,
approximate the evolutionary processX(t) with a Markov
process; to do so we make amaximum entropy approximation
that, roughly speaking, given a genotype from our population
in �i, that genotype is treated as if it had been chosen uni-
formly and at random from�i . We are ultimately, however,
modeling the underlying “real” evolutionary processesn(t),
so all Monte Carlo simulations used to test results should
model the full stochastic processn(t) rather than the coarse-
grained approximationX(t).
2.3 Mutation Modes

All evolutionary processes considered in this paper operate
via selection(on the basis of fitness) andmutation, in the
sense that the Markov transition probabilities depend onlyon
the fitnesses of sequences and the probabilities that one se-
quence mutates to another. Mutation is assumed independent
of both genotype and locus; i.e. the probability that a point-
mutation occurs at a given locus for a given genotype does not
depend on the specific genotype nor on the locus under con-
sideration. In all that follows subscripts�; �; : : : run from0 to L. We shall consider amutation modeto be defined by
a probability distributionu�, � = 0; 1; 2; : : : ; L whereu�



is the probability that in the event of mutation of a genotype
exactly� (randomly selected) loci undergo point-mutations.
We define theper-sequence mutation rate� �P� �u�; i.e.
the expected number of point-mutations per sequence. Exam-
ples of mutation modes include:

Poisson mutation: Here each locus flips independently with
the same probabilityu. The expected number of flips per se-
quence is given by� = Lu. In the long sequence length
limit L!1, the mutation distribution approaches a Poisson
distribution; i.e.:u� = e�����! (1)

Constant mutation: Here exactly� loci undergo point-
mutation; i.e.:u� = Æ�� (2)

To analyse our evolutionary processes we will want to know
the probabilitymij that an (arbitrary) sequence in�j which
undergoes point-mutation at an (arbitrary) locus ends up in�i
(note the order of indices). This reflects our coarse-grained
approach; in reality the probability of mutation to�i will dif-
fer according as to which sequence in�j we choose to mutate.
We then adopt the maximum entropy approximation thatmij
also reflects with sufficient accuracy the probability that,if
a sequence chosen arbitrarily from apopulationis in �j , that
sequence ends up in�i after point-mutation at an arbitrary lo-
cus. At this level of analysis the(single-locus) mutation ma-
trix m � (mij) contains all the structural information about
our landscape that we require. Note thatm is a stochastic
matrix; i.e. each column sums to1. We also define theneu-
trality of the neutral network�i to be �i � mii; i.e. the
probability that an arbitrary point-mutation of a sequencein�i leaves that sequence in�i.

Since mutation will in general involve more than a sin-
gle point-mutation we will also want to know the probabil-
ity m(�)ij that an (arbitrary) sequence in�j which undergoes
point-mutations at exactly� (arbitrary) loci ends up in�i.
We consider the�-locus mutation as a sequence of� point-
mutations (taken in some arbitrary order). We have, condi-
tioning on the first point-mutation:m(�)ij = NXk=1m(��1)ik mkj (3)

for � = 1; 2; : : : ; L. In matrix notation, settingm(�) to be

the matrix
�m(�)ij �, we havem(�) =m(��1) �m, so that:m(�) =m� (matrix power) (4)

for � = 0; 1; 2; : : : ; L. Now given a mutation mode(u�) we
introduce the(general) mutation matrix:M = LX�=0u�m� (5)

so thatMij represents the probability that a sequence in�j
mutates to�i under the given mutation mode. Thus e.g. for
Poisson mutation we have:M =M(�) = e��(I�m) (6)

whereI is theN �N identity matrix, while for constant mu-
tation:M =M(�) =m� (7)

2.4 Epochal Dynamics

We will now make more precise what we mean by an
“epoch”. Referring to Fig. 2.1, during an epoch (i.e. dur-
ing periods when transients associated with losing the current
neutral network or moving to a higher network have subsided)
the evolutionary processX(t) is, as a Markov process, “al-
most” stationary[17]; roughly speaking, the probability of
finding the population in a given state does not vary over time.
In [30] an evolutionary process during such an episode is de-
scribed asmetastable. We shall thus say that the evolutionary
processX(t) is in epochn if Xn(t) > 0 andXi(t) = 0 fori > n (i.e. �n is the highest-fitness neutral network currently
represented in the population) and the process is metastable
as described above. As an approximation we may consider
an evolutionary processX(t) during epochn as a (station-
ary) Markov process in its own right.

2.5 Waiting Time to Portal Discovery

We attempt to provide an approximate answer to the follow-
ing question: given that an evolving populationX(t) is in
then-th epoch, what is the expected waiting time until a por-
tal genotype (i.e. one of higher fitness than currently resides
in the population) is discovered? The first issue is how we
shouldmeasuretime. Given that for real-world GA’s the most
time-intensive aspect of the process is likely to be fitness eval-
uation, it makes sense to measure time to portal discovery in
terms of the number of fitness evaluations. It is furthermore
supposed that we may store the fitnesses of all genotypes cur-
rently in the population; i.e. it is only necessary to evalu-
ate fitness when anewgenotype appears in the population.
Since the only generator of new genotypes is mutation, we
thus associate fitness evaluation with the occurrence of mu-
tation. Note that time thus defined may not equate to a time
step of the evolutionary process. When confusion might arise
we shall make clear which time we are talking about.

Now from Section 2.4 we deduce that, given the assumed
metastability of the process during epochn, the probability
of discovery of a portal to�n+1 will be approximately the
same at each time step of the process; we write this(per-time
step) portal discovery probabilityaspn. The distribution of
the waiting timeTn (i.e. thefirst passage time) to discovery



of a portal during epochn is thus approximatelygeometric
and themean first passage timemeasured in time steps of the
evolutionary process is given by:E (Tn) = 1pn (8)

Now in all processes considered in this paper,� � number of
fitness evaluations per time-step of the evolutionary process
is constant. The expected waiting time in fitness evaluations
is thus given by:E (�Tn) = �p n (9)

We have, however, disregarded an important issue: in Sec-
tion 2.1 we noted that, if not elitist, an evolutionary process
in epochn may well “lose”�n beforea portal to�n+1 is dis-
covered. How then canTn be well-defined? We side-step the
issue in this paper; the evolutionary process which will most
concern us is, in fact, elitist and we may at worst have to sup-
pose that if our algorithm isnot elitist, then the mutation rate
is low enough that the probability of losing the current fittest
network before finding a portal is small. We refer the reader
to [30] for more detailed analysis of this topic.

3 �-Correlated Landscapes

We now make some structural assumptions about our fitness
landscapeL. Specifically, we assume that the probability of
a point-mutation taking a sequence to ahigher fitnessneu-
tral network is very small compared to the probability of it
being neutral or of reducing fitness. We shall actually go fur-
ther than this and assume that the only non-negligible fitness-
increasing point-mutations are those to thenext-highestnet-
work. More precisely:

Definition: We say that a fitness landscapes is�-correlated
iff there exists an� with 0 < � � 1 such that the point-
mutation matrix takes the form:m = 0BBBBB� �1�1 �2 ��2 �3o (�) . . .

. . .�N�1 �N
1CCCCCA (10)

for some�i with 0 < �i � � for i = 1; 2; : : : ; N � 1. �
Here� represents the transition probabilities from higher to
lower fitness networks, while�i is the probability ofback-
mutationfrom �i to �i+1 under point-mutation. The�i and� terms arenot taken to be� 1. With �-correlation we work
throughout too (1) in �; i.e. we neglect allo (�) terms.

This property is related to the degree of (genotype-fitness)
correlation present in our landscape; i.e. the degree to which
sequences nearby in sequence space are likely to be of similar

fitness. Thus there is a small but non-zero probability that a
point-mutation from any neutral network leads to a (probably
small) increase in fitness, while the probability of a largerfit-
ness increase is of a smaller order of magnitude. Note that�-correlation is a rather stringent condition - it is certainly not
to be claimed as a property that might generally be assumed
of fitness landscapes arising in the context of artificial (orin-
deed natural) evolution. We remark, however, that if there is
no correlation then no search technique is likely to be more
efficient than random search; this is a form of “no free lunch
theorem” [32]. We are thus obliged to assumesomecorrela-
tion. Note also that correlation and neutrality are (in a sense
that may be made quite precise)statistically independent
[2, 3, 25]; that is, we should not assume that neutrality im-
plies, nor precludes, correlation. Furthermore, it is reasonable
to suppose that the higher up (in fitness) our landscape we are,
the more rare are those point-mutations taking us higher still;
and that point-mutations leading tolargefitness increases will
be rarer than those (already rare) point-mutations leadingto
small fitness increases. We should be aware, however, that
it is quite possible that even if there is a reasonable degree
of correlation there may still exist sub-optimal neutral net-
works for whichno fitness-increasing point-mutations exist;
such networks may be thought of as the neutral analogues
of isolated sub-optimal fitness peaks in the standard theory
of rugged landscapes [31, 18]. Although�-correlation effec-
tively rules out the existence of sub-optimal neutral networks
there is some evidence to suggest that such networks may
not necessarily be common; studies of RNA folding land-
scapes in particular have demonstrated variouspercolation-
like properties of neutral networks [8, 10, 13, 24] which sug-
gest that almost every network approaches to within a few
point-mutations of almost every other network.

For the remainder of this section we assume that our land-
scape satisfies the�-correlation property (10) and we neglect
terms ofo (�). Now, given a mutation mode(u�) as in Sec-
tion 2.3 let us define�n to be the probability that an (arbi-
trary) individual sequence in�n discovers a portal to�n+1
under mutation; i.e.�n = Mn+1;n whereM is given by (5).
From (10), we can calculate that too (1) in �:m�n+1;n = �n8<: ��n���n+1�n��n+1 �n 6= �n+1����1n �n = �n+1 (11)

so we find e.g. that for Poisson mutation in the long sequence
length limit:�n(�) = �n8<: e��(1��n)�e��(1��n+1)�n��n+1 �n 6= �n+1�e��(1��n) �n = �n+1
as a function of per-sequence mutation rate�, while for con-
stant mutation:�n(�) = m�n+1;n (12)



3.1 Optimal Search

We are now in a position to state the principal results of this
paper:

Proposition 1: On an�-correlated fitness landscape, of all
possible mutation modes, that yielding the maximum value
for �n is given by constant mutation with per-sequence mu-
tation rate:� = (nearest integer to)8<: � ln (� ln �n)�ln (� ln �n+1)ln �n�ln �n+1 �n 6= �n+1� 1ln �n �n = �n+1 (13)

Proof: For a general mutation mode(u�), we have�n = PL�=0 u�m�n+1;n. We need to find the maximum
value for�n as a function ofu0; u1; : : : ; uL under the con-
straints0 � u� � 1 8� and

PL�=0 u� = 1. Now �n being
linear in theu�’s describes a hyper-plane inu-space; we
have to find the maximum “height” of this hyper-plane over
the simplex described by the constraints on theu�’s. It is
clear that (barring any “degeneracies” among the coefficientsm�n+1;n) the maximum must lie above a “corner” of the
simplex; i.e. a point where all theu�’s are zero except for
one,� = � say, for whichu� = 1; i.e. the mutation mode is
constant with per-sequence mutation rate�. From (12)�n(�)
is given by (11) with� = �; the result follows by differenti-
ating�n(�) with respect to�, setting the resulting expression
to zero and solving for�. Note that the degenerate cases arise
where two (or more) of the coefficientsm�n+1;n coincide;
in these cases the� of (13) still yields a (now non-unique)
maximum for�n. �
Fig. 3.1 plots the optimal mutation rate� of Proposition 1 as
a function of�n; �n+1.
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Figure 3.1: The� of Proposition 1 plotted against�n; �n+1
The next proposition is of a more conjectural nature - the

“proof” supplied is by no means rigorous. Firstly, we define
thenetcrawlerevolutionary process:

Definition: The netcrawler process operates as follows:
population size= 1. At each time step the current (single)
genotype replicates and the copy mutates according to the
mutation mode. If the mutant offspring is less fit than its
parent it is eliminated; otherwise the parent is eliminated. �
We note that this algorithm is almost identical to theRandom
Mutation Hill Climber (RMHC) presented in [9], the only
difference being that the RMHC only ever flips one (random)
bit at each step. We avoid the term “hill-climber” to empha-
sise that, in the presence of neutral networks, the netcrawler
spends most of its time not climbing hills, but rather perform-
ing neutral walks[13]. It is elitist, the number of fitness eval-
uations per time step is1 and we always havepn = �n so
that the expected waiting time on�n is just 1�n .

Proposition 2: On an�-correlated fitness landscape, given
a mutation mode, the most efficient (fixed-population) evolu-
tionary process is the netcrawler.

Informal Proof : Suppose a population of fixed sizeS evolv-
ing according to some evolutionary process under a particu-
lar mutation mode is in epochn. From (10) it follows that
for i < n Mn+1;i will be o (�) and hence negligible. There
is thus no point in maintaining genotypes in the population
on�i for i < n. Recalling our definition of an evolutionary
process (Section 2.2) our process should thus, at the elimi-
nation stage, eliminate all genotypes which have mutated to�i for i < n. At the start of each time step, then, the entire
population will be on�n.

Now let�n be as before the probability that (under the op-
erant mutation mode) a single genotype mutates from�n to�n+1. The probability that (during the mutation phase) some
mutant finds a portal to�n+1 is thuspn � 1 � (1 � �n)R
whereR is the number of replicants; equality occurs when
the probabilities of the individual mutants finding a portalare
independent. Selection for replication should thus bewith-
out replacement; for if a genotype is selected more than once
its mutant offspring will be genetically correlated and their
probabilities of finding a portal thus not independent.

Our evolutionary process during epochn now looks
like the following: at each time step a certain number of
the S genotypes in our population is selected for replica-
tion/mutation. Suppose firstly that no portal is discovered.
The mutants that fall off�n are eliminated. The remaining
population consists of the original population plus those mu-
tants that have stayed on�n. Now if our aim is to keep genetic
correlations to a minimum, then we don’t wish to leave (cor-
related) parent-offspring pairs in the population. On the other
hand, we don’t wish to eliminate a stay-on mutant offspring
while retaining its un-mutated parent, since we would thus
end up “anchoring” our search to the limited region of�n



neighbouring our current population; in effect we would like
to maximisedrift of our population on�. We should thus re-
tain stay-on mutants and eliminate their un-mutated parents.

Effectively, our evolutionary process now comprisesS
independent netcrawlers, some selection of which are “ac-
tivated” at each time step. But if during some time-step a
mutant discovers a portal to�n+1 then we must initiate a new
epoch. Since the remainingS� 1 genotypes now have a neg-
ligible chance of finding a portal to�n+2 all S members of
the population must become copies of the newly discovered
portal genotype. But this again introduces genetic correla-
tions between members of the population. To minimise this
effect we need only choose our population size to beS = 1;
indeed there is no loss in search efficiency by reducing the
population size, since the netcrawlers are independent. Thus
the most efficient evolutionary process for the given mutation
mode comprises a single netcrawler. �
To test our propositions extensive simulations (not pre-
sented here) were carried out onRoyal Roadlandscapes
[9, 30], which are indeed�-correlated. As predicted by
Proposition 2, the netcrawler consistently outperformed var-
ious population-based GA’s without recombination (includ-
ing fitness-proportional roulette-wheel selection and several
rank-based tournament algorithms) for Poisson and constant
mutation modes. Waiting times to portal discovery were pre-
dicted with reasonable accuracy and in particular the opti-
mum (constant) mutation rate was correctly predicted by (13)
of Proposition 1.

3.2 The Adaptive Netcrawler

Propositions 1 and 2 of Section 3.1 suggest the following
adaptive netcrawlerfor landscapes which we know, or at least
suspect, of being the�-correlated: we deploy a netcrawler
with the constant mutation mode. We would then like to
be able to find the optimal per-sequence mutation rate (13)
for the current fittest neutral network�, say. This involves
knowledge of the neutrality� of � and also the neutrality�0,
say, of thenext highestnetwork�0, say. Now we can estimate� “on the fly”: suppose that� is our current per-sequence
mutation rate. Then during the course of the progress of our
netcrawler on�, we simply log the fraction of mutations,!
say, which leave us on�. The neutrality� of � is then ap-
proximately!1=�. However, we have no way of knowing
the neutrality�0 of �0. A reasonable guess might be that�0
is close to�. Indeed, examination of�n shows that if�0
is not too different from�, the value for�n obtained from
(12) by setting�0 = � is not too different to the actual op-
timum �n. According to (13) then, we should re-adjust our
mutation rate to�1= ln� � ��= ln!. Curiously this im-
plies that,whateverthe neutrality of�, we should ultimately
see a fraction! = 1=e � 0:36788 of neutral mutations if
our netcrawler is optimised by the above scheme. This result
echoes Rechenberg’s “1/5 success rule” forEvolution Strate-
gies[1], to which our netcrawler bears some resemblance.

4 Conclusions

Fitness landscapes for many real-world artificial evolution
problems are likely to feature large-scale neutrality. We
have argued that on such landscapes the conventional view
of evolutionary search associated with rugged non-neutral
landscapes is misleading and inappropriate. Instead we have
characterised evolutionary dynamics with neutral networks in
terms of drift along networks punctuated by transitions be-
tween networks.We have also argued that the role of recom-
bination is obscure and may amount to little more than macro-
mutation. Given this scenario, the perceived problem of pre-
mature convergence disappears and search for high-fitness
genotypes is dominated by waiting for drift and mutation to
find portals to higher neutral networks.

We introduced the statistical property of�-correlation to
describe landscapes with neutral networks for which higher
networks are “accessible” only from the current network. For
such landscapes we have shown (Proposition 1) that there
is an optimal mutation mode and mutation rate and conjec-
tured (Proposition 2) that there is also an optimal evolution-
ary search strategy which is not population-based but rather
a form of hill-climber which we have dubbed thenetcrawler.
We have also proposed anadaptivevariant of the netcrawler
which gathers statistical information about the landscapeas it
proceeds and uses this information to self-optimise. It should
be remarked in this context that a major motivation for the re-
search presented in this paper was a series of experiments by
Thompson and Layzell in on-chip electronic circuit design by
evolutionary methods [28], during which an algorithm almost
identical to our netcrawler was used with some success. The
mutation rate deployed in these experiments, albeit chosen
on heuristic grounds, in fact turns out to be the optimum pre-
dicted in this paper given the (estimated) neutrality inherent
in the problem.

Finally, we remark that work in progress by the author
suggests that the principal results presented in this papermay
still obtain under considerably less stringent assumptions than�-correlation.
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