Netcrawling - Optimal Evolutionary Search with Neutral Wetks
Lionel Barnett (lionelb@cogs.susx.ac.uk)

Centre for the Study of Evolution
Centre for Computational Neuroscience and Robotics
School of Cognitive and Computing Sciences
University of Sussex
Brighton BN1 9QH, UK

March 14, 2001

Abstract- Several studies have demonstrated that in the selectively neutral mutation [19, 5] initiated a debate agsi
presence of a high degree o$elective neutrality in par- biologists which continues to this day. More recently, re-
ticular on fitness landscapes featuringneutral networks  search into the structure of RNA secondary structure fgdin
evolution is qualitatively different from that on the more landscapes [8, 10, 14, 24] led to the concephefitral net-
common model of rugged/correlated fitness landscapes of- works These are connected networks of genotypes which
ten (implicitly) assumed by GA researchers. We charac- map to the same phenotype, where two genotypes are “con-
terise evolutionary dynamics on fitness landscapes with nected” if they differ by one (or possibly a few) point muta-
neutral networks and argue that, if a certain correlation-  tions. It is found that the dynamics of populations of geno-
like statistical property holds, the most efficient strat- types evolving on fithess landscapes featuring neutral net-
egy for evolutionary search is not population-based, but  works differ qualitatively from population dynamics on neor
rather a population-of-one netcrawler - a variety of hill- conventional rugged/correlated landscapes as might be en-
climber. We derive quantitative estimates for expected countered in either the biological or artificial evolutiatet-
waiting times to discovery of fitter genotypes and discuss ature. Although the structures of fithess landscapes grisin
implications for evolutionary algorithm design, including  the context of artificial evolution are ill-understood, asary
a proposal for an adaptive variant of the netcrawler. examination of the types of genotype to phenotype mappings
deployed in many real-world applications of artificial ewol
tion (e.g. evolution of neural network controllers in roiest
1 Introduction on-chip electronic circuit evolution, etc.) suggests tvat
might expect a substantial degree of neutral mutation. Work
In the GA community at large there is a widely-held percep-here at Sussex suggests that this neutrality may well take th
tion of fitness landscapes as being characteristicallyed®@y  form of neutral networks as envisaged by RNA researchers.
semi-correlated, a perception that has been reinforcetiéy t | this paper we argue that, given large-scale neutrality,
study of “toy” problems and highly artificial multi-peakegst  the traditional view of evolutionary dynamics may be laygel
fUnCtionS. ThiS, Coupled with hiStorical faCtorS Wlthlretﬂe- irre|evant to the GA practitioner Concerned W|th rea'_vmﬂ
velopmentof GA's as a search technique (such as the Buildingyoplems. In Section 2 we characterise evolutionary search
Block Hypothesis), have led to what might be characterisedn fitness landscapes featuring neutral networks and asldres
as the “Big Bang” view of evolutionary search (see Sectionyhat is for the GA practitioner perhaps the most pertinent as
2.1). At Sussex University there is a tradition of the applic pect of evolutionary search: how long can we expect to wait
tion of evolutionary techniques to decidedly real-worldlpr o see improvements in fithess and how should we design and
lems, such as on-chip hardware evolution [12, 27, 21, 29}yne our search algorithms so as to effect the most efficient
and evolutionary robotics [4, 11, 15, 16, 26], from which hasgearch? In Section 3 these issues are analysed quanljtative
emerged a markedly different view of the nature of artificial for 5 class of fitness landscapes with neutral networksfgatis
evolutionary fitness landscapes and their concomitantievol jng 3 statistical property that we temycorrelation We show
tionary dynamics. In particular the presence and signiiean that there is an optimal mutation scheme for such landscapes
of neutral eV0|utiOI‘haS come Under the I’esearCh SpOtlIght and Conjecture that there iS too an opt|ma| evo|utionarma

The major impetus for this research has come from evolug|gorithm, thenetcrawler Section 4 presents a summary of
tionary biology; ironically, GA research has traditionate-  (egylts.

mained somewhat isolated from its biologically-inspired o
gins. The work of the population biologist Motoo Kimura 0:{1



2 Evolutionary Dynamics on Neutral Networks

2.1 Overview

Fig. 2.1 captures many of the salient features of evolutipna

dynamics on a fitness landscape featuring neutral networks

as identified in [14, 13, 30, 2, 3]:
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Figure 2.1: Typical evolutionary dynamics on a fitness land-

scape featuring neutral networks.

In summary:

e Evolution proceeds biftness epochsluring which the

discovered, or...

... all genotypes on the current highest neutral network
are lost due to sampling noise - this phenomenonis re-
lated to the concept of therror threshold[23].

e If a higher fithess genotype is discovered it will survive
and drift to fixation with a certain probability [5].

During the transient period when a higher fitness
genotype is fixating, the population becomes strongly
converged genetically (this phenomenon is variously
known in the literature as “hitch-hiking” or the
“founder effect”), as the higher fithess portal genotype
and its selectively neutral mutants are strongly selected
at the expense of the old population.

Now a more “traditional” view might impute a somewhat dif-
ferent interpretation to Fig. 2.1. It might be assumed that
epochs correspond to episodes during which the population
is entrapped in the vicinity of a local fitness optimum, while
transitions to higher fitness levels signify discovery ajtreér
local peaks. Broadly, the traditional view might be char-
acterised thus: recombination assembles fitness-enlgancin
“building blocks” present in the population into higher fit-
ness genotypes (the Building Block Hypothesis); mutation i
merely a “background operator” to prevent total loss of ge-
netic diversity. This process continues as long as there is
sufficient genetic diversity in the population for recondpin
tion to work with. Once genetic diversity has waned (in-
evitably so, due to the combined effects of selection pressu
and finite-population stochastic sampling) the populatfon

mean fitness of the population persists close to the fitdeemed “converged” and no further fithess improvements are
ness of the fittest genotype(s) currently represented itikely.

the population.

Thus it is deemed necessary to initiate the GA with a (usu-

Transitions to higher fitness epochs are preceded by th@!ly 1arge) randomly generated population - that is, with a

discovery of higher fitness genotype(s) than currently Big Bang” of genetic diversity for recombination to work

reside in the population.

Transitions may be down as well as up;
fittest genotype(s) may be lost.

The discovery of a higher fithness genotype does no

necessarily initiate a new epoch; the new genotype may
be quickly lost before it can become established in the

population. This may be repeated several times.

If a higher fithess genotymoesdnitiate a fitness epoch,
there is a transition period, brief compared to a typical
epoch duratiofy during which the population mean fit-
ness climbs to the new epoch level.

Through the work of various researchers a consistent expla-

nation has emerged for the features presented above:

e During a fitness epoch the population is localised in se-

guence space, somewhat like a classipasi-species
[7]. The fittest genotypes reside on a neutral network
along which theydiffuse[14, 6], until either...

e ... aportal [30] to a higher fitness neutral network is

the current

upon. This perception goes some way to explaining the ob-

session of much GA research with “premature convergence”

and the multitudinous schemes prevalent in the literatore f

the avoidance thereof. In this author’s view there are sdver

Serious flaws to this picture:

e There is scant evidence that real-world artificial evo-
lution fitness landscapes conform to the rugged (non-
neutral) picture often implicitly assumed.

It is not clear whether “building blocks” in the conven-
tionally understood sense will necessarily exist.

Even if there are building blocks, serious doubt must
be cast on the Building Block Hypothesis - see for in-
stance [9]. Basically, due to the comparatively brief
takeover period of any genotype with a fithess advan-
tage (see Fig. 2.1) and the effects of hitch-hiking, mul-
tiple building blocks are never likely to be simultane-

ously present in a population.

1The landscape in Fig. 2.1 is an NKp landscape [2, 3], the GAdstal fitness-proportional roulette-wheel selectionhwifixed population size.

2Indeed so brief as to be virtually indiscernible on the tiswale of Fig. 2.1.



These points lead us to question the role of recombinatiorthe number of copies of genotypein the population. The
For if recombination is not assisting us hgsemblinduild-  population sizes given byS = des ny. We define arevo-
ing blocks what is its purpose? Might it help fisd build-  lutionary procesn § to be astochastic procesfl7] n(t)

ing blocks? In this author’s opinion there is no good reasorwith state space the set of all populationssnin this pa-

to think so; at best recombination will function asrecro-  per all evolutionary processes will be assumed to satigfy th
mutationoperator - a “leap in the dark” across the fitnessfollowing:

landscape. Indeed, it might be remarkedyiological evolu- e The time parametdris discrete

tion the role of recombination is almost certaimlgt the as-
sembly of putative building blocks [22], although other mec
anisms such asrror repair [20] are considered plausible.

e Population size is fixed
e The process iMarkovian[17].

This is not to imply that there iso role for recombina- e At each time step a number of genotypes are se-
tion; indeed, GA practitioners commonly report a significan lected (independently and possibly with replacement)
improvement in search efficacy with recombination. Never- for replication A copy of each selected genotype then
theless, in this paper we reverse received wisdom and view  mutatesndependently and is added to the population.
mutationas the driving force behind evolutionary search. If A number of genotypes are then eliminated from the
recombination has a role to play we view it as secondary (and ~ resultant (larger) population, so as to maintain a fixed
obscure!) and thus exclude it from our current analysis. population size.

An evolutionary process ®litist if the fittest genotypes in the
2.2 Statistical Dynamics population are never eliminateth masse

Given a populatiom, following our statistical mechanics

Our analysis of evolutionary dynamics on fitness landscapegnalogy, we can define the corresponding “coarse-grained”
with neutral networks follows the model developed by vanpopulation to be the vectak = (X, X», ..., Xn) Where
Nimwegenet. al. [30], termed “statistical dynamics” by X, = del"i n, represents the number of genotypes in our
obvious analogy with classical statistical mechanics. eHer population that are on the neutral netwark Population size
the fitness landscapedsarse-grainedy decompositioninto  is given byS = Zf\;] X;. We shall also refer to any vector
neutral networks. For populations of genotypes evolving onx of the above form as a “population” - it should be clear
the landscape maximum entropgpproximation is made re-  from the context and notation to which manner of population
garding the distribution of genotypes within the constite we refer. Likewise, given an evolutionary procesg), we
neutral networks, thereby reducing theate-spac@f popu-  derive a corresponding stochastic procésé). It must be
lations to a manageable number of “macroscopic” variablesstressed that the proces(t) will in generalnot be Marko-
As in statistical mechanics, it is difficult to predict how e vian - the transition probabilities from one population e t
this model will approximate the actual dynamics of evolving next will generally depend on the distributions of genotype
populations - it is thus judicious to test all theoreticatgic-  within the individual neutral networkE;. We shall, however,
tions of such models against computer simulations. approximate the evolutionary proce3§(t) with a Markov

All genotypes are taken to denary, haploid sequences process; to do so we maker@aximum entropy approximation
of fixed sequence length. The space of all such sequences, that, roughly speaking, given a genotype from our poputatio
with the graph structure induced by the adjacency of sein I;, that genotype is treated as if it had been chosen uni-
quences connected by a single point-mutation (i.e. bit flip¥ormly and at random fronf’; . We are ultimately, however,
defines thesequence spacg an L-dimensional binary hy- modeling the underlying “real” evolutionary processes),
percube. Afitness landscapie defined to be a mapping from so all Monte Carlo simulations used to test results should
the sequence space to the set of real numbers (so fitnessngodel the full stochastic processt) rather than the coarse-
deterministically associated with genotype; i.e. therads grained approximatiolX (t).
“noise” on fitness evaluation). Given a fithess landsdap&
define two genotypes to lmnnectedff there is a sequence
of fithess-preserving point-mutations taking one genotgpe
the other; this is evidently an equivalence relation andthu All evolutionary processes considered in this paper operat
induces a partitioning of the sequence space. féatral via selection(on the basis of fithess) andutation in the
networksare defined to be the equivalence classes of this pasense that the Markov transition probabilities depend only
titioning; i.e. the maximal connected subsets. We label thehe fithesses of sequences and the probabilities that one se-
neutral networkd’;, wherel'; has fithessw;; indicesi, j, . .. guence mutates to another. Mutation is assumed independent
run from1to N, whereN is the number of neutral networks. of both genotype and locus; i.e. the probability that a point
By convention thd’;’s are listed in order of ascending fithess. mutation occurs at a given locus for a given genotype does not
For simplicity, in this paper we assume that neutral networkdepend on the specific genotype nor on the locus under con-
fitnesses arstrictly increasing; i.ew; < ws < ... < wy. sideration. In all that follows subscripts 3, ... run from

We now define dfinite) populationon a sequence space 0 to L. We shall consider anutation modeo be defined by
8 to be a sequence = (n, : g € §) wheren, represents a probability distributionu,, @ = 0,1,2,..., L whereu,

2.3 Mutation Modes



is the probability that in the event of mutation of a genotypeso thatl/;; represents the probability that a sequence jn
exactlya (randomly selected) loci undergo point-mutations. mutates td"; under the given mutation mode. Thus e.g. for
We define theper-sequence mutation rafe= )" au,;i.e.  Poisson mutation we have:

the expected number of point-mutations per sequence. Exam-

ples of mutation modes include: M = M(p) = e #I-™) (6)

Poisson mutation Here each locus flips independently with
the same probability. The expected number of flips per se-
qguence is given by, = Lu. In thelong sequence length
limit L — oo, the mutation distribution approaches a Poisson
distribution; i.e.:

wherel is theN x N identity matrix, while for constant mu-
tation:

M = M(n) = m* @)

Uy = ef‘“u—l 1) .
o 2.4 Epochal Dynamics

Constant mutation Here exactlyu loci undergo point- We will now make more precise what we mean by an
mutation; i.e.: “epoch”. Referring to Fig. 2.1, during an epoch (i.e. dur-

w =4 @) ing periods when transients associated with losing thesctirr

@ aH neutral network or moving to a higher network have subsided)

To analyse our evolutionary processes we will want to knowthe evolutionary procesX (¢) is, as a Markov process, “al-
the probabilitym;; that an (arbitrary) sequence Ity which  most” stationary[17]; roughly speaking, the probability of
undergoes point-mutation at an (arbitrary) locus ends tip in  finding the population in a given state does not vary over time
(note the order of indices). This reflects our coarse-giine In [30] an evolutionary process during such an episode is de-
approach; in reality the probability of mutationo will dif- scribed agnetastableWe shall thus say that the evolutionary
fer according as to which sequencdinwe choose to mutate. processX (t) is in epochn if X,,(¢) > 0 and X;(¢) = 0 for
We then adopt the maximum entropy approximationthgt i > n (i.e. T, is the highest-fithess neutral network currently
also reflects with sufficient accuracy the probability that, represented in the population) and the process is metastabl
a sequence chosen arbitrarily fronpapulationis inI';, that  as described above. As an approximation we may consider
sequence ends up Ih after point-mutation at an arbitrary lo- an evolutionary procesX (¢) during epochn as a (station-
cus. At this level of analysis th@ingle-locus) mutation ma- ary) Markov process in its own right.
trix m = (m;;) contains all the structural information about
our landscape that we require. Note thatis a stochastic
matrix; i.e. each column sums 1o We also define theeu- 2.5 Waiting Time to Portal Discovery
trality of the neutral networld’; to bev; = my; i.e. the

probability that an arbitrary point-mutation of a sequente | ! : : i o
T'; leaves that sequencel. ing question: given that an evolving populatigf(t) is in

Since mutation will in general involve more than a sin- N€7-th epoch, whatis the expected waiting time until a por-

gle point-mutation we will also want to know the probabil- [ genotype (i.e. one of higher fitness than currently resid
in the population) is discovered? The first issue is how we
point-mutations at exactly (arbitrary) loci ends up if;. ghou!dmeqsurehme. Given that forregl-yvorld GAs Fhe most

. . . time-intensive aspect of the process is likely to be fithngas e
We consider thev-locus mutation as a sequencecopoint- N . . .

. : . .uation, it makes sense to measure time to portal discovery in
mutations (taken in some arbitrary order). We have, condi- . ) :
I . : o terms of the number of fithess evaluations. It is furthermore
tioning on the first point-mutation:

supposed that we may store the fitnesses of all genotypes cur-

We attempt to provide an approximate answer to the follow-

ity mz(.?) that an (arbitrary) sequence Ify which undergoes

() N (a—1) rently in the population; i.e. it is only necessary to evalu-
M = Z My Mkj (3)  ate fitness when aew genotype appears in the population.
k=1 Since the only generator of new genotypes is mutation, we
fora = 1,2,..., L. In matrix notation, settingn(® to be  thus associate fitness evaluation with the occurrence of mu-

@)
j

tation. Note that time thus defined may not equate to a time

the matrix (mf ) 1 ) i
’ step of the evolutionary process. When confusion mighearis

),we havern(®) = m(®~1) . m, so that:

m(®) = mo (matrix power) (4) Wwe shall make clear which time we are talking about.

) ] Now from Section 2.4 we deduce that, given the assumed
fora =0,1,2,..., L. Now given a mutation mod@:..) W& metastability of the process during epachthe probability
introduce thggeneral) mutation matrix of discovery of a portal td",,,; will be approximately the

L same at each time step of the process; we write(iés-time
M = Z Uem® (5) step) portal discovery probabilitgsp,,. The distribution of
a=0 the waiting timeT7, (i.e. thefirst passage tim)eto discovery



of a portal during epoch is thus approximatelgeometric  fitness. Thus there is a small but non-zero probability that a
and themean first passage tinmeasured in time steps of the point-mutation from any neutral network leads to a (projgabl
evolutionary process is given by: small) increase in fithess, while the probability of a larfier
ness increase is of a smaller order of magnitude. Note that
= 1 (8)  e-correlation is a rather stringent condition - it is certginot
Dn to be claimed as a property that might generally be assumed
of fitness landscapes arising in the context of artificialiger
deed natural) evolution. We remark, however, that if there i
no correlation then no search technique is likely to be more
efficient than random search; this is a form of “no free lunch
theorem” [32]. We are thus obliged to assustenecorrela-
E (T)) = v (9 tion. Note also that correlation gnd qegtrality_are (in assen
Dn that may be made quite precissiatistically independent
2, 3, 25]; that is, we should not assume that neutrality im-
lies, nor precludes, correlation. Furthermore, it is ceeable
to suppose that the higher up (in fithess) our landscape we are
. : the more rare are those point-mutations taking us highlér sti
covered. How then cali, be well-defined? We side-step the and that point-mutations leadinglargefitness increases will

issue in thig paper, the g_volutionary process which will mos be rarer than those (already rare) point-mutations leatting
concernus s, in fact,. eIm;t a”d.".Ve may at worst hqve to SUPSmall fitness increases. We should be aware, however, that
pose that if our algorithm iaot elitist, then the mutation rate

: - : . it is quite possible that even if there is a reasonable degree
Inseltc\J/:/A(/) reknggg;érﬁéaz g%% ?g:lg :Inlgﬁ'n\?\/;h;f;riﬁgtrzgzerof correlatioq there.may s.tiII exis_t sub—c_)ptimal n.eutrat—rje
to [30] for more detailed analysis of this.topic works for whichno fithess-increasing point-mutations exist;

' such networks may be thought of as the neutral analogues
of isolated sub-optimal fitness peaks in the standard theory
3 e-Correlated Landscapes of rugged landscapes [31, 18]. Althougitorrelation effec-
tively rules out the existence of sub-optimal neutral nekso
Yhere is some evidence to suggest that such networks may
not necessarily be common; studies of RNA folding land-
scapes in particular have demonstrated varioeicolation
like properties of neutral networks [8, 10, 13, 24] which sug
gest that almost every network approaches to within a few
point-mutations of almost every other network.

For the remainder of this section we assume that our land-
scape satisfies thecorrelation property (10) and we neglect
terms ofo (¢). Now, given a mutation modg:,,) as in Sec-
tion 2.3 let us definer,, to be the probability that an (arbi-
trary) individual sequence i, discovers a portal td',,
under mutation; i.er,, = M,41,, WwhereM is given by (5).

E (T})

Now in all processes considered in this papet; number of
fitness evaluations per time-step of the evolutionary mece
is constant. The expected waiting time in fithess evaluation
is thus given by:

We have, however, disregarded an important issue: in Se
tion 2.1 we noted that, if not elitist, an evolutionary prese
in epochn may well “lose"I’,, beforea portal tol",, +; is dis-

We now make some structural assumptions about our fithe
landscapél. Specifically, we assume that the probability of
a point-mutation taking a sequence tdigher fithnesseu-
tral network is very small compared to the probability of it
being neutral or of reducing fitness. We shall actually ge fur
ther than this and assume that the only non-negligible fithes
increasing point-mutations are those to tlext-highesnhet-
work. More precisely:

Definition: We say that a fithess landscapes-isorrelated
iff there exists are with 0 < ¢ < 1 such that the point-
mutation matrix takes the form:

n From (10), we can calculate thated1) in e:
€1 V2 * Loy
. o ntl Vp # Vni1
"= col (10) T A ¢ 10
o(e) . - av2~! Upn = Uni1
EN-1 VN . . L
so we find e.g. that for Poisson mutation in the long sequence
for somee; with 0 < ¢; <efori =1,2,... , N —1. [ | length limit:
e kr(l—vn) _—nu(l=vpyr) v 7é ”
Here x represents the transition probabilities from higher to Tn(B) = €n Vn—Vn41 n ntl
lower fitness networks, while; is the probability ofback- pe H(=vn) Un = Upi1

mutationfrom I'; to I';+; under point-mutation. The; and
x terms arenottaken to be< 1. With e-correlation we work
throughout tao (1) in €; i.e. we neglect alb (¢) terms. as a function of per-sequence mutation ratevhile for con-
This property is related to the degree of (genotype-fitnessytant mutation:
correlation present in our landscape; i.e. the degree tolwhi
i i imi T () = m" (12)
sequences nearby in sequence space are likely to be ofisimila n n+1,n



3.1 Optimal Search “proof” supplied is by no means rigorous. Firstly, we define

. . L . thenetcrawlerevolutionary process:
We are now in a position to state the principal results of this yp

Paper. Definition:  The netcrawler process operates as follows:

population size= 1. At each time step the current (single)

Proppsmon L .On ane-correlateq fltpess Iandsc_ape, of a"egenotype replicates and the copy mutates according to the
possible mutation modes, that yielding the maximum valu ; o . :
mutation mode. If the mutant offspring is less fit than its

for my, is given by constant mutation with per-sequence mu'parent it is eliminated; otherwise the parent is eliminafid

tation rate:
1 = (nearest integer to) We note that this algorithm is almost identical to fR@ndom
I (— I )l (I waga) Mutation HiII.CIimber (RMHC) presented i_n [9], the only
{ - o Un # Vnt1 (13)  difference being that the RMHC only ever flips one (random)
1 _ bit at each step. We avoid the term “hill-climber” to empha-
Inw, Yn = Vot sise that, in the presence of neutral networks, the neteraw!

‘. | , h spends most of its time not climbing hills, but rather pemier
Proof: LFor a general mutation modeu,), we have oo neytral walkg13]. It is elitist, the number of fitness eval-

T = D a=oUampi1,,. We need to find the maximum  yations per time step is and we always havg, = , so
value form, as a function oﬁl,g,Lul, ... ,ur under the con- iyt the expected waiting time @b, is just .
straints0 < u, <1 Yaand)_ /_,u, = 1. Nowr, being n
linear in theu,’s describes a hyper-plane r-space; we  proposition 2 On ane-correlated fitness landscape, given
have to find the maximum “height” of this hyper-plane over 3 mytation mode, the most efficient (fixed-population) evolu
the simplex described by the constraints on thes. Itis  tionary process is the netcrawler.
clear that (barring any “degeneracies” among the coeffisien
m®,;1,,) the maximum must lie above a “corner” of the |nformal Proof: Suppose a population of fixed sigeevolv-
simplex; i.e. a point where all the,'s are zero except for jng according to some evolutionary process under a particu-
one,a = u say, for whichu,, = 1;i.e. the mutation mode is |5y mutation mode is in epoch. From (10} it follows that
constant with per-sequence mutation raté&rom (12)r,. (1) for i < n M, ; will be o (¢) and hence negligible. There
is given by (11) witha = 4i; the result follows by differenti- 5 thys no point in maintaining genotypes in the population
atingm, (p) with respect tqu, setting the resulting expression o1, for i < n. Recalling our definition of an evolutionary
to zero and solving for. Note that the degenerate cases arisgyrocess (Section 2.2) our process should thus, at the elimi-
where two (or more) of the coefficienta®, ., , coincide;  nation stage, eliminate all genotypes which have mutated to
in these cases the of (13) still yields a (now non-unique) T, for ; < n. At the start of each time step, then, the entire
maximum forr,. B population will be oT,,.

Now let, be as before the probability that (under the op-
Fig. 3.; plots the optimal mutation rateof Proposition 1 as  arant mutation mode) a single genotype mutates fFono
a function ofvy, v 1. I',,+1. The probability that (during the mutation phase) some
mutant finds a portal t&, ;; is thusp, < 1 — (1 — 7,)%
where R is the number of replicants; equality occurs when
the probabilities of the individual mutants finding a poeed
independent Selection for replication should thus kéth-
out replacemenfor if a genotype is selected more than once
its mutant offspring will be genetically correlated andithe
probabilities of finding a portal thus not independent.

Our evolutionary process during epoeh now looks
like the following: at each time step a certain number of
the S genotypes in our population is selected for replica-
1 tion/mutation. Suppose firstly that no portal is discovered
The mutants that fall off’,, are eliminated. The remaining
population consists of the original population plus those m

10 tants that have stayed &r). Now if our aim is to keep genetic
correlations to a minimum, then we don’t wish to leave (cor-
related) parent-offspring pairs in the population. On ttie=o
hand, we don't wish to eliminate a stay-on mutant offspring

Figure 3.1: Theu of Proposition 1 plotted against,, v, 11 while retaining its un-mutated parent, since we would thus

end up “anchoring” our search to the limited regionTof
The next proposition is of a more conjectural nature - the

=
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neighbouring our current population; in effect we woulcelik 4 Conclusions
to maximisedrift of our population orf". We should thus re-
tain stay-on mutants and eliminate their un-mutated parent Fitness landscapes for many real-world artificial evolutio
Effectively, our evolutionary process now comprisgs problems are likely to feature large-scale neutrality. We
independent netcrawlers, some selection of which are “achave argued that on such landscapes the conventional view
tivated” at each time step. But if during some time-step a0f evolutionary search associated with rugged non-neutral
mutant discovers a portal 16, ., then we must initiate a new landscapes is misleading and inappropriate. Instead we hav
epoch. Since the remainirf)— 1 genotypes now have a neg- characterised evolutionary dynamics with neutral netwank
ligible chance of finding a portal t5,,,» all S members of terms of drift along networks punctuated by transitions be-
the population must become copies of the newly discoveretiveen networks.We have also argued that the role of recom-
portal genotype. But this again introduces genetic correlabination is obscure and may amountto little more than macro-
tions between members of the population. To minimise thignutation. Given this scenario, the perceived problem of pre
effect we need only choose our population size tsbe 1; mature convergence disappears and search for high-fitness
indeed there is no loss in search efficiency by reducing th@enotypes is dominated by waiting for drift and mutation to
population size, since the netcrawlers are independents Th find portals to higher neutral networks.
the most efficient evolutionary process for the given motati We introduced the statistical property eforrelation to
mode comprises a single netcrawler. ] describe landscapes with neutral networks for which higher
networks are “accessible” only from the current networkr Fo
To test our propositions extensive simulations (not pre-such landscapes we have shown (Proposition 1) that there
sented here) were carried out dtoyal Roadlandscapes is an optimal mutation mode and mutation rate and conjec-
[9, 30], which are indeed-correlated. As predicted by tured (Proposition 2) that there is also an optimal evohitio
Proposition 2, the netcrawler consistently outperformad v ary search strategy which is not population-based but rathe
ious population-based GA's without recombination (inelud a form of hill-climber which we have dubbed thetcrawler
ing fitness-proportional roulette-wheel selection ancesalv ~ \We have also proposed adaptivevariant of the netcrawler
rank-based tournament algorithms) for Poisson and constaivhich gathers statistical information about the landsGepie
mutation modes. Waiting times to portal discovery were pre-proceeds and uses this information to self-optimise. Iuiho
dicted with reasonable accuracy and in particular the optibe remarked in this context that a major motivation for the re
mum (constant) mutation rate was correctly predicted by (13search presented in this paper was a series of experiments by
of Proposition 1. Thompson and Layzell in on-chip electronic circuit design b
evolutionary methods [28], during which an algorithm altnos
identical to our netcrawler was used with some success. The
mutation rate deployed in these experiments, albeit chosen
Propositions 1 and 2 of Section 3.1 suggest the followingon heuristic grounds, in fact turns out to be the optimum pre-
adaptive netcrawlefor landscapes which we know, or at least dicted in this paper given the (estimated) neutrality ireimér
suspect, of being the-correlated: we deploy a netcrawler in the problem.
with the constant mutation mode. We would then like to  Finally, we remark that work in progress by the author
be able to find the optimal per-sequence mutation rate (133uggests that the principal results presented in this papgr
for the current fittest neutral netwoik, say. This involves still obtain under considerably less stringent assumpgtiban
knowledge of the neutrality of I' and also the neutrality’,  e-correlation.
say, of thenext higheshetworkI”, say. Now we can estimate
v “on the fly”: suppose that is our current per-sequence
mutation rate. Then during the course of the progress of ouACknowledgements
netcrawler orl", we simply log the fraction of mutations;
say, which leave us of. The neutra”tyl/ of T is then ap- The author would like to thank Inman Harvey, Adrian
proximatelyw!/#. However, we have no way of knowing Thompson and Nick Jakobi for helpful s.
the neutralityv’ of I'’. A reasonable guess might be thét
is close tov. Indeed, examination of,, shows that ifv’ .
is not too different fromv, the value forr,, obtained from Blbllography

(12) by setting/’ = v is not too different to the actual op- (1] Back, T., Hoffmeister, F., and Schwefel, H.-P. (1991). si-
timum 7,,. According to (13) then, we should re-adjust our - yey of evolution strategies. In Belew, L. B. and Booker, R, K.
mutation rate to-1/Inv ~ —u/Ilnw. Curiously this im- editors,Proc. 4th Int. Conf. on Genetic Algorithmsages 2—-9.
plies thatwhateverthe neutrality ofl*, we should ultimately Morgan Kaufmann, San Diego, CA.

see a fractionv = 1/e = 0.36788 of neutral mutations if

our netcrawler is optimised by the above scheme. This resulb] Barett, L. (1997). Tangled webs: Evolutionary dy-
echoes Rechenberg’s “1/5 success rule’Hgolution Strate- namics on fitness landscapes with neutrality. Mas-
gies[1], to which our netcrawler bears some resemblance. ter's thesis, COGS, University of Sussex. Avail-
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