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Abstract

A real-valued evolutionary optimisation scenario affords
a unique opportunity to render visually explicit the
“landscape” metaphor in the concept of fitness land-
scape.

Introduction
This short paper presents some preliminary investiga-
tions into the visualisation of fitness landscapes and evo-
lutionary processes for an optimisation problem involv-
ing real-valued parameters. The optimisation problem
- evolution of an XOR logic gate by a continuous-time,
recursive neural network (CTRNN) - is intended to rep-
resent a “generic” scenario where, from a dynamical sys-
tems perspective, a successful solution depends essen-
tially on the phase portrait of the system; that is, a suc-
cessful solution depends on the attractors - the long-term
behaviour - of the system.

Experimental setup
We have a 3-node fully connected, unbiased, continuous-
time, recursive neural network or CTRNN (see for ex-
ample: (Beer and Gallagher, 1992)) described by the
equations:

ẋi(t) = −Dixi(t) +
3∑

j=1

wijσ (xj(t)) + Ii(t) (1)

where xi(t) is the activation of the i-th node at time t,
wij is the weight connecting node j to node i, Ii(t) is the
input and Di the decay constant for the i-th node. The
input-output transfer function σ(x) is the sigmoid:

σ(x) = tanh(x) (2)

Note that the gain of the transfer function and decay
(time-course) parameters are fixed: the only variable pa-
rameters are the 9 weights wij which mediate the inter-
actions between the nodes; they are real numbers that
may be positive (excitory), negative (inhibitory) or zero

(no connection). In simulation, node activations are cal-
culated forward through time by straight-forward time-
slicing using Euler integration.

The CTRNN has to solve an XOR gate as follows:
nodes 1 and 2 are designated as inputs, node 3 as out-
put1. A network trial consists of four runs of the net-
work, corresponding to XOR logic (Table 1). Inputs were

Input 1 Input 2 Output
high high low
high low high
low low low
low high high

Table 1: XOR logic

chosen as low = −0.5, high = +0.5 and target outputs
were chosen as: low = −τ , high = +τ with τ = 0.6.
Node activations are initialised for each of the four runs
to2 (0, 0,−0.2). All decay parameters were set to 0.1 and
the step size for Euler integration was 0.01.

During a run the appropriate (constant) inputs are
fed continuously to the input nodes. Networks are run
for a stabilisation period Ts = 1000 time steps to allow
the network to fall into an attractor state, followed by
an evaluation period of a further Te = 2000 time steps;
the idea is that a network be evaluated on its steady-
state behaviour. Networks receive a fitness value f based
on the mean distance between output and target (i.e.
distance integrated over the evaluation period) averaged
over the four runs; specifically:

f =

[
1 +

k

4(1 + τ)

4∑
r=1

∆(r)

]−1

(3)

1We actually used the sigmoided output σ (x3) since it is
guaranteed to lie between −1 and +1.

2The “off-centre” x3 initial activation of −0.2 was found
to aid finding solutions, apparently through some kind of
symmetry breaking effect.
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with mean distance between target and output for the
r-th run defined by:

∆(r) =
1
Te

∫ Ts+Te

Ts

∣∣∣σ
(
x

(r)
3 (t)

)
− τ (r)

∣∣∣ dt (4)

where x
(r)
3 (t) is the node 3 activation and τ (r) the ap-

propriate target (i.e. ±τ) for the r-th run. The con-
stant “stretch factor” k may be deployed to control se-
lection pressure. Note that maximum possible fitness is
1 and minimum possible fitness is 1

1+k since the maxi-
mum mean distance ∆(r) for each of the 4 runs is 1 + τ .
We used k = 10 for our experiments.

Network behaviour visualisation3

Successful solutions of the XOR problem by a CTRNN
may be characterised by a phase portrait for which the
initial values fall into the basin of attraction of an at-
tractor with node 3 (output) activation high (resp. low)
when the inputs are high, low or low, high (resp. high,
high or low, low) - see Figure 1.

Figure 1: Node 3 (output) attractors of two successful net-
works: x, y axes (varying from −1 to +1) represent inputs to
nodes 1 and 2, while red (resp. blue) represents an attractor
with high (resp. low) node 3 activation. To solve the XOR-
gate the points (0.5, 0.5), (0.5, -0.5), (-0.5, -0.5), (-0.5, 0.5)
- marked by black dots - must go: low, high, low, high; i.e.
blue, red, blue, red.

Figure 2 illustrates the approach to attractors. The
setup is similar to Figure 1, except that now height rep-
resents node 3 activation after a limited number of time
steps, so that the system has not quite settled into an
attractor. As the number of time steps increases, these
figures become increasingly “sharp-edged”, approach-
ing (in vertical projection) the appearance of Figure 1.
In Figure 3 surfaces for three nearby weight configura-
tions are plotted together (one weight has been varied
slightly), illustrating the changing phase portrait as we
move through weight-space.

3Technical note. The visualisations in this
paper were made using the Geomview program
(http://www.geomview.org/).

Figure 2: Approach to attractors: x, y axes again represent
inputs, while height is node 3 activation after a limited num-
ber (500) of time steps.

Figure 4 gives two views of the changing phase portrait
as we move through weight-space4. The colour dimen-
sion (cold..warm) represents variation of a single weight.
The other two dimensions again represent inputs. Points
are plotted for each colour (weight) along the separatri-
ces on the input plane for which the node 3 activation
attractors change from high to low (the seperatrices cor-
respond to the boundaries between red and blue regions

4This would look better if the separatrices were joined-up,
or plotted as surfaces. Geomview doesn’t seem to be able
to do this, perhaps because parametrising the separatrices
would seem to be non-trivial.
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Figure 3: Approach to attractors: surfaces are plotted (as in
Figure 2) for three nearby weight configurations - one weight
has been varied slightly - illustrating the changing phase por-
trait as we move through weight-space.

in Figure 1). Bifurcations can be seen where “pinching”
occurs.

Landscape visualisation

Figure 5 illustrates some 2-dimensional slices through
the (9-dimensional) CTRNN XOR fitness landscape:
x, y axes represent some two out of the nine weights;
height is fitness as given by Equation 3. Landscapes are
plotted in the vicinity of (near) optimal solutions - the
red-tipped “peaks” in the figures.

Evolutionary visualisation

We deployed a simple 1 + 1 Evolution Strategy with
Gaussian-creep mutation - i.e. a (real-valued) random-
mutation hill-climber, or netcrawler (Barnett, 2001) -
on the CTRNN XOR landscape. The hill-climber (i.e.
the current weight configuration) is initially dropped in
weight space according to an (uncorrelated) multivari-
ate Gaussian distribution with standard deviation of 2.0
centred on the zero-weight network, and its fitness eval-
uated. At each generation a new weight configuration
is generated randomly, again according to a multivariate
Gaussian with (fixed) standard deviation of 0.02, this
time centred on the current configuration; fitness of the
new configuration is then evaluated. If the fitness of
the new configuration is greater than or equal to that

Figure 4: Varying phase portrait as we move through weight
space: colour (cold..warm) represents the value of a single
varied weight. The other two dimensions again represent in-
puts. For each weight value points are plotted along the sep-
aratrices on the input plane between regions corresponding
to high and low attractors (see text).

of the current configuration, then the new configuration
replaces the current; otherwise the current configuration
is retained.

It was found that near-optimum solutions could be ob-
tained quite easily within a few thousands of generations.
We then “clamped” some seven of the nine weights in
the network to their values at a fitness (near-)optimum
and repeated the evolution experiment, now with vari-
ation constrained to the two unclamped weights - i.e.
to 2 dimensions in weight space. Some paths followed
by the hill-climber on the fitness landscape are plotted
in Figure 6; in these figures a 2-dimensional “slice” of
the landscape is drawn (as in Figure 5) with the same
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Figure 5: Two 2-dimensional slices through the (9-
dimensional) fitness landscape for the XOR problem.

weights clamped as for the constrained evolutionary run
- the hill-climber thus appears to “stick to the surface”
of the landscape.

Looking at the top figure, we note that the appar-
ently flat (selectively neutral) plateaux are actually not
quite flat, with slight gradients that (happily for the hill-
climber) tend to lead to the “cliff bases” - at least in this
region/projection of the landscape. In the middle figure

Figure 6: The path of a hill-climber (constrained to 2 di-
mensions) on the XOR fitness landscape. Noise on fitness
evaluation increases from the top to bottom figure.

we’ve added some (Gaussian) noise to fitness evaluation,
so that the plateaux are now flat as far as the hill-climber
is concerned - the noise effectively obliterates the slight
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gradient. The hill-climber thus drifts randomly on the
plateaux until it chances upon a cliff base, which it then
climbs. Sometimes (not in the run illustrated) it will
climb the “wrong” cliff on the initial (lowest) plateau; it
still tends to find a path to a near-optimum eventually,
but only after many more fitness evaluations. In the
bottom figure even more fitness noise has been added.
The hill-climber now sometimes “falls off” its current
plateau, although selection pressure is generally strong
enough to drag it back up.

Discussion

Our CTRNN XOR landscape was designed as a simple
model for an evolutionary optimisation scenario where
the effectiveness of an evolved artefact depends on the
long-term behaviour of some dynamical sytem; sev-
eral classes of highly non-trivial real-world design-by-
evolution problems (including some evolutionary elec-
tronics and evolutionary robotics problems) might be
viewed as systems of this type. Our perspective is that
we are, essentially, evolving phase portraits - the sets
of attractors and their basins of attraction (Figures 1,
2) - of dynamical systems. The topography of the re-
sulting fitness landscape thus depends on the manner
in which the phase portrait varies (Figures 3, 4) as we
move about within the space of configurations - i.e. the
parameter space - of our dynamical system. This highly
geometric view of evolution not only allows full rein to
our spatial intuition, but also enables application of the
well-developed machinery of dynamical systems theory
to our understanding of fitness landscape structure and
evolutionary processes.

Perhaps the most striking aspect of the CTRNN XOR
landscape is the shear richness of the topography; even
in 2-dimensional slices of the full 9-dimensional surface
(Figures 5, 6) a bewildering assortment of spikes, ridges,
saddles, twisting gullies, shelves, crenelations and undu-
lating plains are in evidence. We might, perhaps, con-
trast this complexity with the (arguably simplistic) “test
suites” of landscapes that permeate the evolutionary op-
timisation literature. These test landscapes, often built
on simple mathematical functions, tend to be designed to
illustrate some particular element - eg. multi-modality
- deemed “difficult” or “deceptive” for evolutionary op-
timisation. For our landscape it seems likely that any
evolutionary algorithm proven effective in dealing with
one “difficult” landscape feature - an algorithm that is
adept, for instance, at escaping local sub-optima - may
well founder on some other exotic landscape feature. To
be effective on our landscape an evolutionary search pro-
cedure has to overcome a formidable array of challenges;
and our landscape is itself almost certainly a “toy” -
of trivial complexity - in comparison with fitness land-
scapes for many real-world optimisation scenarios (eg.

evolutionary design of a neural network controller for a
robot navigation task). Thus we would argue that simple
test landscapes may be less than useful when it comes
to the design of effective search algorithms for real-world
problems. We remark that preliminary research suggests
that some form of annealed mutation-based hill-climber
may be more effective on the CTRNN XOR landscape
than, say, a population-based genetic algorithm with re-
combination.

Another interesting factor that emerges from our sim-
ple experiments is the role that noise may have to play
in optimisation. It might be remarked that while fit-
ness evaluation for real-world problems will frequently
be inherently noisy, here we could argue a case for the
deliberate addition of noise to (effectively) obliterate de-
ceptive gradients - gradients, that is, which may lead to
evolutionary cul-de-sacs.

Finally, we remark that the parameters in our model -
the network weights - are inherently real-valued (rather
than binary) and in our evolutionary experiments we
operated directly on the real parameters; thus eg. we
use Gaussian creep mutation. In the evolutionary op-
timisation literature there is frequently an emphasis on
evolving some binary encoding of the “phenotype” (an
exception being evolution strategies). We might, thus,
have transformed our real-valued network weights via a
binary or Gray code, say, into a binary bitstring and de-
ployed bitwise mutation. There does not, however, seem
to be any convincing reason to use such a binary repre-
sentation; indeed, it might be argued that we retain more
control over evolutionary variation by working with the
real parameters themselves.
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