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Summary

In the field of search and optimisation every theorist and practitioner should be aware of the so-
calledNo Free Lunch Theorems v 1997) which imply that given any opti-
misation algorithm, should that algorithm perform better than random search on some class of
problems, then there is guaranteed to exist another class of problems for which the same algo-
rithm performsworsethan random search. Thus we can say for certain that there is no such thing
as an effective “general purpose” search algorithm. The obverse iththatore we know about

a class of problems, the better equipped we are to design effective optimisation algorithms for
that class This thesis addresses a quite specific class of optimisation problems - and optimisation
algorithms. Our approach is to analyse statistical characteristics of the problem search space and
thence to identify the algorithms (within the class considered) weighoitthese characteristics

- we pay for our lunch, one might say.

The class of optimisation problems addressed might loosely be describedelated fitness
landscapes with large-scale neutralithe class of search algorithmseasolutionary search pro-
cesses Why we might wish to study these problems and processes is discussed in detail in the
Introduction. A brief answer is that problems of this type arise in some novel engineering tasks.
What they have in common is huge search spaces and inscrutable complexity arising from a rich
and complex interaction of the designed artifact with the “real world” - the messy world, that is,
outside our computers. The huge search spaces and intractable structures - and hence lack of obvi-
ous design heuristics - suggest&tachasti@approach; but “traditional” stochastic techniques such
as Genetic Algorithms have frequently been designed with rather different search spaces in mind.
This thesis examines how evolutionary search techniques might need to be be re-considered for
this type of problem.
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Chapter 1

Introduction

Consider the following engineering problems:

¢ designing a controller for an autonomous robot
e designing an electronic circuit to perform a complex task

e designing a complex timetable

These problems have in common that they are difficult to solve from a traditional engineering
perspective of design by analysis and heuristics - what we might term “hand design”.

This thesis is concerned with the use of stochastic and in particularly evolutionary techniques
for “optimisation” of such complex problems. By an optimisation problem, we mean loosely the
following: we have a range of possible designs representing possible means of achieving some
task. To each such design we can attach a numerical value representing how well the design
performs the task at hand. We shall assume that the larger this value the better the performance;
the numerical value is then known as tlitmessof a design. It is further assumed that we are
going to attempt to solve optimisation problems using computers. Our design must therefore be
representable in a form which may be stored in computer memory. We do not necessarily demand
that the evaluation of performance of a design take place purely within a computer, however. For
many of the types of problems which we have in mind to address, evaluation of designs - execution
of the task to be performed - takes place “in the real world”; that is, in the world outside of the
computer environment within which we manipulate designs.

The methodology we address is variously known as “evolutionary search”, “evolutionary com-
putation” or “genetic algorithms”, by analogy with natural evolution. Specifically we imagine our
designs to b@henotypeand the fithess to be analogous to biological fitness in some Darwinian
sense. To extend the biological analogy, putative designs are coded for by sequences of symbols
or numbers representingg@notypevhich maps (usually unambiguously) to a specific phenotype.
The resulting mapping of genotype (via phenotype/design) to numerical fitness is often referred
to as specifying ditness landscape concept introduced to the study of biological evolution by
Sewall Wright ¢ , 1932). An evolutionary process is then performed qgopulationof
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such genotypes in computer memory, with the objective of evolving genotypes which map to high
fitness phenotypes.

The arena of the evolutionary process is thus the fitness landscape. Given a genotype
phenotype encoding and a phenotypefithess mapping we may consider the fitness landscape
thereby definedn abstractoand consider optimisation on the fitness landscape as an object of
study in itself. Of course there will be many possible genotyp@henotype and phenotype
fitness mappings corresponding to a given design problem, which may be more or less tractable to
solution by evolutionary methods; designing suitable mappings may in itself be a highly non-trivial
problem. In this thesis, we are not principally concerned with “fitness landscaping” (which may,
for all we know, need to be performed “by hand” and with goodly measures of skill, experience
and ingenuity). We generally consider the fitness landscag&@s our concern is then how best
to deploy evolutionary methods in optimising on a given fithess landscape. The situation is not
quite that straightforward, however. As we explain in the next section, the choice of optimisation
technique is inextricably bound tehat we knovabout our fitness landscape; and what we know
will depend on how the landscape was designed ... Nevertheless we will tend to sidestep this issue
as far as possible. If it happens that our approach has something to say to the design of genotype
— phenotype and phenotype fitness mappings so to the good; this is not, however, our primary
concern.

In this thesis we will not be addressing evolutionary search in any general sense. Specifically,
we will be examining evolutionary search and evolutionary processes on fithess landscapes which
posses two (statistical) featurdigness correlatiorandselective neutralityThe first (as we argue
in the next section) might be regarded as inevitable, in the sense that it would not be appropriate to
apply evolutionary methods on a landscégekingthis property. The second property, neutrality,
while not (like the first) a prerequisite, has received increasing attention over the past few years.
There is gathering evidence that it is prevalent in many real-world engineering problems and that,
furthermore, appropriate techniques for effective evolutionary search on landscapes featuring sub-
stantial neutrality may well differ quite radically from more traditional approaches to evolutionary
search. Thus much of what we shall have to say may seem jarring to those schooled in a more
traditional approach. We would like to assure the reader that there is no intention to be controver-
sial - rather we would like the reader to bear in mind that, particularly as regards neutrality, we
are addressing a rather specific class of problem and possibly one rather different from the more
traditional optimisation scenario.

We should also like to remark the following: from the inception of the somewhat hazy area
that has come to be known as Atrtificial Life (under the ambit of which evolutionary search could
be said to fall), there has always been a hope that the study of artificitikéfphenomena might
feed back fruitfully into the study ofeal life-as-we-know-it. While perhaps as much true of
evolutionary search, this is not our primary concern and any relevance this work may hold for
biological evolution should be viewed as purely serendipitous.

1.1 Evolutionary Search

The essence of our problem may be stated as follows: suppose it were possible toatbllect
possiblefitness landscapes (i.e. genotype fithess mappings). Suppose then that a notional
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problem-poser picks one fitness landscape out of this collection, hands it to us and asks us to
optimise (i.e. find high fitness genotypes) on the landscape he has chosen for us. How would
we go about this? One possibility is that we simply evaluate the fitness of every genotype for
the given landscape and then keep (one of) the highest fithess genotype(s) we found. This would
certainly solve the problem at hand. In practice however, for non-trivial optimisation problems, the
“space” of all genotypes generally turns out to be vast - so vast, in fact, that even with the fastest
technology available (or even imaginable) the time required to process every possible genotype
tends to be measured in units of “age of the universe”. Exhaustive enumeration of fithesses is
simply not an option.

Thusiitis clear that, depending on the time and technology resources available to us we are only
going to be able to evaluate a fraction of the genotypes before us. How should we choose which
ones to evaluate? The uncomfortable answer (and perhaps surprisingly there is one if the above
scenario is stated in precise mathematical terms) iswiatan do no better than enumerating
fitnesses until we run out of time or patience or, with a lot of luck, stumble upon a genotype of
high enough fitness to keep us happy. The technical version of this result is a variety of what have
been aptly dubbeNo Free Lunch Theorengs v1997). The pointis that, as we
have presented the problem, we simply don’t know enough about the genretfipeess mapping
to be able to make better than arbitrary choices about which genotypes to examine.

In short, to have a fighting chance of optimising anything, we must know something about our
fithess landscape. Our problem-poser cannot simply take a lucky dip from the bag of all possible
landscapes. He must, effectively, bias his choice - and he must tell us what this bias is! But why
should our problem-poser bias his choices? The brief (and somewhat circular) answer, is that he
knows we are going to use evolutionary techniques to solve his problem and therefore he will
attempt to design the fitness landscape so as to be amenable to such techniques! The question
then becomes: how should one design a fithess landscape so as to be amenable to an evolutionary
approach? To answer this we need some knowledge as to how evolution finds fitter genotypes.

Evolution proceeds vianheritance with random variatioandselection That is, new “off-
spring” genotypes are created from existing “parent” genotypes by some “error-prone” procedure
(inheritance with random variation) and genotypes are eliminated (selection). Why should this
yield a viable search mechanism? The essential point is#r&ttion should have a “better than
arbitrary” chance of finding fitter genotype3o see how this might occur we turn to natural evo-
lution. Natural evolution isncremental new fitter phenotypes do not evolve via huge speculative
jumps in “phenotype space” - so-called “hopeful monstersd( 1 1933; ,

1940; 1 1995) - they arise through series of small changes. Note that this statement im-
plies that phenotype spacessuctured i.e. there is a notion of “similarity” or “nearness” of
phenotypes - anetric structure. The mechanisms of variation in natural evolutionnauéation

and recombinationof genotypes. Now if these mechanisms produced arbitrary change to phe-
notypes (via the genotype> phenotype mapping) - that is to say that a phenotype produced by
mutation/recombination had no tendency to resemble its “parent” genotype(s) - we would not ex-
pect to see this incrementality. The inference to be drawn is that the variation mechanisms have
a tendency to producamall changes to the phenotype. Now it may be argued that, for example,
most mutations of the genotype of a real organism will be fatal - surely a large jump in pheno-
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type space! But we are not saying ttadlt variation produces small changes to the phenotype -
merely that there is a better than random chance that it might. Natural evolution does not search
phenotype space at random.

We can re-phrase the above by saying that the mechanisms of variation at the genotype level,
the genetic operatorsrespect (in a probabilistic sense) the metric structure of phenotype space -
the phenotypes of a genotype and its offspringcameelated To complete this chain of reasoning,
we note that théithessof similar phenotypes also tend to be similar; phenotype and fithess too are
correlated. Thus the fitness of genotypes and their offspring are correlated. We might indeed claim
that it ispreciselythis parent-offspring/fitness correlation that makes evolution feasible as a search
technique for higher fitness phenotypes. For if no such correlation existed our “evolutionary”
search would simply be random - which is a little worse than exhaustive enumeration!

To return, then, to the question facing our problem-poser as to how he should design his fitness
landscape to be amenable to evolutionary search, we have a (partial) answer: he should ensure that
there are suitable genetic operators whereby the fithess of parents and their offspring are correlated.
How might he be able to do this? A vague answer is that the problem he is attempting to solve
will suggest a suitable design... we illustrate this by an example - the evolutionary design of a
controller for an autonomous robaot( 1998; 111998).

1.1.1 The Fitness Landscaper - An Anecdotal Example

Our problem-poser wishes to build a controller for a robot that is to perform a navigation task. He
has an actual robot with well-defined sensory-motor capabilities and an on-board computer capa-
ble of interacting with its sensory-motor hardware. He wishes to supply the robot with software
that will cause it to perform the navigation task to his satisfaction. The design he seeks will thus
take the form of a computer program that will run in the robot’s processor. He will evaluate the
fithness of a design for control software by actually running the robot with the designated program
through the navigation task and awarding the design a fithess score according as to how well the
task is performed; i.e. better performance is awarded higher fitness.

Let us suppose that he has tried to hand-code programs to control his robot but found it sim-
ply too complex and difficult. An attempt at writing a decision-making rule-based Al program
foundered on the combinatorial explosion of case scenarios. An attempt to model hierarchies or
networks of discrete behavioural modules was slightly more successful but still ran into a wall of
complexity. At this point he considered using stochastic techniques and decided to attempt an evo-
lutionary approach. Since the goal of the exercise is to produce a suitable computer program, his
initial inclination was to attempt to evolve programs that could be compiled to run on the robot’s
processor. However a problem became apparent: as a programmer himself, he was well aware that
introducinganykind of variation into a viable computer program almost always breaks it or, worse
still, introduces syntax errors. This would immediately fall foul of the correlation requirement -
small changes to a phenotype invariably produce huge (and detrimental) changes in fithess. There
does not seem to be enough incrementality inherent in the approach.

The next line of attack seemed more promising. Noting that the desired behaviour of his robot
might not be dissimilar to that of a simple organism facing a comparable navigation task, he con-
sidered using a phenotypic control mechanism modelled on that used by real organisms - a neural
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network. Of course his artificial neural network would be simply an analogy - it would not begin

to approach in sophistication or complexity that of any organism capable of solving the naviga-
tion task - but at least it did appear to have some desirable features. In particular, there seemed
to be a natural metric (of sorts) on the phenotype space - two neural networks could be consid-
ered “nearby” in neural network space if they had similar network topologies and the connection
weights and other parameters were similar. Importantly, a small change to the phenotype with
respect to this metric - changing a network weight slightly or even adding a new node, for instance

- did not necessarily have too drastic an effect on fitness; fithesses of nearby phenotypes appeared
to be correlated.

It remained to devise a genotype phenotype mapping and some genetic operators which
would respect the metric structure of the phenotype space; that is, applying a genetic operator to
a parent genotype (or parent genotypes) would produce offspring genotypes whose phenotypes
would be close to that of the parent(s). This turned out not to be too difficult. The network
topology could be easily described as a string of bits, such that flipping one or two bits made
small changes to the network topology (such as adding or deleting a single node or connection).
The weights and other numerical parameters could easily be coded as floating-point numbers;
applying a small displacement (via a pseudo-random number generator generating small Gaussian
deviates, say) produced nearby values. He even found that by Gray-coding parameters rather
than using floating-point coding, flipping single bits would in general produce smallish changes
in value; the entire phenotype, including network topology and numerical parameters, could be
coded for in a single bit-string. In fact a computer-friendly description of an artificial network
virtually yieldedin itself a suitable candidate for a genotype. The genetic operators looked a lot
like natural mutation - they applied to a single genotype, the bits looked like alleles and so on.
He experimented with recombination, but this turned out to be trickier; offspring produced by
“crossing over” neural network designs did not tend to be so pleasantly correlated in fitness with
their parents (the problem seemed to be that, in terms of behaviour of the controller, there was too
much synergy between separate elements of a neural network - they did not seem to fall apart into
convenient modules that could be successfully mix-and-matched).

We the optimisers, however, were not aware of these details - in fact we weren't even sure
what problem he was trying to solve. Our problem-poser merely passed us his fitness landscape
(he agreed, of course, to evaluate the fitness of any bit-strings we produced). He did, however,
mention that if we took a genotype and flipped a few bits, the fithess of the resulting offspring
genotype was quite likely to be nearby that of the parent. He also mentioned, although he doubted
whether it would be of any interest to us, an observation he had made while experimenting with
codings: surprisingly frequently, flipping a few bits of a genotype would produce an offspring
of not merelysimilar, but ratheridentical fithess (we were in fact quite interested). In short, he
told us something about the bias in his choice of landscape. We quickly evolved neural network
controllers which solved his robot navigation problem; how we did so is the subject of this thesis.

1.1.2 Model Landscapes

The preceding discussion and example raise one rather curious philosophical question: was it,
in fact, necessary for the problem-solver to have informed us of the correlation properties of the
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fithess landscape? For if this property were not present we know that any attempt to optimise by
evolutionary means would probably be pointless. Why should we nobgsimecorrelation?

The answer seems to be that we may as well. Furthermore, as will become clear, we would in
any case find out sooner rather than later if there were no correlation. We thus assume that, as
evolutionary searchers, we are always dealing with at lEasedegree of correlation; this will be

our minimal assumption.

More broadly, the other side of the “No Free Lunch” coin is that the more we lnpviori
about the landscape we are attempting to optimise, the better we can analyse search processes and
thus hone search techniques. Thus, for instance, while we are already assamaugrrelation
it might indeed be useful to know a bit morepw much for instance, or how correlation varies
with parameters (such as mutation rate) of our genetic operators. Considering the example from
the previous section it might seem unlikely that our problem-poser would be able to tell us much
more, short of virtually solving the problem himself. One way out of this conundrum might
be as follows: in practice we consider structural or statistical knowledge about a landscape as
constituting a “model”. We then, when faced with an actual fithess landscape, assume some model,
for which we have deduced analytically effective search techniques. If our model assumption (such
as correlation) happens to have been wrong then our chosen search technique will quite likely not
prove to be effective. We are then free to choose a weaker or alternative model.

It might be said that useful models for real-world fithess landscapes (and in particular those
featuring large-scale neutrality) are sorely lacking in the literature. We would argue that, in fact,
the study of evolutionary search techniques has been somewhat skewed by the study of inappro-
priate models. A large part of this thesis is devoted to the presentation of several (hopefully useful)
models, generally described in terms of statistical properties, for which analysis may be performed
and optimisation techniques derived. Whether or when these models might apply may be based
on empirical evidence, heuristics, guesswork, hearsay or wishful thinking. If the assumptions of
a particular model turn out to apply to a given problem, or class of problems, well and good; the
model is theruseful If not we may pick another model off the shelf (perhaps after re-examination
of the problem at hand) and try again.

1.1.3 Landscape Statistics

As regards statistical knowledge (or assumptions) regarding a landscape we seek to optimise, an
awkward point presents itself. Statistical statements about a landscape, or class of landscapes,
tend to be phrased in terms ohiformly random samplingf genotype space. This is the case,

for example, for the usual definition of fithess correlation statistics; it is normal to talk about the
correlation of fithess between a parent genotype chaséormly at randomand its offspring.

But, we must ask, will this be relevant to analysis of a particular evolutionary process on the
landscape in question? For in the course of execution of a search process the sample of genotypes
encountered is, almost by definition, likely to be far from random - in particular, it will hopefully

be biased toward higher-fitness genotypes! Thus, for instance, if some landscape statistic suggests
that the fitness distribution of the offspring of a parent genotype chosen uniformly at random from
the landscape takes a particular form, can we suppose that a similar distribution will hold for a
genotype encounterdd the course of an evolutionary process that landscape? The answer
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would seem to be an unequivocal “no”. For many real-world optimisation problems, for example,
it is frequently the case that “most” genotypes turn out to be of very low fitness. This is certainly
true of natural evolution where an arbitrary genotype (e.g. a string of DNA with randomly chosen
nucleotides) is almost certain to be inviable. In this case the very part of the landscape we are
interested in - the higher fitness genotypes - would hardly “show up” in a statistic based on uniform
random sampling.

A partial answer might be to consider statistmsnditional on fitness This, at least, ad-
dresses the fitness bias inherent in any useful search process and we shall indeed consider fithess-
conditional statistics. It will not address other biases, some of which will be identified in the
course of this thesis. Ultimately the argument becomes circular: the statistics relevant to a par-
ticular search process depend on the process itself; the analysis of potentially effective search
processes depends on the statistics available to the analyst. In practice we are forced to assume
that an available (or assumed) statistic, be it based on whatever sample, apfgragimateshe
“real” statistic that would apply to the sampling performed by the process under analysis. The
situation is somewhat akin to theaximum entropyapproximations made in statistical physics.

Later we shall explicitly introduce comparable approximations to our analysis.

This leads us to the following: in the course of execution of an evolutionary process on a given
fitness landscape, we are evaluating the fithess of genotypes encountered along the way. We can
thus compile statistics pertaining to the landscape structure (at least at those genotypes we have
encountered so far) with a view, perhaps, to altering “on the fly” our search strategy so as to exploit
this extra structural information. Apart from the caveats of the preceding paragraph this seems
reasonable. There is, however, no guarantee that the statistics we compile in the future course of
a process will resemble those gathered up to the current time, even taking into account fitness-
conditional structure; the fitness landscape may be far from “homogeneous”. Thus to analyse
a “self-tuning” search strategy as suggested homogeneity, or perhaps more accurately fitness-
conditional homogeneity, may have to be introduced as a further approximation.

1.2 Why Neutrality?

The phenomenon déelective neutralitythe significance of which has been (and periodically
continues to be) much debated in population and molecular genetics, was thrust centre-stage by
Kimura ( , 1983; , 1970), who questioned the preeminencaaectionas

the sole mediator of the dynamics of biological evolution, at least at a molecular level. Interest in
selective neutrality was re-kindled more recently by the identificatiomeotral networks con-

nected networks of genotypes mapping to common phenotypes (and therefore equal fitness) - in
models for bio-polymer sequenee structure mappings; in particular for RNA secondary struc-

ture folding ¢ <2989; ).1993; ,

1996) and protein structur&§ £1997;

) 1998). This research, performed largalysilico, was expedited by the availability of
increasing computing power, the development of fast and effective computational algorithms for
modelling the thermodynamics of bio-polymer folding.( [ 1984, |
1994; ;1£994) and also the increased sophisticatiom @ftro
techniques i | 1996; > 1997; y
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1999). Our interest stems from the growing evidence that such large-scale neutrality - and in-
deed neutral networks in the sense intended by RNA researchers - may be a feature of fithess
landscapes which arise for the type of complex real-world engineering problems described above
( y1993; 11996; 11996;
, 1999; , 2001; >1996;
, 2002; >2001). This neutrality, it would seem, stems from
the following: in a complex design involving many parameters and, perhaps, many “features” con-
tributing to overall fitness, tweaking a particular feature will frequently have no effect on fithess
since the feature tweaked may in fact be making no discernible contribution to fithess - at least
within the “context” of other features. Thus, for instance, in an electronic circuit, changing the
configuration of a circuit element will make no difference to the behaviour of the circuit if the
element is not - in the current design context - actually connédtethe output on which fitness
is evaluated! This effect is, in fact, precisely the basis for one of our classes of model landscapes -
the NKp model of Chaptes. It may also be that tweaking a parameter has no discernible effect on
fitness because that parameter is set to some “extreme” value and a mere tweak is not enough to
make it less than extreme. An example of this might be a weight in a neural network set to such a
high value that it “saturates” a node for which the corresponding connection acts as an input. This
variety of neutrality might be said to stem from tecodingof the parameter.
Itis also becoming clear that tllgnamicsof evolutionary processes on fitness landscapes with
neutrality are qualitatively very different from evolutionary dynamics on rugged landsdépegs (

11996; >11995; £1998;
111997; J11997;
, 1998; ;11998; ;11999;
11996; {1997, [ 1998; { 2001). A major impetus for this body of

work, then, is quite simply the lack of suitable models - and indeed theory - for such landscapes
and the perception that the common (rugged, multi-modal and non-neutral) perception of land-
scape structure in the GA literature is inapplicable, if not actively misleading, for optimisation of
the class of evolutionary scenarios that we intend to address.

1.3 Overview

1.3.1 Organisation

In brief, the organisation of this thesis is as follow:

Chapter2 is largely formal: in the first Section we introduce the conceptsegfuence space
andfitness landscapén the context of artificial evolution) and the partitioning of a fitness land-
scape intomeutral networksin the second Section we introduce mutation andiiiéation matrix
for a neutral partitioning; the remainder of the Section is devoted to setting up a framework for
the study of the structural aspects of a fitness landscape (with respect to mutation) which depend
only on a (neutral) partitioning of the landscape rather than on actual fithness values. In particu-

L , 2001) relates an amusing instance where certain elements of an artificial evolution-designed circuit on
an FPGA chip, whilst apparently physically unconnected to the “active” part of the circuit, manidébthffect the
behaviour of the circuit. It transpired that the elememas effectively ‘connected” - by electromagnetic interference.
Other evolved circuits have been found (or encouraged) to exploit guantum-mechanical effecis§

, 2000). Evolution is, as Orgel's Second Rule has it, “cleverer than yioal (et 1995).
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lar, we define statistics based on uniform sampling of neutral networks, which will become the
basis for a “maximum entropy-like” assumption in the following Chapter. The third Section ex-
amines fithess-dependent structural aspects of fithess landscapes (again with respect to mutation),
in particular themutant fithess distributigmparent-mutant fithess correlatiandevolvability, It is
shown that the optimal mutation mode for a neutral network involves mutating a fixed number of
loci (rather than a per-locus mutation probability). The final Section examines how the concepts
and measures introduced carry over to familiesofdom fithess landscapes
Chapter3 is also concerned largely with formalities: the first Section introduces the notion
of a populationof sequences on a fitness landscape. The next Section introeaesionary
processega formalisation/generalisation @enetic Algorithmswhich are defined by genera-
tional selection/mutation-basexolutionary operators A range of evolutionary processes are
presented as examples, including varistschastic hill-climbers The third Section introduces
a maximum entropy approximatidor an evolutionary process, based on the coarse-graining of
a fitness landscape into neutral networks. Tiaistical dynamicspproach I ,
1997) - modelled after comparable ensemble techniques in statistical mechanics - is presented as
an analytic tool. The following Section describes and analyses the generic “epochal” dynamics
of evolutionary processes on fitness landscapes with neutral networks, characterised by the suc-
cessive breaching @ntropy barriers and contrasts this with the more conventional viewpoint of
evolution on “rugged” landscapes featurifitness barriers The final Section looks at how the
effectiveness of evolutionary processes in optimisation may be measured and compared.
Chapter4 examines how, why and whereutral drift on neutral networks might benefit the
search effectiveness of an evolutionary process. Adrgous ant neutral walls presented as a
“tunable” analytical tool for the study of the effects of neutral drift. It is conjectured - and proved
in a weak sense - that (modulo some stricturesiqmiori knowledge of landscape structure and
evolutionary dynamics) drift will always benefit the search capabilities of an evolutionary process.
Chapter5 introducess-correlated landscapegharacterised by a “ladder-like” structure con-
trolled by a small scale parameter. Optimal mutation rates for neutral networksamelated
landscapes are calculated and shown to obey (to a first approximation) a particularly simple heuris-
tic, the 1/e Neutral Mutation RuleResults from the previous Chapter are deployed to argue that
the optimal evolutionary process on@gorrelated landscape is a variety of stochastic hill-climber
dubbed thenetcrawler An adaptiveform of the netcrawler (based on théelNeutral Mutation
Rule) is described. Statistics are calculated explicitlyRoyal Roadandscapes - a class ef
correlated landscapes - and theoretical results tested against Monte Carlo simulations. A range of
evolutionary processes is trialled on Royal Road landscapes and results analysed in some detail.
Chapter5 introducesNKp landscapesa family of random landscapes with tunable rugged-
ness and neutrality. The first Section discusses background and motivations for NKp landscapes
and details their construction. The following Section analyses the global (ensemble) statistics of
NKp landscapes; in particular it is shown that auto-correlation on (generalised) NK landscapes
does not depend on the underlying fitness distribution and that, consequently, ruggedness and
neutrality are statistically independent for NKp landscapes. Neutral and “lethal” mutation are
analysed via statistics based on the distributiocaitributing features The third Section anal-
yses fitness-dependent (ensemble) statistics. In particotan mutant fitness calculated and
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NKp landscapes are shown to have linear correlationproperty (thus providing another proof
of the independence of ruggedness and neutrality). The fitness dependence of neutral and lethal
mutation is calculated and the full mutant fitness distribution and evolvability statistics calculated
for a Gaussianunderlying fitness distribution. Optimal mutation rates are calculated (based on
ensemble evolvability) and a new derivation for thée Neutral Mutation Rule is given. The
next Section discusses NKp landscapes as models for landscapes in artificial evolution. Baseline
parameters are set up to test theoretical results empirically. The neutral network structure is in-
vestigated in more detail and some preliminary results on optimisation on NKp landscapes (with
implications for the neutral network structure) are presented.

Previous Chapters have expressly rejectstdmbinatioras an effective mechanism in evolu-
tionary optimisation on “real-world” artificial fithess landscapes; Chaptddresses this preju-
dice. The first Section reviews some problems with the so-c8lieliling Block Hypothesiand
the Schema Theorenn particular whether we should expect to find suitable “building blocks” in
realistic problems and, if so, whether recombination is likely to be able to assemble them usefully.
The following Section examines some well-known problems affecting the effectiveness of recom-
bination as a result of finite-population sampling geinetic drift The phenomena of “premature
convergence” anditch-hikingare discussed. The third Section presents original work by the au-
thor on possible deleterious effects of recombination - identifiable in the infinite-population limit
but exacerbated by finite-population sampling - which may arise as a result of local features of the
fithess landscape. Througlyaasi-specieanalysis, di-stability barrierand lowering of thému-
tational) error thresholdare identified in the presence of “non-synergistic” epistasis. Implications
for evolutionary optimisation are discussed.

1.3.2 Summary of Conclusions

Perhaps our most radical conclusions will be that for the class of fitness landscapes considered -
landscapes that might arise in real-world optimisation problems, featuring some correlation and
large-scale neutrality:

1. Recombinatioris not likely to be an effective genetic operator. The driving mechanism
behind evolutionary search will bautation

2. The most appropriate evolutionary search process is likely to be a populatiostathstic
hill-climber rather than a population-based GA. It should expieititral drift

3. We may be able, under certain reasonable assumptions, to estimate an optimum mutation
mode/rate; alternatively, we might deploy atlaptiveregime.

The argument toward these conclusions involves several stages and extends over the entire thesis.
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Fitness Landscapes in Artificial Evolution

In this chapter we formally defininess landscapeand introduce several statistical features as-
sociated with a landscape, notabigutrality, correlation percolationand evolvability Before
we proceed, one possible source of confusion needs to be cleared up: to the biologist, “fithess”
denotes a measure of survival and reproduction for genotypesii ;1 1998;

, 1970) in a population of organisms. In a simple scenario, this may mean something like
“the expected number of offspring produced over the reproductive lifetime of an organism with
that genotype”. Fitness, then, is a measure of a genotype’s propensity to reproduceitise|f
a particular environmentwhere “environment” may embrace other genotypes in the population
under consideration, competing species, a changing geographical backdrdmus to Sewall
Wright, a fitness landscape denoted a landscape that, over time, might deform with the changing
makeup of an evolving population and other ecological factors. To the optimiser, on the other
hand, fitness is something rather more static and pre-ordained: fitness denotes the “objective func-
tion” - the quantity that is to be optimised. In this work we use “fithness” (and fitness landscape)
exclusively in the optimiser's understanding of the term. We treat a fithess landscape henceforth,
simply as a fixed mapping of genotype to a (numerical) fitness value. We stress again that our
genotypes will always comprise sequencedistretesymbols, rather than continuous parameters
and again warn the reader against the temptation to extrapolate results to the case of optimisation
with continuous parametersAs a further remark, we assume that as regards fitness, bigger means
better; the object of optimisation is toaximisditness. The reader should be aware that in some
of the literature (particularly in work inspired by physics where “objective function” often equates
to “energy”) the object may be tminimisea corresponding quantity.

An (unavoidable) presentational difficulty that will frequently arise in this Chapter is the fol-
lowing: the statistical features of a fithess landscape that will be of interest to us are generally
motivated by our analysis of the dynamics of evolutionary processes, which constitutes the subject
matter of the following Chapter. There will thus inevitably be forward references.

1if continuous parameters are encoded into discrete representations (eg. via a binary or Grey coding scheme) then
our framework will indeed apply. It is not clear, however, when (or why) one might want to deploy a discrete encoding
for a problem with “natural” continuous parameters, as opposed to working directly with the continuous parameters
themselves...
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2.1 Definitions

Definition 2.1.1. Let 4 be a finite set and ldt > 0. We call an element afi", the set ofL-
tuples of elements fronfl, a sequence of length. over thealphabet4. Given a sequence=
ajay...a € 4- we refer toa, as theallele at then-th locus of x.

There is a natural (non-directed, regular) graph structurgl'anthe Hamming graphstructure,
whereby two sequences are adjacent iff they differ at a single locus.

Definition 2.1.2. We call 4- with the Hamming graph structure tsequence spacef sequences
of lengthL over 4. Given sequences = a;ay...a. andy = bib,...b_ in 4% the Hamming
distancebetweerx andy is defined by:

L
h(xy) =L—Y 3(an,bn) (2.1)
n=1

whered(a,b) is 1 if a= b and 0 otherwise. Thus the Hamming distance between sequences
is simply the number of loci at which the sequences have different alleles. Hamming distance
defines anetricon 4*.

Definition 2.1.3. A fitness landscapés a triple£ = (4,L, f), wheref : 4~ — R is thefitness
function.

We will often, by abuse of terminology, refer b as a fithess landscape over the sequence space
4. Throughout most of this thesis we shall restrict our attention tdothary alphabet4 =

{0,1}; most constructions and results generalise straightforwardly to higher cardinality alphabets.
Unless otherwise stated, the binary alphabet should be assumed.

2.1.1 Neutral Partitionings and Neutral Networks

As will be seen in the next Chapter, our approach to the analysis of evolutionary dynamics will be
based on @oarse-grainingof the fitness landscape coupled witmaximum entropgpproxima-

tion. This will suppose a patrtitioning of the sequence space in a manner that respects the fithess
mapping, in the sense that all sequences in an equivalence class map to the same fitness. We thus
define:

Definition 2.1.4. A neutral partitioning of a fithess landscapgé = (4,L, f) is an equivalence
relation on4" such thatvx,y € 4%, we havex =y = f(x) = f(y). The sequence space is thus
a disjoint union4t = UiNzll'i where theN equivalence classds are theneutral networks(or
just networkg of £ with respect to the partitioning. As a notational conveniencexford- we
write X for the equivalence class associated with\e also WriteﬂTL ={l1,l,...,['\} for the
set of neutral networks of the partitioning, which we identify when convenient with its index set
{1,2,...,N}. We call a neutral networgonnectedff it is connected with respect to the Hamming
graph structure on the sequence space.

There is a natural partial ordering of neutral partitionings, whereby partitionigartition-
ing 2 iff x=1y=-x=2Y,; we then say that partitioning 1iger than partitioning 2 and partitioning
2 is coarserthan partitioning 1.
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Examples of neutral partitionings are:

Definition 2.1.5. Thetrivial neutral partitioning of a fitness landscapeé = (4,L, f) is that de-

fined by the equivalence relatiom=y < x =Yy; i.e. the neutral networks of this partitioning
comprise single sequences. The trivial neutral partitioning is minimal with respect to the partial
ordering of neutral partitionings.

Definition 2.1.6. The maximal neutral partitioning of a fitness landscapg = (4,L, ) is that
defined by the equivalence relation=y < f(x) = f(y). The neutral networks of this partitioning
are defined to be thmaximal neutral networkf £. The maximal neutral partitioning is maximal
with respect to the partial ordering of neutral partitionings.

Definition 2.1.7. Themaximal connected neutral partitioningf a fitness landscape= (4, L, f)
is that defined by the equivalence relatiare y < X,y are connected with respect to the Hamming
graph structure ort.

Definition 2.1.8. In the Introduction we described a fithess landscape loosely as a genetype
fitness mapping. Often, as in the case of the example presented in the Introduction (and indeed
in natural evolution) there is an obviopkenotypeand the genotype- fithess mapping takes the

form of. genotype— phenotype— fitness. Since we are primarily interested in the genotype
fithess mapping we shall not, in general, allude to phenotypes. However, if there is a phenotype,
the pre-images of the genotype phenotype mapping define a neutral partitioning, which we
refer to as gphenotypic neutral partitioning

We remark that the “network” terminology might often appear to be inappropriate, insofar as one’s
intuitive notion of “network” implies some degree of connectivity. Thus, for example, there is no
reason to suppose in general that the maximal neutral “networks” of a fithess landscape are likely
to be connected in the graph-theoretical sense; indeed, “neutral subspace” might appear to be a
safer term. Nevertheless we shall adhere to the “network” terminology, firstly for historical reasons
(the original terminology arose within the context of RNA secondary-structure folding landscapes,
where the neutral networks do, in fact, posses a high degree of conneciivity 1/1989;

, 1996) and secondly because connectivity with respect to the Hamming strpeture
sewill not necessarily be relevant to our analysis of evolutionary dynamics. When relevant we
shall refer toconnected components denote the maximally connected sub-graphs of a neutral
network with respect to its (inherited) Hamming graph structure.

2.2 Fitness-Independent Structure

Given a neutral partitioning of a fithess landscape, we shall call statistical properties dependent
only on the partitioning as opposed to actual fitness valfiteess-independentalthough our
definition of a neutral partitioning pre-supposes a fitness function, all results in this Section hold
unchanged foany partitioning of sequence space into equivalence classes.

2.2.1 Mutation Modes and Mutation Operators

As mentioned in the Introduction, the primary genetic operator wilraedom) mutationGiven
a fitness landscape = (4,L, f) and a sequencec A4- a sequencyg € 4" is said to be goint
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mutation of x if it differs from x at a single locus; i.e.h(x,y) = 1 whereh(-,-) is Hamming
distance ona-. We wish to consider a “general” mutation as comprising a number of “random”
point mutations.

Definition 2.2.1. A mutation modeis a random variablé€! taking values in{0,1,...,L}. un =
P(U=n) is to be considered the probability that, during a mutation event, exadtygi, se-
lected uniformly at random from th(é;) possible choices af loci, undergo point mutations. The
per-sequence mutation ratéor the mutation modetl is simply the expected number of point
mutationsy= E (U) = Sh_1 N Un.

Note that our definition of mutation imdependent of locuswhatever the mutation mode, the
probability that a point mutation occur at a locus during a mutation event will be the same for ev-
ery locus. We remark that in the GA literature it is perhaps rare to encounter a mutation operator
for which this is not the caseln the absence of specific knowledge to the contrary (e.g. that opti-
misation may benefit from maintaining different mutation rates across the sequence) there seems
little motivation to allow bias. It is conceivable, however, that during the course of optimisation
one might detect that mutation at specific loci are particularly beneficial/detrimental and one might
then construct an adaptive scheme to exploit this knowledge. In this thesis we shall always use
locus-independent mutation as described in Ré&f. 1

Some examples of mutation modes are:

Poisson (or binomial) mutation: Here < has thebinomialdistribution:

= (;) (- (2.2)

for some 0< pu < 1, so thau = L. We may think of this mutation mode arising from each
locus of a sequence independently undergoing a point mutation with probabiite call
K the per-locusor point mutation rate.

In the long sequence length limit & o, keeping the per-sequence mutation nate Ly
constant, the mutation probabilities tend towardsRbisson distribution

_gu”
Although in practice the sequence lengths we shall encounter are of course finite, they are
generally long enough that EQ.Q) is a good approximation and although in fact the num-
ber of mutations has in reality a binomial distribution E#.2, by abuse of language we
shall still frequently refer to “Poisson” mutatidn

Constant or n-point mutation: Hereux = &, for some 0< n < L. That s, precisely (uniform
randomly selected) loci undergo point mutation (a.s.). We hiaven.

Completely random mutation: This is simply binomial mutation with per-locus mutation rate
H= ‘ﬂ‘”T*'l. Thus after completely random mutation the allele at any particular locus will be

anya € 4 with equal probabilityﬁ - the sequence is effectively “randomised”.

Trivial mutation: This is simply 0-point mutation; i.e. no point mutation occurs (a.s.).

2In biological evolution this mayot necessarily be true: mutation rates may be different at different loci.
3We might also remark that whesimulatingmutation, it is generally computationally cheaper to compute Poisson
than binomial deviates when the sequence length is reasonably long.
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Given a mutation modé! with P (2 = n) = u, and a sequencec 4- we now define the random
variable?/(x) with values in4" by:

P(ut) =y = | () al-1] T (2.4)

for anyy € 4- with h(x,y) = k. The random variabl€I(x) should be thought of as “the sequence
X mutated using mutation mod&”. Note that(h)(]ﬂl\ —1)"is simply the number of sequences
Hamming distancen from a given sequence. ER.{) thus says that giver € 4" there is a
probability u, = P (U = n) of mutating to a sequence Hamming distamcaway fromx - i.e.
of n point mutations occurring - and that there isigiform probability of mutating to any such
sequence.

Now we want to admit the situation where different sequences may mutate according to dif-
ferent mutation modes. We thus define:

Definition 2.2.2. A mutation operatoris a mappindJ) which assigns to eache 4- a mutation
mode 7. Given a mutation operatas : x — 7 we may define for eack € 4- the random
variableU (x) taking values in the sequence spatieto be simplyZi(x) - i.e. x mutated “by its
own mutation modé . By abuse of language we shall also refer to the mapgirgU (x) as a
mutation operator.

If Uy is the same for every € 4% - i.e. there is some mutation mode such that?l, = U and
thusU (x) = U(x) ¥x € 4" - we call the mutation operattr : x+— ¢ uniform. In this case every
sequence mutates according to the same mutation mode.

Given a neutral partitioningl- = UiN:lri we say that the mutation operatdr: x+— Uy is
compatiblewith the partitioning iffx =y = Uy = Uy - i.e. the mutation mode is the same for
all sequences in a given neutral network. We then havie=ot, 2, ...,N a well-defined mutation
modeqy;. If we have a neutral partitioning we shall generally assume, unless stated otherwise, that
a mutation operator is compatible with the given partitioning. The motivation for and implications
of this assumption will be discussed in the next Chdpter

Note that for auniform mutation operator mutation symmetri¢ in the sense thatx,y we
have:

PUX =y)=PU(y) =X (2.5)

This may be seen immediately from EG.4). Some additional notation will be required. Let
be a random variable taking valuesdtr andU a mutation operator. Define the random variable
U (X), jointly distributed withX, by:

PUX) =y X=x =PU(x) =Y) (2.6)

U (X) can be thought of as the result of mutating the “random sequexiaesing the mutation
operatolJ. We shall frequently useé (X) whereX is auniformrandom variable or-. Note that
as an immediate corollary of ER.6) we have that iX is uniform andJ is uniform therJ (X) is
also a uniform random variable ot

4In much of what follows it is not strictly necessary thhbe compatible with the neutral partitioning. Nonetheless
we generally restrict ourselves to this case.
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Given a neutral partitioning and a mutation operatawe note that fox € 4- we can consider
LR;) as a random variable taking values in the set of equivalence classes (or equivalently the set
of indicesi = 1,2,...,N) of the partitioning. For notational convenience we wkité) = UA(;)
and similarly for a random variabk taking values ing- we writeU (X) = UA()Z).

2.2.2 The Mutation Matrix

Suppose we are given a neutral partitioning of a fitness landscape. We wish to consider (for reasons
that will become clearer in the next Chapter) the probability that a sequence selected uniformly at
random from one neutral network mutates to another neutral network. We thus define:

Definition 2.2.3. Given a neutral partitioningl- = N, I';, and a (compatible) mutation operator
U, we define thenutation matrix (for the given partitioning and mutation operator) to be:

m;(U) =P(UX) el | Xer) =P(0X)=i| X=j) (2.7)

fori,j=1,2,...,N, whereX is auniformrandom variable omd". In matrix notation we write
m(U) for the matrix with entriesn;j(U). Note that it is astochastiamatrix. We also define the
neutrality of I'; with respect tdJ to be:

Vi(U) =mi(U) =P(U(X) T} | Xeri):P(U(X):i ( X:i) (2.8)

We should think ofm;j (U) as the probability that a sequence picked uniformly at random from
neutral networK ; ends up inT"; after mutation (note the order of indices).

Now given any (compatible) mutation operatdrwe can build its mutation matrix from the
uniform mutation matrices of the constant mutation operatorsm®t= m (U™) whereU " is
the (unique) uniform mutation operator for the constant mutation mode with.rateen we have,

in matrix notation: )

m;(U) = ;ujgnm(,-”) (2.9)
n=
with:
ujn=P(Uj=n) (2.10)
where (recalling that the mutation operatbrs compatible with the neutral partitioningj; is the
mutation mode fol onT . In this sense them™ for n=0,1,...,L define the mutation structure
of the partitioning: if we know then™ and the mutation mode®; then we know the mutation
matrixm(U). Note tham(® is just theN x N identity matrix.
Another quantity of interest is thelative volumev; = |4|~1|Ij| of the neutral networks;.

We note that this can be expressed in terms of any (non-trividfprm mutation operatod. To
see this, note that X is uniform on4" thenu; =P (X € T;) and:

vi = PU(X)eTl;) sinceU(X) is uniform
= ZP(U(X)EFi\XGFj) P(Xerlj)
]

= TmU)P(Xer))
]

= Z mj(U)u;  sinceX is uniform
]
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or, in matrix notation:
mU)-u=u (2.11)

whereuv is the (column) vector with componenis. Recalling tham(U) is stochastic and is by
assumption non-trivial, we find thatis the (uniquegigenvectof m(U) with |u| = z{\‘zlui =1,
with (principal) eigenvalue 1§ :r1959; 21973). This holds in particular for
U=UMforn=1,2,...,L and we could in principal calculatefrom, saym® = m(U®).

2.2.3 Subspace Entropy and Markov Partitionings

Anticipating the next section somewhat, we will be dealing with Markov processes defined on
the sequence spac® which depend on a mutation operator and which, in a sense to be made
precise, “respect” the fithess structure of our fithness landscape. Now given a neutral partitioning
of our landscape, such a Markov process@rinduces naturally a stochastic process on the set of
neutral networks - this induced processitd, however, necessarily Markovian; this is because the
transition probabilities don’t necessarily “respect” thatationstructure of the partitioning. We

will, however,approximatethe induced process by a Markov process, defined by application of a
maximum entropy assumptieessentially we assume that any sequence behaves like a sequence
drawn uniformly at random from the neutral network to which it belongs. The extent to which
this process models the original process accurately depends on the degree to which this maximum
entropy assumption holds. Here we present a measure of the extent to which the maximum entropy

approximation might be expected to model a Markov process.
N

Thus suppose given a neutral partitioniAt) = U I and a (compatible) mutation operator

U. We want to make precise the statement that, glven an arbitrary sequence, the neutral network
it ends up in after mutation does not depend on the particular sequence but only on the neutral
network it came from. We can express this in information-theoretic terms as followX:deta
uniform random variable of-. X then mutates undéf to the sequendd (X), which belongs to

the neutral net\Norﬂ(X). We would like to say then, th&nowing the actual sequence X gives

no further information abouﬂv(X) than merely knowing, the network to which X belong$his
motivates the following definition:

Definition 2.2.4. Given a neutral partitioningt- = UiN:1 I; and a compatible mutation operator
U letI'; be a neutral network and let the random variakjebe uniform onl";. We define the
entropyof I'; with respect tdJ to be:

H;(U) = H (U(xj)) (2.12)

To calculateH;(U) note that ifX; is uniform onl"; thenP (U(Xj) = i) =m;(U), so that:

ij )log, (my; (U)) (2.13)

We note that the entropy of a neutral network is constrained by its neutrality. In particular, it is
easy to show that ¥ = v;(U) then we have:

h(v) <H;U) <h(v)+(1-v)log,(N—-1) (2.14)



Chapter 2. Fitness Landscape48

whereh(p) = —plog, p— (1— p)log, (1 — p) is the entropy of a Bernoulli trial (biased coin toss)
with probability 0< p < 1. Since 0< h(p) < 1 we see that if the number of neutral netwokks

is reasonably large then maximum possible entropy of a neutral network with neutréhiyh
respect to some mutation operator)is(1 —v)log,N. Essentially then, increasing neutrality
reduces the (possible) uncertainty as to which neutral network a mutation is likely to take us to.
If we wish to “factor out” the effects of neutrality on entropy, we may consider the entropy of
U(Xj) given that the mutation is non-neutrale. conditional orﬂ(Xj) # J. We thus define the
neutral-adjustedentropy to be:

HI(U) = H"(Ul)__vh(v) (2.15)
so that:
0 <HJ(U) <logy (N—1) (2.16)

Definition 2.2.5. Given a neutral partitioningl- = U ; T'; letU andX; be as above. We define
the Markov coefficientof I"j with respect totl to be:

M(U) = H (U0x)) —H (T(x) 1)) (2.17)
We note thatM;(U) is always> 0; we say thaf j is Markov with respect tdJ iff:
MjU)=0 (2.18)

We can interpre; (U ), themutual informatiorbetweerX; andU (X;), as “the information about
U(Xj) gained by knowing the actual value ¥§”. Thus the vanishing ofM(U) means that
knowing theparticular x € I'j tells us no more about the neutral network to whicts likely
to mutate to unded than merely knowing that is (uniformly randomly) selected from;. To

calculatedf (U), for x € 4" let us set:
m(x,U):P(U(x):i) (2.19)

i.e. m(x,U) is the probability thak mutates to neutral netwofk. Let us set:

N
HxU) =H (0(x)) = =3 mxU)logs (m(xU) (2.20)

We then find that: 1
£7"[1'(U):|'|1(U)—ﬁ Z H(x,U) (2.21)
I xe j

We can write this compactly in terms of a random variableiniform onl; as:
Mj(U) =H;(U) —E(H(X;,U)) (2.22)

which says intuitively that the Markov coefficientbf is “the uncertainty oﬁ(xj) less the mean

uncertainty ofU (x) averaged over x Ij”. In the next Chapter we will také/;(U) as a measure

of how well the maximum entropy assumption is likely to work for a given neutral netwark
We can also introduceglobal measure as follows:
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Definition 2.2.6. The(global) Markov coefficienof a partitioning with respect to the compatible
mutation operatod is defined to be:

M(U)=H <U(X) | X) “H (U(X) | x) (2.23)

whereX is uniform random o‘. Again M (U) > 0 and we define the partitioning to barkov
with respect tdJ iff:
MU)=0 (2.24)

We interpretM (U) as “the information abouﬁ(X) conveyed byX given X” and the vanishing
of M (U) means that knowing € 4" tells us no more about the neutral network to which it is
likely to mutate to than merely knowing the neutral network to whitikelongs. A straightforward
calculation shows that:

N
MU) = i Mi (U 2.25
V) JZlU (V) ( )

whereuv; is the relative volume off ;. We can write this compactly in terms of a random variable
X uniform on4" as:
M(U)=E(Mz(U)) (2.26)

so M (U) can be interpreted as thentan of the Markov coefficients of the neutral networks,
weighted by relative volurieIn particular a partitioning is Markov if and only if all its neutral
networks are Markov.

2.2.4 Multiplicative Mutation Approximations

Given two mutation mode$! and U’ we can define the mutation mocdé?l’ by composition
which, intuitively, signifies the application dfl’ followed by . It is clear that this gives a new
mutation mode. In principle we can calculate combinatorially the probabiltigd /' = n) in
terms of theu, = P(U = n) andu;, = P (U = n); this is not quite straightforward in general, as
we must take into account the probabilities that several loci may be hitdogoint mutations and
that if this happens the net result may t@point mutation at that locus. A simple example is
when U is binomial with per-locus ratg and 7/ is binomial with per-locus ratg. It is then easy
to calculate thati U’ is binomial with per-locus rate

.14
M+ wfluu (2.27)

Suffice to note that if the, = P (U = n) andu, = P (¥’ = n) are small enough to be negligible
unlessn < L we can ignore the probability that successive point mutations might occur at the same
locus and we have the approximation:

P(utd'=n~ 3 uu=P(U+U =n) (2.28)
r+s=n
or simply:
Ud ~u+u (2.29)

recalling that a mutation mode is simply a (non-negative) integer-valued random variable.
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It is clear that in general composition ég@mmutative(i.e. YU = U’ U holdsVU, U’) and
that the trivial mutation mode acts as an identity element. The set of mutation modes under
composition thus has the algebraic structure cbamutative semi-group

We now turn to mutatioroperators If U,U’ are two mutation operators we would like to
define a mutation operatofU’ by:

P((UU)(x)=y) =PUU'(x)=Y) (2.30)

for x,y € 4" to denote mutation by’ followed by mutation byJ. In general, this will not yield
a mutation operator in the sense that we have defined it; for mutation operators have the property
that givenx € 4" there is an equal probability thatmutates to any sequence a given Hamming
distance away. This will not necessarily be the case for the operator defined bg. &, &s
we may easily convince ourselves with a simple examplé_fer2: letU’ have the property that
U’(00) is the constant mutation mode with rate 1 andUldtave the property th&t(01) is constant
with rate 0 andJ (10) is constant with rate 2. Applying’ to the sequence 00 we have thus an
equal probability of% of mutating to either 01 or 10. Now applying to 01 is trivial and thus
leaves us at 01, while applying to 10 always takes us to 01. Thus the probability that applying
UU’ to 00 takes us to 01 is 1, while the probability that it takes us to 10 is 0 even though 01 and
10 are both Hamming distance 1 from 00. We remark, however, tbatif areuniformmutation
operators - i.e. the same mutation mode applies at every sequence - th@mBaddes indeed
yield a (uniform) mutation operator.

Now suppose a neutral partitioning- = (N ; I'; given and that),U’ are mutation operators
compatible with the partitioning. Then everldf)’ is not a mutation operator we may still define
a mutation matribm(UU’) by Eq. .7). We then have:

N
miUUY) = 3 P(UIU'X)) €| U'0G) € M myg (L) (2.31)
=1

whereX; is uniform on[l";. Now the problem is that, gived’(X;) € 'y, the random sequence
U’(X;) is not necessarily uniform dr,. However, ifl" is Markovwith respect tdJ -i.e. M (U) =

0 - then it is easy to see that(U (U’(Xj)) € i | U'(X;) € Tk) =P (U (X) € Ti) = my(U) where
Xk is uniformonT . We thus have in particular:

Propostion 2.2.1.If the partitioning is Markov with respect to U then:
m(UU’) =m(U)-m(U’) (2.32)

In general Eq.Z.32 will not hold exactly - we cannot expect that a sequence arrivinigciby
mutation froml™; will be uniformly distributed or,. However, we note that the condition for
Prop.2.2.1to obtain - that the partitioning be Markov with respectc is, as we argue in the

next Chapter, the same as that required for our maximum entropy approximation to hold. So if
we are going to assume that a maximum entropy approximation is acceptably accurate for a given
neutral partitioning and mutation operator(s) we may as well assume also that the approximation:

m(UU’) ~m(U)-m(U’) (2.33)

is acceptable, in the sense that the approximation is likely to be as good as the maximum entropy
approximation itself. We shall callEg2 (33 the weak multiplicative mutation approximation
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The (global) Markov coefficien/ (U) is thus likely to be a suitable indicator as to how well this
approximation might be expected to obtain.
Now from Eq. @.29 we have for the uniform constant mutation operatdf® with n < L,
that:
U~ (U <1>)n (2.34)

With Eq. (2.33 this gives:

m" ~ m" (2.35)
where we drop the superscript and write= mY. Under this approximation we have from
Eqg. 2.9, for a general mutation operatdrthat:

L

mj(U) ~ ;Uj,n (m")ij (2.36)

where agairuj , = P(Uj =n). We shall call Eq. £.36 the strong multiplicative mutation ap-
proximation; it provides a simple expression for calculating the mutation matrix for a general
(compatible) mutation operator in terms of the uniform constant 1-point mutation matfhis
approximation might be expected to be acceptable if:

1. the Markov coefficient of the neutral partitioning with respec@U ) is small
2. mutation rates are low, in the sense tRat/; = n) is small unles® < L.

In particular, if the mutation operator isiform(i.e. U; = U, say,Vj) we have simply, in matrix

notation: )

m(U) ~ n;)un m" (2.37)
whereu, = P (U = n). For instance, ford binomial with per-locus ratp we have:
mU) ~ [(1-wl+p-m* (2.38)
wherel is theN x N identity matrix, while Poisson mutation with per-sequence vaj&es:
m(U) ~ e u-M) (2.39)

We note that even if Eq2(29 does not hold - i.e. mutation rates may be high - we can still, under
the weak multiplicative mutation assumption Eg.33, calculate an approximation @™ in
terms ofm" as follows: note that by Eq2(33, m ((U(l))n> ~m((UD))" =m". Now (UD)"
amounts to performing consecutive, independent point mutations. Let us set:

Pnx = P (k actual point mutations occur imconsecutive independent point mutatipng?2.40)

Then we have: N
m'~ 3 Pok m® (2.41)
K=0

We may derive the recursion relation:

k—1 k k+1
Pn,k = <1 - L) Pnfl.,kfl + (1 - a) EPnfl,k + aT Pnfl,k+1 (2-42)
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wherea = W%l is the probability that a locus that has undergone point mutation reverts to its
original allele after a further point mutation. As an example,rfer 2 we have immediately that
m® =1, mY = mand from Eq. 2.41)

m? = Py o1+ Py 1m+ P, ,m@ (2.43)

Using Eq. .42 we may calculate thdo = at, P,1 = (1—a)L andP,, = 1 1, yielding:

L

1 1
@ = m2_(1—
m® ~ m?—(1-a

T (19

1 %1
Note that for thebinary alphabet = 1 and we have simply:

1 (2.44)

L 1
2 ~ 2 _
m L—lm L—ll (2.45)

In general the mutation rates encountered in this thesis will be reasonably low, and we will fre-
quently adopt the strong multiplicative mutation approximation E@€). This has the particular
advantage that the one point mutation mainxiow encapsulatesll the mutational structure in-
formation for the landscape under the given neutral partitioning, in the sense that we may construct
any mutation matrixn(U ) from mvia Eq. .36).

2.2.5 Optimal Mutation

Suppose we are given a fitness landscape (4,L, f) and a neutral partitioningl- = Ui’\‘zlri.
Given neutral network§;,I"j we may ask: is there a mutation mode/rate which maximises the
probability that a (uniform randomly selected) sequencé jrmutates tol';? To answer this
question, we note that for a mutation motfeandX; uniform onfr j:

P(U(X)) €Ti) = ioun m” (2.46)

wherem(™ is the mutation matrix for uniform constant mutation with ratand we have set
up = P (U =n). We can thus ask how to choose thg(for giveni, j) so as tanaximise¢he RHS
of Eq. (2.46. Now considering themi(j”) as fixed constants, EqR.46) is alinear function of the
U, over the simplex described by the constre@ﬁgo u, = 1. It is thus clear that, barring any
“degeneracies” among the coeﬁiciemﬁ'), the maximum of this linear function must lie over a
vertex of the simplex; i.e. a point where all thgare zero except for one value f for which

Un = 1. Thus we have:

Propostion 2.2.2. Given a fitness landscape = (4,L, f), a neutral partitioninga- = U, I';

and neutral network;, " j then the mutation mode which maximises the probability that a (uniform
randomly selected) sequencelipmutates td'; is n-point (constant) mutation, with rate n equal
to the value which maximismi(j”) if a unique such n exists.

We note that if there is nanique nmaximisingmi(j”) - if for exampleny, ny, ..., nk all yield the

same maximum value - then any mutation mode VR{¥I = n) = 0 unlessn = ny for some

k maximisesP (U(X;) € 'i). We note furthermore that if we accept the strong multiplicative
mutation approximation given by Eq2.86), then the optimal mutation rate of Prdh3.1is that
which maximisesni”j wherem = m() is the 1-point constant mutation matrix.
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2.2.6 Innovations, Accessibility and Percolation of Neutral Networks

In-depth analysis of RNA sequence to secondary structure mappings« , 1996;

, 1996; ) 1996; ,£1997) have demonstrated the following
striking feature of the neutral networks with respect to what we have referred tplenatypic
neutral partitioning- equivalence classes of sequences mapping to the same secondary structure:

Every “generic” neutral networks may be reached by a few point mutations from an
arbitrary sequence

This feature is frequently described in termsefcolatior? of neutral networks through sequence
space.

Constant Innovation
In ( \. 1996; ) 1996) the implications of such percolation-like properties of
neutral networks as regards evolutionary dynamics on fithess landscapes based on RNA secondary
structure landscapes are investigated. Theeeitral walksare performed on neutral networks
of an RNA folding landscape. At each sequence encountered along such a walk, the number of
hitherto unseen phenotypes within a Hamming distances of one or two of the current sequence is
logged and the cumulative number of suchovations- hitherto unseen phenotypes - is plotted
against the number of steps taken on the neutral walk. For “generic” neutral networks, the resulting
plot remains approximately linear for lengthy walks, the implication being that in exploring a
neutral network (e.g. byeutral driff) we may expect to encounter, at an approximately constant
rate, an almost inexhaustible supply of novel (and potentially “fitter”) phenotypes. The authors
coin the suggestive terrmonstant innovationto describe this characteristic property of neutral
networks in RNA folding landscapes and go on to discuss the qualitative structure of population
evolution on a landscape featuring such networks.

Here we take the view that any measure of percolation/innovation, if it is to be useful as an in-
dicator of evolutionary dynamics, ought to relate to accessibility of neutral networksutgtion
We thus co-opt the ternmnovationto denote the discovery of a hitherto unseen neutral network
(with respect to some neutral partitioning) by mutation (via some compatible mutation operator)
during an instantiation of an evolutionary process (Chagjtefo analyse the phenomenon of con-
stant innovation, for a given neutral network we consider a stochastic process whereby at each step
we select a sequence uniformly at random from our neutral network and mutate it via the extant
mutation operator. We then log the cumulative number of innovations - neutral networks not pre-
viously discovered by mutation during the process - against number of time steps. Since a neutral
walk of theblind antvariety asymptotically samples a neutral network uniformiyhes 1996)
(see also Chaptefsand4), we may consider this a (crude) approximation of the the procedure
employed by Huyneet al..

Thus let us suppose that given a neutral partitiorui)‘ﬁ@l I; of alandscap& and a compatible
mutation operatod we perform the above process on neutral netwgrkAt each time step, the
probability that mutation of a sequence selected uniformly at random frolands inl; is (by

5Use of the term “percolation” in this context is intuitively appealing, but perhaps somewhat unfortunate in that
it doesnot necessarily equate with the precise graph-theoretical definition of the terfnifas 1985). We shall
nevertheless follow this practice and use the term “percolation” in the looser sense intended by RNA researchers.
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definition) justm; (U). Let us define the r.\,(t) to be the (cumulative) number of innovations at
time stept - i.e. aftert selection/mutation events. We then have:

P(j(t)=1j(t—1)+1) = P(innovation at time)
N
= ZlP(mutation discover§; for the first time at time)
i=

N

= Zl[l—m,-(u)]‘*lm,-(u)

Since we must always havg1) = 1, we may readily calculate in particular that:

N
E(Ij(t)):N—;[l—mj(U)]t (2.47)

Thus the expected number of neutral networks remainmtiscovered decays in time as a sum

of exponentials, corresponding to the times taken to discovery of each neutral network in the
landscape. IN;(U) is the number of neutral networks “accessible” fromunder the mutation
operatolJ -i.e. thosd; for whichm; (U) > 0 - thenE (1 (t)) approachesl;(U) asymptotically as

t — oo as we should expect. If, for instanééjs Poisson mutation on; theneveryneutral network

may be reached froi; by mutation with non-zero probability so thi(U) = N. Fig. 2.1
illustrates the idea with a minimal example of time-dependence of expected innovations from a
neutral network with three accessible networks (Np(U) = 3). Mutation probabilities (@01,

0.1 and 0899 respectively) vary in order of magnitude and the resultant differing time-scales of
decay of numbers of undiscovered networks may be clearly seen.

Accessibility
From Eq. £.47) we see that those neutral networks which are easily discovered by mutation -
thoser’; for which mj;(U) is large - contribute little to the expected number of innovations for
large times. Now may calculate:

d N

gtE (1(0) == 3 [L=my (U)]'log (1-m; (U)) (2.48)

as a measure of “innovation rate” at timneFrom this we see that in some sense easily accessible
neutral networks alstower the innovation rateas they are likely to be repeatedidiscovered
(and thus not qualify as innovations). It is easily seen that, giverNj{at) neutral networks are
accessible fronfl j, then the innovation rate is always highest when the probability of discovering
any particular of théNj(U) neutral networks is “evenly spread”; specifically, the innovation rate
(for any timet) takes a maximum value when all the (non-zerg)U ) are equal to IN;(U).

This strongly suggests that a useful measure of constant innovation/percolation for a neutral
network might be the amount ahcertaintyas to which network a sequence might mutate to from
our network. In Sectio@.2.3we introduced the entrogy; (U ) for neutral network; with respect
to a mutation mod#l. In fact we find it more intuitive to consider the quantity:

P?(U) =21V (2.49)

with H;(U) as given by Eq.4.13, which we term thepercolation indexfor neutral network"
and propose as a measure for innovation/percolation. We see tdUif neutral networks are
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Figure 2.1: Expected (cumulative) innovations (Eq4{)) plotted against time (logarithmic scale)
for a neutral network with access to three networks. Mutation probabilities.@64.,001 and

0.899.
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accessible fron; viaU then:
1<7(U) <Nj(U) (2.50)

with ?;(U) = 1 iff only one neutral network is accessible frdm and ?;(U) = N;(U) iff all
N;(U) neutral networks are equally likely to be discovered by mutation ffigmWe might thus
think of ;(U) as art‘effective number of accessible neutral network$dr I; with respect tdJ.
We also remark thap;(U) may in some cases be approximated analyticallyGhapterS) and is
otherwise quite readily estimated in simulati@f Chaptert).

Now if the neutrality of a network is high then (by definition) mutation will repeatedly “redis-
cover the network itself”. If we know that=v;(U) is the neutrality of j then we may refine the
bounds or?;(U) (Eq.2.50 by:

) _ 1-v
1<PU)<v <N’(1U_)V1) (2.51)

where the percolation index achieves its maximum value iff all neutral netvagag fromT

itself are equally likely to be discovered. This confirms the intuitive suspicion that high neutrality
might be expected to lower the innovation rate in the sense that a high proportion of discovery
attempts will be “wasted” on neutral mutatiéngor example i = 1 this yields:

1< P(U) <2¢/Nj(U) -1 (2.52)

To “factor out” this neutrality effect we might consider theutral-adjusted percolation index
P/(U) =27V (2.53)
with H{(U) as given by Eq.4.15. We have then:
1§£Pj’(U)§Nj(U)—1 (2.54)

with the maximum attained again iff all neutral networks apart fionitself are equally likely to
be discovered.

For the example of Fig2.1 we find a percolation inde® ~ 1.39. If we were to take the
network with highest probability of being “mutated to” to be the network itself - i.e. neutrality is
v =0.899 - then the upper bound on percolation woulddi49. The neutral-adjusted percolation
index in this case would b&' =~ 1.06, actually a little lower (due to the small number of accessible
networks) than unadjusted percolation in this (somewhat artificial) example.

Homogeneity and Drift

Another statistical feature of a neutral network is the degree to which accessibility of other net-
works varies from sequence to sequence across the network. This might be expected to relate
to what we have termed thdarkov index(Def. 2.2.5 of a neutral network - a measure of the
degree to which knowing the precise sequence on a network disambiguates the possible networks
to which that sequence might mutate. In the next Chapter we shall see that this has important
consequences for the utility ofutral drift

6At least if the number of accessible networks is reasonably large: the upper boum@Lorfrom Eq. €.51) will
be < N;j(U), the upper bound of EG2(50), approximately wheij(U)" > v~ (1-v)~ (V). Forv = 3, for example,
this would requireN;j (U) > 4 while forv = § we would need;(U) > 6.75, etc.
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Consider, then, the “cumulative innovation” process introduced earlier. To approximate a
neutral walk we repeatedly chose sequences uniformly at random from our nétyamkl logged
the discovery by mutation of neighbouring networks. Now suppose that instead of a neutral walk
- which may be thought of as maximising drift - we instead start the process at a (uniformly
selected) random sequence on our network but then at subsequent time steps wéhmstate
sequenceaepeatedly. This “in-place” process may be though of as minimising drift under the
scenario that the putative innovation which originally discovdrgdhay be treated as a uniform
random selectiohfrom I'j. Letm;(x,U) be the probability that sequenge I'j mutate under the
mutation operatot to the neutral network;. Let us define the r.l/j.(t) to be the (cumulative)
number of innovations at time stéf our in-place process. We find, conditioning on the initial
uniform selection:

N
P(Ij1) =1j(t-1)+1) = ‘rlj > _Zl[l—m(x,U)]Hm(X,U) (2.55)

and, analogous to EqR 47):
N
E(Ij(t) =N- rlj,xgi;[l—mx,unt (2.56)

As in the previous Subsection, this strongly suggests that an appropriate measure of accessibility
for the in-place process might be the “mean entropy”

N
3 3 meU)logy(m(x V) (2.57)

Thus we see that the “excess entropy” of the neutral work innovation process over the in-place
process is precisely the mutual information measui¢U ) of Def. 2.2.5which we have termed
the Markov Index ofl"j. Note that we always have © M;(U) < H;(U), suggesting that, in
some senseaeighbouring networks are always “more accessible” via a neutral walk than via an
in-place process&nd that the less homogeneous a network - in terms of access to neighbouring
networks by individual sequences - the more important drift is likely to be for discovery of inno-
vations. Possible interpretations and implications of this statement will be discussed in Ghapter
In the mean time, we take as a measure of network homaogeneity or “utility of drift” (Chépter
the quantity:
M;(U)
H;(U)
which we shall call the thépercolation) drift factor of network[l™; with respect to the mutation
operatoid. DP(U), which we may think of aéthe fraction of network accessibility informa-
tion conveyed by knowledge of the actual sequenceiay vary between zero and one; if zero,
which network a sequence [y mutates to is independent of the particular sequence, and drift
will consequently be unimportant. The higher the drift factor, the more important drift is likely to
be as regards accessibility of networks by mutation.

Some further remarks are in order regarding the usefulness of the accessibility measures intro-
duced in this Section: firstly, they do not address actual fithesses and may thus hold little relevance

,Djperc(u ) =

(2.58)

"Whether this is likely to be a realistic assumption will be more carefully examined in Chiapter
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for optimisation For instance, a neutral network may percolate quite thoroughly but offer no ac-
cess tdhigher fitnessmetworks €f. Chaptet6, Section6.4.3. In the next Section we discuss fitness-
dependent statistics. Secondly, the statistics are basediform sampling of networks. While

(as noted) this may be appropriate for neutral walks (see also Ch@pfer other population-
based evolutionary processes (Chagethe evolution ofmutational robustnessor mutational
buffering ( ) 1979; 2(1993; 01994;

:r1999; :11999; , 2001) - implies that in
practice neutral network sampling may be biased towards regions of the network where neutrality
is higher. It is not clear to what extent this sampling bias is likely to affect our conclusions; more
research would seem to be required.

2.3 Fitness-Dependent Structure

So far all the statistical properties we have looked at have depended only on some partitioning
of the fitness landscape rather than on actual fithess. That is, given a landseap®, L, f) all
statistics encountered up till now can be expressed solely in terms of a partiti@hiﬁgji'\‘zll'i

and a mutation operattf(x). We now turn to those properties of a fithess landscape that depend
in addition on actual fitness valué$x) € R.

2.3.1 The Mutant Fitness Distribution

In the next Chapter we shall see that by definition selection of sequences for an evolutionary
search process is performed solely on the basis of fithess and that novel sequences are created
by mutation. Hence, given a fithess landsc#pe (A4,L, f) and a mutation operatdt we shall

be interested in the real-valued random variab(¥ (x)) for x € 4% (we recall thatU (x) is a

random variable taking values i1“). This random variable represents the distributiofitoss

value$ of mutants of the sequengainder the mutation operatdr. In particular we may take the
expectatiorE (f(U(x))), variancevar (f(U(x))) and higher moments.

If X is a “random sequence” - i.e. a random variable taking value®-in the (real-valued)
random variablef (U (X)) is also well-defined. Now many traditional statistical measures for
fithess landscapes, suchasgo-correlation(see below) are defined in terms of random variables
of the form f(X), f(U(X)), etc. whereX is auniformrandom variable omd". As mentioned
in the Introduction, however, such uniform random sampling of a fithness landscape may not be
particularly useful, since the statistical properties of areas of the fitness landscape that are likely
to interest us - in particular areas of high fithess - may be “swamped” by uninteresting, low fitness
contributions. Traditional fitness landscape structural statistics may thus turn out to be less than
useful in practice - see for instancer >2001). One way around this
problem is to consider instedithess-conditionadampling. Thus given a uniform random variable
X on 4" we consider the distribution df(U (X)) conditional on 1X).

8In the literature, the distribution of actual offsprisgquenceéwith respect to particular genetic operators) has
been termed th#zansmission functiof ; 1994; 1996;
1 2002), presumably because it mediates the transmission of genetic information from parent to offspring. In
this thesis we prefer to work directly with the distributionfiihess since this is all that our evolutionary processes
(Chapter3) actually “see”.
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To make the notation more compact, in the remainder of this Section let us define the jointly
distributed r.v.’s:

W = f(X) (2.59)
W = fU(X)) (2.60)

whereU is a mutation operator anl is uniform on4". In words:W is the fitness of a sequence
selected uniformly at random froi- and W the fitness of a mutant (with respect to U) of the
samesequenceThe object of study of this Section - tineutant fitness distribution- is thus the
distribution ofW’ conditional orW.

We then define thenean mutant fithess of with respect tdJ to be the real-valued function:

F(Uw)=E(W | W=w) (2.61)

i.e. F (U|w) is the expected fitness of a mutant of a uniformly sampled sequence, given that that
sequence has fitnésw. The fitness-conditional distribution of mutant fitness is encapsulated by
the mutation matrix for thenaximalneutral partitioninga- = UN; . Let f(x) =w; € R for
x € I thus:

P(W/:Wi ‘W:Wj):n”ﬁj(U) (2.62)

which yields:
N
F(Ulw;) = > wim; () (2.63)

2.3.2 Parent-Mutant Fitness Correlation

A commonly encountered statistic in the literature is #uto-correlation function of a fithess
landscape. It measures how correlated the fitness values are of sequences a given distance apart
in sequence space (under the Hamming metric). In our treatment of fitness landscapes “nearness”
of sequences is viewed in terms wiutation We thus adopt the following definition of auto-
correlation:

Definition 2.3.1. For a fithess landscape= (4,L, f) letU be a mutation operator avd, W’ as
defined above. Thauto-correlation of L with respect tdJ is:

p(U) = corr (W,W') (2.64)

Thatis,p(U) is the correlation between the fitnesses of a uniform randomly selected sequence and
its mutant with respect tg.
The more conventional definitiori{ >1989; / 1990;
; 1996) of the auto-correlation functigr(d) at Hamming distancd (where 1< d <L)
is then simplyp (U(@), whereU (@ is uniformd-point (constant) mutatidfi. Auto-correlation is
often described as a measureuwjgednessf a fitness landscape;@{U ) is high we interpret this

9strictly speakingF (U |w) is defined only ifw € f (4%); i.e. if w= f(x) for somex € 4",

1910 much of the literature auto-correlation is defined somewhat differently in terranddm walk®n the sequence
space - see for instance/¢ 7 1990). We prefer the definition given here for its simplicity and also because, as
remarked in § 1 1996) “... it seems to be rather contrived to invoke a stochastic process in order to characterise a
given function defined on a finite set.”.
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as saying that the fithesses of “nearby” sequences (i.e. nearby in terms of mutation) are correlated
and the landscape is therefore “smooth”. If conversely auto-correlation is small then the fithesses
of nearby sequences are uncorrelated and might vary wildly - the landscape is “rugged”.

We now show that auto-correlation gives us limited information about the distribution of mu-
tant fitness. Firstly, note that the random variable (conditional expectafigd)W ) = E (W' | W)
is well defined. It is straightforward to show that:

E(W)=E(FU|W)) (2.65)

and:
cov(W,W') = cov(W, F (U |W)) (2.66)

If in particular our mutation operatd# is uniform, then, as noted previously,(X) is identically
(but not, of course, independently) distributedXs both are uniform on4-. The marginal
distributions ofW andW’ are thus identical, so that with E.66) we may state:

For a uniform mutation operattt the auto-correlatiop(U) depends on the mutant
fitness distribution only via themeanmutant fithess

That is, if we know the fitness distributidl and the mean mutant fitness functignU |w) then

we may calculat@(U). Equivalently, to calculatp(U), in addition to thev; = P(W =w;) - i.e.

the distribution ofV - we need justF (U \Wj ) as given by Eq.4.63 rather than the full mutation
matrix my; (U). This suggests that auto-correlation is likely to be of limited usefulness, since it
does not depend on higher moments of the mutant fitness distribution. It cannot, for instance, tell
us much about the probability fitness-increasingnutation (but see Sectich3.4below).

In general, we might expect that auto-correlation decreases with Hamming distance between
parent and mutant{. Chapters, Chapter6). Landscapes for which the decay of auto-correlation
with Hamming distance isxponentiahave been termedlementary®. That is, settingp(d) =
p (U@) whereU @ is thed-point constant mutation operator, we have:

p(d) = e/* (2.67)

wherel > 0 is thecorrelation length( /1990; ;1 1996; } 1993).

2.3.3 Linear Correlation
We shall call a fitness landscalieearly correlated with respect tt iff the mean mutant fithess
depends linearly on fitness; i.e. if:

F (U |w)=aw+b (2.68)

for some constantg,b. If U is in additionuniformthen it follows from Eq. 2.66) that the pro-
portionality constana must be precisely the auto-correlatipfu ) and we may re-write the linear
correlation condition Eq.A.69 as:

F U w) —w=pU)(w-w) (2.69)

11This is not quite the technical definition: see f&iddle; 1996) for details.
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where:
w=E (W) (2.70)

is themean fitnesof the landscape. Intuitively, on a linearly correlated landscape mutation re-
duces fitness? (on average) by a factor equal to the auto-correlation: the higher up the landscape
we go, the more severely mutation might be expected to impact fitness. Research by the author
suggests that linear correlation (or its analoguerémdomfitness landscapes - see Sectibi

below) may be, at least to some approximation, a ubiquitous and important property of many real
world as well as model fitness landscapes. See also Ctaatet Chapte6.

2.3.4 Evolvability

Perhaps the most relevant statistic as regards the performance of a (mutation-based) optimisation
process is the probability that mutation be “beneficial” - that it produdengnovemenin fitness.
By definition, if a (mutation-based) evolutionary search process is to evolve high-fithess sequences
it must do so via such fithess-increasing mutations. We should thus eay@elztbility of fithess-
increasing mutations to be a basic metric of how well an evolutionary search process can fare on
a given landscape; in other words, on the capacity for fit sequences to evolve. We thus define the
evolvability statistic ( ] 1994; ; 1995; , 2001;
, 2002):
EU[w)=P(W>w|W=w) (2.71)
(note that evolvability thus defined iditness rankdependent statistic, in the sense that it is invari-
ant under a rank-preserving transformation of fitness). We might expedetiagof evolvability
with increasing fitness to be particularly significant; we shall return to this point for the fithess
landscapes of Chaptefsand®6.
It was noted above that auto-correlation depends only ombanfitness of mutants (of a

given fitness) but tells us nothing - in lieu of more detailed knowledge of the full distribution of
mutant fitness - about the probability that mutation actually increase fithess. For instance, a corre-
lated landscape may featuaeally sub-optimaheutral networksdf. Chapter6) with respect to,
say, one-point mutation. Therto mutant of a sequence from that network can, by definition, be
fitness-increasing. Nevertheless we still might suppose that, “in general”, with sufficient correla-
tion, the “tail” of the mutant fitness distribution is likely to “overlap” the parent sequence fithess
(Fig. 2.2). This thesis is concerned explicitly with fithess landscapes featuring high neutrality and
some degree of auto-correlation. We will in particular tend to assumaéititadr fithess sequences
are more likely to produce higher fitness mutants than sequences of lower {ith&sisapters,
Section3.4.7). While as we have pointed out this doesn't follow of necessity from auto-correlation
alone - see also( j 1995) - to paraphrasé|( ;11998):

We believe that this assumption is consonant, by definition, with the very idea of

evolutionary search for optimisation. Imagine, on the contrary, that higher fitness se-

guences are more likely to be closddwerfitness sequences. It then seems strange to

have selection preferably replicate sequences of higher fitness over sequences of lower

fithess. Therefore designing a search algorithm to select higher fithess sequences pref-

erentially over lower fithess sequences implicitly assumes that [fithess-increasing] se-
guences tend to be found close to sequences of current best fithess.

120y, rather, the difference between fitness and mean fitness.
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© tail (fitness-increasing mutation)

parent fithess

mean mutant fitness (correlation)

fitness

mutant fitness distribution

Figure 2.2: Mutant fitness distribution with “tail” of fitness-increasing mutants.

This echoes our remarks in the Introduction, that it is a matter of faith for the GA practitioner that
his fitness landscapegin fact amenable to evolutionary optimisation! It might be saitig J

1994; j 1995) thatvolvabilityrather than correlation is precisely the quantity we would

like to be present in our landscapes; we might argue, however, that correlation is: (a) likely to be
present to some degree in a “well-designed” artificial evolution probtEngéctionl.1.1in the
Introduction): (b) comparatively well-understood, amenable to analysis aedf@ctometric of

fitness landscapes in the literature and: (c) will hopefully, as argued above, imply some degree of
evolvability.

Evolvability and Optimal Mutation

In Section2.2.5we demonstrated (Prog.2.2 that to maximise the probability of (a uniform
randomly selected sequence) mutating from one given neutral network to another, we should use
constant mutation at a rate that may be determined from the mutation matrix. It is clear that an
analogous argument works equally fitness-increasingnutation from a given network:

Propostion 2.3.1.Given a neutral network with fitness w, the mutation mode which maximises
the probability that a mutant of a sequence selected uniformly at randomlfroas fithess> w
is n-point (constant) mutation.

In particular, ifl" is maximal then the mutation mode of the above Proposition is giveti®By
wheren is such as to maximise the evolvabiliy(U |w) with mutation operatot) = /(™ on
. Again, if there is nauniquesuchn - if, say, ny,ny,... all maximal the probability of fithess-
increasing mutation - then any mutation mode WRtfiZ = n) = 0 unlessn = ng for somek suf-
fices.

Prop.2.3.1 has significant implications for the design of efficient evolutionary search pro-
cesses. In particular it suggests that the common practice among GA practitioners of using what
we have termed Poisson mutation - i.e. of mutating alleles per-locus with a fixed probability - may
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not be the best choice of mutation operatdf. For a mutation-based search process we might
indeed attempt to deploy an optimal mutatioperator that always uses the mode/rate which
maximises the probability of fithess-increasing mutation in the sense of Pff. Now without

prior knowledge of evolvability this may appear unfeasible. As we shall see however (Chapter
and Chapte), some knowledge (or presumption) of landscape structure along with “on-the-
fly” information-gathering during evolutionary search may assist us towards this end. In general
auto-correlation (and hence, as we have argued, evolvability) tends to drop off with increasing
Hamming distancecf. Chapter6). The optimal mutation rate for a neutral network thus involves

a “balancing act” between correlation and neutrality:

o |f the mutation rate is too low, mutants will tend to be neutral and thus have no chance of
locating a higher-fitness network.

¢ If the mutation rate is too high, the mutant’s fitness will tend to be uncorrelated with the
fitness of its parent sequence.

The optimal mutation rate of Prog.3.1, then, involves mutating “just enough” to get off the
network but not stray too far from it... this will lead us (Chaptérand 6) to our 1/e Neutral
Mutation Rule

Evolvability and Neutral Drift

In Chapterd we discuss the utility of drift for an evolutionary optimisation process. Here we note
that, as mentioned in Secti@n2.§ the (percolation) drift factofOP¢' for a neutral network does
not take fitness into account (see also Chapte3ection5.4.7). Here we remedy that situation
somewhat by introducing thevolvability drift factor €V for a neutral networl. It measures,
essentially, the degree to which the probability of finding fithess-increasing mutationd from
depends on the actual sequence sampled. Thué ket uniform random o and letZ be an
indicator r.v. for discovery of a higher fithess sequence by a mutaXfioé.Z =1 if f(U(X)) >

f(X) andZ = 0 otherwise. We then define tl@volvability) drift factorfor the neutral network

to be:
1(Z,X)

H(Z)
where(Z,X) = H(Z) — H(Z|X) is themutual informatiorbetweenZ andX. Intuitively, DV°
is the fraction of fithess-increasing mutation information conveyed by knowledge of the actual
sequence for network. Thus if D' = 0 thenZ is independent oK - it makes no difference
where we mutate from oh - and drift will be irrelevant to discovery of higher fithess networks.
In general the larger the evolvability drift factor, the more important we might expect neutral drift
to be as regards discovery of higher fitness networks (see also Chapter

pevel — (2.72)

131t should be remarked, however, that many GA practitioners do not seéléhefrmutation as being primarily as a
searchoperator; see Chapt8r Section3.4 for more on this point.

1There may occasionally be sound argumentsifiideploying constant mutation, on the grounds that (i) there may
sometimes bao fitness-increasing mutations for a given constant mutation rate from certain sequences and (ii) if the
fithess landscape has many “locally sub-optimal” neutral netwafk€hapters) then optimisation may benefit from
the occasional “long jump” mutation generated by eg. Poisson mutation.
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2.4 Random Fitness Landscapes

As alluded to in the Introduction to this thesis, we are as likely to be presented witdssof
optimisation problems - that is, a classfamily of fithess landscapes - than a single landscape.
Thus the GA practitioner may consider the landscape presented to him for optimisation as drawn
from some “random distribution” of fitness landscapes. Indeed, many of the landsoaigésin
the literature are defined in terms of random parameters; in Chapteishall encounter just such
a model. We thus need some notion sghadom fitness landscape

Our definition(s) of a random fithess landscape are not rigorous. For a more mathematically
precise treatment we refer the interested reader td-egd( r2001) [Reidys & Stadler
- Neutrality in Fitness Landscapes]:

Definition 2.4.1. A random fitness function(over the sequence spaé) is a random variable
F with values in a (measurable) sub&et {f | f: 4~ — R} of the set of all fitness functions
on 4“. A random fitness landscapis a triple L = (4,L,F) whereF is a random fitness function
over4‘.

We shall sometimes refer to a random fitness landscape as defined abdeendy ar ensemble
of (random) landscapes.

Given a random fitness landsca®, L, F) and a sequencec 4- we may consideF (x) as
a real-valued random variable, formed dyaluatingthe random fitness functida at x; we write
the distribution ofF (x) symbolically as:

P(F(x)gw):%P(f(x)gw)P(F:f) (2.73)

Similarly if x1,%p,... € 4- we consider the evaluatiol&(x;),F (X2), ... to bejointly-distributed
random variables, formed by evaluating s@mnesampled value of atxi,xy,.... Symbolically:

P(F(x) <w,F(X) <wp,...) = ZQP(f(xl) <wy, f(X2) Swp,...)P(F=1) (2.74)
fe

In this sense, we may specify a random fithess landscape by the joint distribution of the random
variables(F (x) | x € 4%). We might have defined , alternatively:

Definition 2.4.2 (alt). A random fitness function(over the sequence spact) is a family
(F(x) | x€ 4%) of jointly-distributed real-valued random variables indexedy A random
fitness landscapés a triple £ = (4,L,F) whereF is a random fitness function over-.

This “constructive” specification is perhaps more intuitive, particularly when it comes to sampling
random landscapes in simulatiaf.(Chapter6): to sample a random landscape we need to sample
theF (x) for all xin the sequence space. This is perhaps best illustrated by example:

Example 2.4.1. For a real-valued random varialdethe fully uncorrelated random fitness land-
scape with underlying distribution B that for which the=(x) are iidasZ. We may sample this
landscape by assigning fithesses to sequences independently from the distdbution

Many of the statistics already encountered have “ensemble” analogues. These must all now, how-
ever, be expressed strictly in terms of fithess-dependence rather than relative to a particular neutral
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partitioning, since there may not be any natural neutral partitioning which will be valid across the
random family. A neutral network on one “sample landscape” of a family of random landscapes
may not be a neutral network on another! We may still, however, make statements about the sta-
tistical properties of a neutral netwocknditional on that network having some particular fithess
We shall calculate many such statistics in Chapter

As regards mutation, we would like to allow the situation where the mutation operator depends
on the "sample” of the random landscape. For instance, there may be some “optimal” mutation op-
erator for landscapes drawn from some class, where the optimal operator depends on the particular
landscape. Thus when we talk of a mutation operator fandly Q of fithess landscapes we shall
mean a mappinty : f — U; which assigns a mutation operatdy to a fitness functiorf € Q.
We must, however, be careful what we mean by a “compatible” mutation operator(RgJj. If
there is some natural neutral partitioning - eg. iie@ximalpartitioning - for every membef € Q
of a family of landscapes, then by a “compatible” mutation operator we shall mean a mutation
operatorf — Us on the family where eacbl; is compatible with respect to the partitioning on
its own landscapé. A special case of such a compatible mutation operatofita@ss-dependent
mutation operatar to each fithess value € R there corresponds a mutation modg. This de-
fines a mutation operator for any fitness functibe Q whereby a sequencec 4" is mutated
according tols ). We shall encounter such a mutation operator in Chapterequently we shall
deal simply with mutation operators such as th& which are uniform and identical for every
member of a family; the above considerations then do not arise.

One way of forming statistics for a random family of landscapes is simplgugraginga
(single landscape) statistic over the family; we shall use angle brackets to denote such averages.
For example, given a famil of landscapes and a mutation operater- Us as above, we may
consider auto-correlation as mapping a fitness functieQ to the real numbeps (U;) = auto-
correlation of fitness landscagdewith respect to mutation operatbk. Given arandomfitness
landscapel = (4,L,F) we may then viewpr (Ug) as a (real-valuedandom variable We write
the mean (if it exists) of this r.v. ape (Ur))g or just(p(U)) if the random fitness function and
mutation operator are clear from the context. Fithess-dependent statistics may be similarly aver-
aged (for fixed fitnesw)) over an ensemble of fithess landscapes; eg. the probalilityw) that
a mutation of a (uniform randomly selected) sequenc liyy neutral given that the sequence has
fitnessw, wherel is a fithess-dependent mutation operator as described in the previous paragraph.
A caveat: there may be alternative “ensemble” versions of some statistics - auto-correlation is one
example we shall encounter below - which wilht generally be the same as the corresponding
averaged statiste.

Given a random fitness landscape= (4,L,F) and a mutation operatdr— Us, for x € 4"
the jointly-distributed random variablégx), F (Ug (x)) are well-defined; they should be thought
of as representing the fithesses of sequeramed a mutant ok respectively, wherboth fithesses
are evaluated with the same fitness function and mutation uses the operator corresponding to that
fitness function i.e. mutation and fitness evaluation are onghene landscape drawn at random
from the family Similarly, if X is a r.v. on4" thenF (X), F(Ug (X)) are well-defined and, as for

15The extent to which an averaged statistic approximates its ensemble analogue might be thought of as a kind of
“self-averaging”.
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non-random landscapes, we define the jointly-distributed r.v.’s:

W = F(X) (2.75)
W = F(U(X)) (2.76)

whereX is uniformon 4-. Again, it is important bear in mind thslt, W’ represent the fitnesses of
a (uniform random) sequence and a mutant of that sequence evaluatedsamttendscape. For
a fitness valuav € R we may consider as before the fithess of a mutant conditional on the fitness
of the un-mutated sequence being equakta.e. W’ conditional onW = w. The distribution of
W’ conditional oW might be considered an ensemble analogue of our mutation nnagy.

We now define thensemble mean mutant fithness af with respect tdJ - cf. Eq. (2.6]) - to
be the functiof®:

FUwW)=E(W |W=w) (2.77)

Similarly we may define thensemble auto-correlation of, with respect tdJ - cf. Eq. 2.64) - to
be:
p(U) = corr (W,W') (2.78)

Note that, as alluded to above, the ensemble auto-correfatidpwill notin general be equal to
the auto-correlatiofpr (Ur ) ) of individual landscapes averaged of the family. As for the single
landscape case we have:

E(W)=E(F (UW)) (2.79)

and:
cov(W,W') = cov(W, F (U |W)) (2.80)

so that for auniformmutation operatdd (i.e.Us is uniform, although not necessarily the same, for
all fitness functiond in the family) ensemble auto-correlatipiU ) depends only on the fithess
distributionW and the ensemble mean mutant fitness funcfidi) |w) rather than the full (joint)
distribution ofW,W’. Again we call a random fitness landscdipearly correlated withe respect
toU iff:

F (U |w)=aw+b (2.81)

for constants, b. Again, ifU is uniform thena must be the (ensemble) auto-correlatbl ) and
we may re-write the linear correlation condition as:

F U w) —w=pU)(w-w) (2.82)

where :
w=E (W) (2.83)

is the (ensemble) mean fitness of a uniformly sampled sequence of the family.
There are also natural ensemble versions of neutrality statistics. We may define:

V(U |w)=P(W =w|W=w) (2.84)

16strictly speaking, this function is defined ¢ e R | g(w) # 0} whereg(w) is the probability density function
(pdf) of W.
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Note that we would not expect neutrality to “self-average”; i.e. we would not expect the average
over the ensemble of the neutralities of networks of fitvess be the same as(U |w). Finally,
the (ensemble) definition of evolvability (Secti@n3.4 goes through formally unchanged for

random fitness landscapes:
EU[w)=P(W>w|W=w) (2.85)

Again, we would not expect this quantity to “self-average”.



Chapter 3

Evolutionary Dynamics

3.1 Populations

Firstly we introduce some mathematical preliminariesZ 1§ any set and/l > 0 an integer, then
the group of permutations of 2, ...,M acts (on the left) as a transformation group on thez¥et
of sequences= (z,2,...,2v) by:

0 (21,22, 2m) = (Zo11): %0122 201 (M) (3.1)

or:
(0:2)a =251 fora=12..M (3.2)

for a permutatioro. We may check that i, 0’ are two permutations of,2,...,M then for any
z< ZM we have:
0-(0'-2)=(00') -z (3.3)

as required. The group of permutations g2.1..,M thus induces an equivalence relation on
ZM, the equivalence classes being the orbits of the group actionz zeZ iff 3 a permutation
o such thatZ = o-z We shall refer to this as the-ordering equivalence relation o&M. We
shall use angle brackets ... > to denote “equivalence class of. under re-ordering”; i.e. if
(21,22,...,2m) € ZM we write < 21, 2,,. .., 2y > for the equivalence class to whi¢hy, 2o, ..., 2v)
belongs.

If : ZM — W is a mapping fromzM to some seW such that for anyg € ZM and any
permutatioro of 1,2,....M we have:g(c - z) = ¢(z) we say thatpis asymmetridunction onzV,
or is invariant under re-ordering Similarly for a mappingp : ZM — WM, we cally invariant
under re-ordering iffp(o-z) = 0 - Y(2) vz 0.

By a "population” of objects we would like to mean simply a collection of objects, some of
which may be identical. For instance for a population of genotypes we would like to think of
identical genotypeseclones- as beingndistinguishablé from the evolutionary perspective. This

10f course in natural evolution clones - identical twins! - are not identical phemotypioand therefore fitness)
level. This may indeed be true of artificial evolution eg. if phenotype is developed from genotype through some kind
of “noisy” procedure. An example of this is where a neural network phenotype is “grown” stochastically from its
genotypic specification. We specifically exclude such systems in this work. Note that this is not the same as noise on
fitness evaluatiofSection8.2).
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motivates the following:

Definition 3.1.1. A population of sizeM on a setZ is the setPM(Z) of equivalence classes of
ZM under re-ordering. By convention we defi®8(Z) to be the se{0} and we defineP(Z) =
UN—o®M(2) (disjoint union) to be the set of populations Brof any size. Foz € P(Z) we write
|z| for the population size of i.e. |z = M < zc PM(Z).

The populations we are interested in are, of course, populations of genotypes on a sequence space
4-. We shall use bold symbolsy,... for populations in?(4%) and by abuse of notation, for
X =< X1,X2,...,Xm >€ PM(4%) and a sequencge 4- we writey € x to mean thay = x4 for
somea € {1,2,...,M}, which we interpret as saying that is represented in the populatioti.
If £=(A4,L,f)is afitness landscape arg-< x1,%y,...,xu >< PM(4%) a population of size
M on 4t we write f (X) =< f(x1), f(X2),..., f(xm) >€ PM(R). Themean fitnesf x is defined

to be:
_ 1 M

F) =4 71f(Xa) (3.4)

Note that the RHS specifies a symmetric function so fT(la) is well-defined. We also define the
best fitnessn the population to be:

f*(x)=max{f(xa) |a=1,2,...,M} (3.5)

3.2 Selection Operators and Evolutionary Operators

In the broadest sense an evolutionary process on a fitness landseapd, L, f) is a stochastic
process on the set of populatio®$4-) on the sequence spage. This is, however, obviously
too general a definition to describe what we would like to think ofaslution In particular, we
wish to pinpoint more clearly the notion of evolution as constitufifigess-based selecti@nd
replication with variation

Our definition of an evolutionary process on a fitness landscape will inevitably be restrictive.
To the GA researcher we therefore issue a warning against dissapointment if their favourite genetic
algorithm does not appear to fall within our ambit; we shall at least attempt to make explicit the
restrictions inherent in our approach.

A brief description and motivation for our definition is as follows: evolution is driven by
selectionand variation mechanisms. The first major restriction is that as regards variation, we
deal solely withmutationas described in the previous Chapter. Our motivations for excluding
recombinatiorwill be discussed more fully in Chaptér- suffice to say that recombination could
be brought into our framework without too much difficulty. Our definition of mutation (Ch&yter
is also, of course, restrictive; in principle more general forms of mutation might be allowed. Again,
if we were discussing natural evolution this might be necessary.

Another major restriction is that (in a sense to be made precise below) selection will depend
only on thefitnessof sequences. This will potentially exclude a fairly extensive class of genetic
algorithms, such aspatially distributedGA's ( ,. 1996;

, 1996; 01999) which make use of structural mechanisms additional to the
sequence- fitness mapping.
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A further crucial restrictive assumption we shall make is that an evolutionary process be
Markovian This is for two reasons: the first is purely pragmatic: Markov processes are far more
amenable to analysis than stochastic processes in general. The second is empirical: many (but
by no means al) stochastic search processes in common use - and arguably those in particular
that might be recognised &volutionarysearch processes - are Markovian. We don’t, however,
insist in general that an evolutionary procesgibe homogeneoud his allows search processes
such asimulated annealing ) 1983; | 1996) to fall under our
definition of an evolutionary process.

As regards théimeaspect of our evolutionary processes, in this thesis we restrict ourselves to
discrete timgMarkov) processes. While it is perfectly feasible (and indeed in the biological case
probably preferable) to discuss evolutionary processes in continuous time, we are principally con-
cerned with artificial (probably computer-based) processes which occur naturally in discrete time.
Suffice to say that most results presented have continuous time counterparts. As has already been
remarked, throughout this thesis we take the view that as regards search/optimisation, the most
time-intensive computational aspect is considered to be fitness evaluation. Therefore, in analysing
and evaluating search processes, we should always use the number of fithess evaluations as a mea-
sure of time. Howeverit should not be assumed that the time step of our evolutionary process - as
a Markov process - is necessarily a single, or even a fixed number, of fithess evalulaisbesd,
we measure “Markovian” time igenerations The number of fithess evaluations per generation
may vary and our generations may wellerlapin the biological sense\( ;11998);
that is, population members may “survive” into subsequent generations. Care must be taken to
avoid confusion on this issue; in general we shall try to use the Rotidar‘time measured in
fithess evaluations and the GreaK for generational (Markovian) time.

3.2.1 Evolutionary Operators

Broadly, then, we need a mechanism -ealutionary operator to form a new population from a
current population such that sequences in the new population are either copies (clones) or mutant
offspring of sequences from the current population. Mutation has been dealt with in the previous
Chapter. A rigourous definition of selection in the sense that we require turns out to be somewhat
technical and is thus relegated to Appenéliphere we supply a non-rigourous, intuitive definition.
Suppose given a fitness landscape and a mutation operator on the associated sequence space.

To form a new population from a current population (of sidgwe generate a (fi-

nite) number of mutants of sequences from the current population using the mutation
operator. The fitness of each new mutant is evaliat®de then select (copies of)
sequences from both the original population and the new mutants to comprise a new
population; this selection procedure maydtechasticand must dependnly on fit-
nesgof original and/or mutant sequences).

A prescription for fithess-based selection of the above nature (independent of the actual mutation
operator deployed) defines what we shall caedection operator for population size Mcf.

2Tabu search 21993) for example, is not a Markov process.

3Since mutation is the only mechanism for produairegvsequences, we assume that fitness is evaluated when, and
only when, a mutation occurs; this notwithstanding that mutation might conceivably produce an offspring sequence
identical to its (already evaluated) parent.
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Def. A.1.1). We then definedf. Def. A.1.2):

An evolutionaryor generational operator for population siz® on a fitness land-
scapeL = (A4,L,f) is a pairG = G(S5,U) whereS is a selection operator for popu-
lation sizeM (Def. A.1.1) andU a mutation operator. It defines a map from the set of
populationsPM(4") on the sequence spagit to the set of random variables on the
set of population®(4") on 4" (cf. Eq. A.6).

Thus an evolutionary operat@j for population sizeM takes as its argument a populatiore

PM(4%) and generates stochastically a new populagien®(4%) - a “next generation” - with
probability P(G(x) =y), by sequentially generating mutants of current sequences and selecting
the new population from the mutants and original sequences on the basis of fitness alone. A key
point in our definition is that, in creating the next generation, we may only mutate sequences
from the current generation; we may not create “mutants of mutants”. This ties in with the usual
conception of “generation” in natural evolutiohl§ ;11998; , 1970).

As previously stated, the chief restrictions inherent in our definition are (besides the absence of
recombination) the dependence on fitnasly for selection and our somewhat restrictive definition

of mutation.

Frequently a selection operator - or, rathesgaesof selection operators - will be defined for
arangeof population sizes (see below for some examples). In this case it is easier to think of the
corresponding evolutionary operator as mapping f(") - the set of populations @nysize -
to the set of r.v.'s oP(4). We shall thus fudge the issue and generally drop the “for population
sizeM” rider; it will be clear from context to which population size(s) our operators apply.

We have, given an evolutionary operatpand a populatiox, the random variabldg; (x)| =
thesize(Eq. A.9) of a population created fromand|| G(x)|| = thenumber of fitness evaluations
(Eq.A.10) required to create a new population framif |G(x)| = |x| (a.s.) for any populatior
then the selection operatorfised population sizdf || G(x)|| is constant (a.s.) for any populatign
then the selection operatorfised number of fithess evaluatioMdost selection operators we shall
encounter are both fixed population size and fixed number of fithess evaluations (an exception is
Example3.2.3below).

A selection operator igenerational(or hasnon-overlapping generatiohsf a new gener-
ation consists entirely of mutants - i.e. none of the original population sequences are selected
(un-mutated) - otherwise selectiongteady-stat€or hasoverlapping generations A selection
operator iditness-proportionaif it is invariant under re-scaling of fithess by a scalar factor; it is
rank-invariant(or justranked if it is invariant under transformations leaving rank-order of fithess
invariant; it iselitist if the population best fitness is non-decreasing from generation to genération
See AppendipA.1 for more precise definitions.

We now introduce a few selection schemes which should be familiar from either population
biology or the GA field. See Appendik.2 for precise definitions in terms of our mathematical
formalism of selection operators. We note that each of these selection operators defines, along
with a mutation operator a (homogeneoasplutionary procesgsee next Sectiod.2.2 which
may be familiar as a model in population genetics, a GA or other evolutionary search procedure.

4Elitism is sometimes taken to mean the survival of (at leat one copy of) a current best fitness sequence into the next
generation.
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Example 3.2.1. Birth-and-death selection:to form the new population some sequence “dies”

- is eliminated from the population - while another sequence is “born” - i.e. arises as a mutant
replica of an existing sequence. Birth and death selections are on the basis of fitness. For each
W=<W,...,Wy >€ PM(R) we thus define random variabl&w) andD(w) taking values in
1,2,...,M. Intuitively, for a populationx =< xg,...,Xu > with f(x) = w the sequenceg
replicates, while the sequengg, dies and is replaced by the new muttah@xB(W)). Note that

we might haveD(w) = B(w); i.e. the same sequence is chosen to replicate and die. Birth-and-
death selection is steady-state, of fixed population size and fixed number of fitness evaluations
(= 1; only the new mutant needs to be evaluated for fitness). It is fitness-proportional (resp.
ranked) iff the birth and death r.v.B(w) andD(w) are invariant by scalar multiplication of

(resp. by transformations preserving the rank ordew)of

Example 3.2.2. Winner-beats-lose2-tournamentis a ranked birth-and-death selection method
defined as follows: lefy andA; be independent uniform random variables{dn2,...,M}. The
birth and death r.v.’s are given by

B(w) =A1, D(w)=Ay if wa >Wwa,

: (3.6)
B(w)=A;, D(w)=A; otherwise

(it may be checked thd&(-),D(-) thus defined are, as they must be, invariant under re-ordering -
see AppendipA.2). Intuitively, to form a new population we pick two sequences at random from
the current population. A mutant of the fitter then replaces the less fit.

It is not quite obvious that this selection operatondt elitist. For suppose there is exactly
one sequencein the population that is fitter than every other sequence in the population. Then it
may happen thatis selected twice (i.eA; = Ay = 0, say, andk = Xy). Thenx “beats itself” and
a mutantd, say, ofx replacesx. Now if X' is less fit tharx the best fitness in the population has
decreased! Note that if we had demanded tiag A, - i.e. that twodistinctsequences must be
chosen for a tournament - then we would have elitism.

Example 3.2.3. Moran selectionis similar to the birth-and-death selection as introduced above,
but is not of fixed population size (or fixed number of fithess evaluations). It is based on a
continuous-time population genetics model introduced/byrén, 1958). In the Moran model,

for a populationx =< x1,X2,...,Xv > of sizeM with fitnessesf (x) = w, in each small time in-
terval ot there is a probabilithy (w) - 8t + 0(5t) that the sequencg, replicates and a probability

Lo (W) - 8t 4+ 0(3t) that it dies for somé,u: RM — RM . We may calculate that in the event of
either a birth or a deaththe probability that the event is a birth rather than a death is given by:
A(w)

XCORRTC) (3.7)

q(w) =

where we have sét(w) = TM | Aq(w) andp(w) = M, iy (w). We may also calculate that the
waiting timeT (w) to the next birth/death eventéxponentiallydistributed with expectation:

E(T(W) = o

A(W) + p(w)

To simulate the process, then, we draw waiting times till the next event from the distribution
of T(w) and suppose that the event is a birth with probabiityw) or a death with probability

(3.8)
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1—q(w). In the case of a birth the probability that sequergeeplicates is\q(w)/A(w) while
the probability thak, dies in the case of a death is givenjigyw) /p(w).

Example 3.2.4. Multinomial selection also commonly known a®ulette-wheel selectioaper-

ates as follows: selection is generational. To form the new population from a population Bf size
we performM independent selections on the basis of fithess (“spins of the roulette wheel”) from
the current population. We thus have a functiorRM — RM wherepq (f(x1), f(X2), ..., f(Xm))
represents the probability (“roulette-wheel sector size”) Xgas chosen on each independent se-
lection. Since they, are probabilities, they also satisfy:

1. 0< pa(w) < 1Vw,a
2. IM 1 pa(w) = 1Vw

Forw ¢ RM we then define the jointly (multinomially) distributed non-negative integer-valued
random variable®; (w), Ra(w), ..., Ru(w) by:

M!

P(R]_(W) =1TI1,.. 7RM(W) = r|\/|) = mpl(w)” ... Pwm (W)rM (39)

Intuitively Ry (f(x1), f(X2),..., f(Xm)) is the number of mutant replicas xf in the new popula-
tion. The particular case where:

p(w) = <_> w (3.10)

wherew = zg":lwu yields a fitness-proportional multinomial selection operator also known as
Fisher-Wright selectioff , 1970). Other choices fqa(w) allow for the possibility

of rank-based multinomial selection, etc. Multinomial selection is of fixed population size and
fixed number of fithess evaluatiohs

Example 3.2.5. A stochastic hill-climberhas a fixed population size of 1; a population is thus
specified by a single sequence, which we calldheentsequence To form the new population
- i.e. to specify a new current sequence - we create a single mutant replica of the current se-
quence and then select on the basis of fitness between the current sequence and the néw mutant
We thus have a Bernoulli (Boolean) random variable (i.e. a biased coint¢ss)/), represent-
ing the event that the new mutant replaces the current sequence giver{dhaent) = w and
f(mutanh) = w. Stochastic hill-climbers have a fixed number of fitness evaluations of 1. An
example is thaetcrawlerintroduced in [ { 2001). Here:

Y(ww) = { true w2 w (3.12)

false otherwise

The netcrawler, which is ranked and elitist, may be described thtigach time step, if the new
mutant is fitter than or of equal fithess to the current sequence, the mutant replaces the current

5In the literature hill-climbers are frequently described as having population size 2 erl“l see e.g.
( 7 1996). Indeed, it might be argued, we surely need more than one sequence to be able to select non-
trivially! However our definition of selection allows, of course, for the creation of (possibly transient) new mutants.
Defining population size 1 will, as we shall see, also simplify the mathematics required to analyse evolutionary pro-
cesses based on stochastic hill-climbers.

SWe don't, in fact, demand that our hill-climbers always climb hills! They may accept fitness-decreasing or fitness-
neutral mutants.
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sequence; otherwise the mutant is discarded and the current sequence retdiihedietcrawler
thus always acceptgeutralmutations as well as fithess-increasing mutations.

We note here that this algorithm is almost identical to Rendom Mutation Hill Climber
(RMHC) presented inK| | 1993; ,11994), the only
difference being that the RMHC only ever flips one (randomly chosen) bit at each step - our
constant 1-bit mutation mode. We avoid the term “hill-climber” to emphasise that, in the presence
of neutral networks, a netcrawler spends most of its time not climbing hills, but rather performing
neutral walks( 1.1996).

A related stochastic hill-climber, which we shall refer to asithiplace stochastic hillclimber
is defined by:

true w>w

Y(ww) = . (3.12)
false otherwise

In contrast to the netcrawler, the in-place hill-climber only moves to a new mutant if the mutant is
strictly fitter than the current sequence.
A random walkis described simply by:

Y (w,w) = true (3.13)

always. That is, the mutant always replaces the current sequence. In particular, if the mutation
mode iscompletely random mutatiqi$ection2.2.1) then we haveandom search
Finally, we define anervous ant neutral wallkwith drift constantO < g < 1 by:

W):{ Q@ w=w

) (3.14)
false otherwise

where the Boolean r.Q(q) is a biased coin toss whichtisue with probabilityg. Thus a nervous
ant neutral walk only accepteeutral mutants, and then only with fixed probabiligy It remains

on the neutral network on which it finds itself. The special aasel - alwaysmove to a neutral
mutant - is known as blind ant neutral walk’ ( 51996).

Example 3.2.6. Multiple independent stochastic hill-climberare precisely that: for population
sizeM we haveM independenBernoulli random variable¥, (w,w) representing the event that
new mutani;, replaces current sequencegiven thatf (xo) = wandf(x;) = w. Population size
is fixed and number of fitness evaluation$4s

3.2.2 Evolutionary Processes

We are now ready to define what we mean by an evolutionary process. Recalt’tdanbtes
time in generations:

Definition 3.2.1. Let L = (4,L, f) be a fitness landscape over the sequence sgacé\n evo-
lutionary processon £ is a Markov procesX(t) on P(4%) of the following form: there is a

’0n the subject of hill-climbers, we note that neithesteepest ascent hill-climbg¢r [ 1993) nor
amyopic ant neutral walk 5 1996) employ evolutionary operators as we have defined them; in neither case do
they employrandommutation and thus (to this author at least) it seems reasonable that neither process be described
as “evolutionary”. Theandom mutation hill-climbe(RMHC) of ( , 1994), on the other hand, is just our
netcrawlerselection with uniform 1-bit constant mutation.
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sequence (1) of selection operators and a sequebde) of mutation operators ofi- such that
for x,y € P(4") the transition probabilities are given by:

P(X(t+1)=x| X(1) =y) =P(G(1)(y) =X) (3.15)

whereG (1) = G(S5(1),U (1)) is the evolutionary operator induced by the corresponding selection
and mutation operatdts

If the G(1) are the same for afl - that is, there is a selection operagband a mutation operator
U such thatG (1) = G(S,U) Vt - then we call the evolutionary proce§sne) homogeneousA
well-known example of @aon-homogeneous evolutionary process is the following:

Example 3.2.7.Suppose given a decreasing functionN — R™ from the non-negative integers
to the (positive) real numbers and a real parametel0. Given a fitness landscage= (4,L, f)
letU be a mutation operator ofi- and fort = 0,1,... let $(1) be the stochastic hill-climber with
Bernoulli selectiorY (1) (w,w') given by:

PY(D)(ww)) = :‘b_ wzw (3.16)
exp(ﬁ) W <w

Thus if the new mutant is fitter (or of equal fitness to) the current sequence it is accepted un-
conditionally. If the mutant is less fit than the current sequence it may still be accepted, with
a probability that depends exponentially on the fitness decremientv. Note that ifw < w

w — .
then, as théemperatureT (1) decreases, the argumel?(ﬁ\gv becomes larger and negative so that

its exponential decreases. Thus the probability of accepting a given fithess decrement decreases
over time. The evolutionary process defined by the evolutionary opergtais= G(5(1),U)

is known assimulated annealing( , 1983; } 1996). The dependence of

T(1) on timet is called theannealing schedule Note that as temperatuligt) approaches zero,

the behaviour of the process approaches that ohtterawler(Eq. 3.11) - i.e. it accepts only
non-fitness-decreasing mutants.

In general our evolutionary processes will be initiated at 0, with X(0) the initial population

(or generation, although sometimes= 1 may be more convenient. It is common (though not
invariable) for evolutionary search processes to be initiated wigmdominitial population; that

is, a population comprisinlyl independent uniform random selections freth. Whatever the
origin of an initial population, we always assume that fithess must be evaluated for every initial
sequencean initial population of size M always incurs exactly M fitness evaluations

3.3 Statistical Dynamics

In the previous section we defined an evolutionary process as a Markov process on the space
of populations on a fitness landscape. A major obstacle to the mathematical analysis of such
processes is the sheer size of the state space. Indeed, the number of possible populations for
alphabet4, sequence length and population sizé is of the order of|4/M-. An approach

8Recall our population size fudge of Sectigr2.; it is assumed thag (1 + 1) is defined for the population resulting
from application ofs(1).
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introduced in [ |.1997) takes a cue from Statistical Mechanicsbgrse-graining
the state space and makingreaximum entropy assumptioagarding the distribution of states
within the coarse-grained structure. Here we outline $tistical Dynamicsapproach.

3.3.1 Coarse-graining and the Maximum Entropy Approximation

How are we to coarse-grain our state space? As defined in the previous section our evolutionary
processes depend, via selection, only on the fitness of sequences in a population. In particular,
selection as defined cannot differentiate sequenceswdlfitness. Any partitioning of the state
space should thus respect this aspect of selection, in the sense that sequences of different fithess
should not be lumped together since they would be expected to behave differently with regard
to selection. This was precisely the motivation for our introductiomeitral partitioningsof
a fitness landscape in the previous Chapter. However, as intimated there, we cannot expect that
sequences of equal fitness will behave similarly with respectutation

Thus suppose we are given a fitness landscape (4,L, f), a neutral partitioninga- =
UN, i of £ with f(x) =w; for x € I'; and an evolutionary proce3T) on £ with evolutionary
operatorsG (1) = G(5(1),U(1)). We suppose further that the mutation operatd(s) are com-
patible with the partitioning. Now for a population=< x;,%p,...,xu >€ PM(4") of sizeM
we can defin& =< %3,%p,...,% >€ PM (;le'-) where 4L = {1,2,...,N} is as before the index
set of neutral subspaces and angle brackets again indicate equivalence classes with respect to re-
ordering. Thusxf(?) defines a stochastic process 9@) - but it is not necessarily a Markov
process For, while the probability of selecting a sequence from a neutral network does not depend
on the particular sequence from that neutral network (since selection probabilities depend only on
fitness), the probability that a sequence from a neutral netmaortatedo another neutral network
may well depend on the particular sequence under consideration. In shdrisif mutation
operator anc,y € 4- we have:

x=9#U(x) =U(y) (3.17)
But, if we are lucky, Eq.%.17) may hold “approximately” in the sense that fo€ I j:

U(x) ~U(X;) (3.18)
whereX| is uniformon[j. That is to say, the probability that a given sequence from neutral net-
work I'; mutates to a particular neutral network may be approximately the same as the probability
that a sequence drawmiformly at randonfrom I'j mutates to the same neutral network.

Definition 3.3.1. Eq. (3.19 is themaximum entropy approximatiorfior the mutation operatdy
and the given neutral partitioning.

It may be shown (see Appendix3) that we may “lift” an evolutionary operatag in a unique,
natural way to act on populatior?” (:qu) of (indices of) neutral networks. Intuitively, to calculate
selection and mutation probabilities férwe identify each neutral network indgxn a population

of network indices with an (independent) uniform random sequihecal ;. We then applyg to

the “population of random sequences” thus obtained. As noted in Appén@imutation enters
into the calculation ofé simply via the mutation matrix for the neutral partitioning, since by
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definitionP (U(Xj) = i) =m;j (U). The maximum entropy approximation says that the following
diagram “almost commutes”:

G
ML) K(T(ﬁ?))
1 1 (3.19)
Mat) — R (P(AY))
G

whereR (...) denotes “set of random variables with values.iri.

Definition 3.3.2. We call the mappin@ defined above theaximum entropy approximation of
G for the given partitioning. Under the maximum entropy approximation (applied at each time
stepT) an evolutionary proces$(t) on 2(4-) now defines a Markov proce3§T) on fP(/?Zlv'-) as
in Eq. 3.15 by:

P(X(t+1)=i| X =i) =P(G®)() =) (3.20)
fori,j e LP(EII), which we call the maximum entropy approximationXtft) for the given parti-
tioning’.

The naming of the approximation derives from direct analogy with the parallel procedure in sta-
tistical mechanics: given a neutral netwdrkwe “forget” the precise distribution of sequences

in I and then treat them as if they were drawn from a maximally disordered distribution - i.e. a
distribution with maximum entropy - within the constraint that they ar€.inThe power of the
maximum entropy approximation for an evolutionary process stems from the reduction in size of
the state space™(4") to the smaller and hopefully more tractable state sﬁé(gi), a reduction

in state space size from order|df|"M to order ofNM whereN is the number of neutral subspaces

in the partitioning.

We will often talk about the “maximum entropy assumption” instead of “approximation”; the
assumption we are implicitly making is that the maximum entropy approximation for an evolution-
ary process reallis in some sense a reasonable approximation to the actual evolutionary process.
For instance, we may examine a “macroscopic” quantity sucﬂh(etix(r))), the expected mean
fithess at timer, and ask how well it is approximated (for a given neutral partitioning) by the
corresponding quantit (f_(>~<(r))>.

Ultimately, as in statistical mechanics proper, how good an approximation we obtain with
a maximum entropy approximation will probably need to be tested empirically. This we shall
frequently do for the evolutionary processes to be analysed later. We might expect a trade-off
between analytic tractability (the coarser the partitioning, the smaller the state space and hence the
simpler the analysis) and accuracy of the approximation. Also, we note that in the previous Chapter
we introduced the quantitie®;(U) and (U ) which, in some sense, measure the extent to which
Eqg. 3.18 applies and hence are an indication of how well a maximum entropy approximation to
an evolutionary process might be expected to hold.

9Note the distinction betwea?)(r) and )Z(?). Perhaps more properly, we should say that the Markov prON(:(ass
is (hopefully) an approximation to the not-necessarily-Markov pro2&ss.
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Finally we note that, while classical statistical mechanics addresses itself almost exclusively
to equilibrium statistics (in our casstationaryMarkov processes) the evolutionary phenomena
of interest to us (e.g. first passage times to specified fitness levels) tend to be essantially
equilibrium; this, of course, makes the task of analysis no easier...

3.4 Epochal Dynamics

This thesis deals explicitly with fitness landscapes featuring a high degree of neutrality and some
degree of correlation. The dynamics of evolutionary processes on such landscapes typically dis-

play some characteristic features (Figl)'® as identified in § ,. 1996;
, 1997; ,.1998; ; 1997, [ 1998; ,2001;
1 1996),etc.

fitness

mean ———
best ——

time

Figure 3.1: Typical evolutionary dynamics on a fitness landscape featuring neutral networks.

e Evolution proceeds bfithess epochég |.1997), during which the mean fit-
ness of the population fluctuates around a stable (quasi-)equilibrium. These mean fitness
equilibria roughly track the population best fitness.

e Transitions to higher fithess epochs are preceded by the discovery of a higher fitness se-
quences than currently resides in the population

10The landscape of Fig.lis an NKp landscape (Chaptg), the evolutionary process “standard” fithess-proportional
multinomial selection with Poisson mutation.

11The discovery of a new high fitness sequence is sometimes ternirdamtion however, use of this term is not
consistent in the literature. In this work we have used the term “innovation” (Setto§ to denote the discovery of
apreviously unseesequence, not necessarily of higher fitness.
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e Transitions may be down to a lower fithess epoch as well as up; this is associated with loss
of all current best fitness sequences.

e The discovery of a higher fithess sequence than the current best does not necessarily initiate
a new epoch; the new sequence may be quickly lost before it can become established in the
populatiort?. This may be repeated several times before establishment of a new epoch.

¢ If a higher fitness sequenckesinitiate a fitness epoch, there is a transition period, brief
compared to a typical epoch duratiépduring which the population mean fitness climbs to
the new epoch level.

Through the work of various researchers a consistent explanation has emerged for the above char-
acteristics:

e During a fitness epoch the population is localised in sequence space, somewhat like a clas-
sicalquasi-specie$ } 1971; , 1989). The best fitness sequences reside on a
neutral network, along which thaliffuse neutrally , 1983; , 1964;

, 1996), until either...

e ... aportal sequencel{ ;11999) to a higher fitness neutral network is
discovered, or...

¢ ... the epochiestabilisesall sequences on the current highest neutral network are lost due
to sampling noise; this phenomenon relates to the concept of the (finite population)
threshold( , 1989; >r1982; ,1989) €f.
Chapter7).

o If a higher fitness portal sequence is discovered it will survive and drifixédion (
) 1998) with a probability r 1930; , 1962; : 1985) and rate
( , 1969) dependent on the selective advantage of the portal sequence and the
mutation rate of the evolutionary process.

e During the transient period when a portal sequence is fixating, the population becomes
strongly converged genetically (this phenomenon is variously known in the literature as
“hitch-hiking” or the “founder effect” { ;11992; |
1993)), as the higher fithess portal sequence and its selectively neutral mutants are prefer-
entially selected at the expense of lower fitness sequences.

Now a more “traditional” view of population evolution (with recombination, on a not-necessarily-
neutral landscape) might impute a somewhat different interpretation t@Higlt might be as-
sumed that epochs correspond to episodes during which the population is entrapped in the vicinity
of alocal fitness sub-optimum, while transitions to higher fitness levels signify discovery of higher
local peaks, somewhat in the manner of Sewall Wright's “shifting balance” thebry\(ight,

1982). Broadly, the traditional GA picture promoted by John HollgndGnd, 1992) and subse-
guent researchers, might be characterised thus: recombination assembles fitness-enhancing “build-
ing blocks” present in the population into higher fitness sequences (the so-Balldohg Block
Hypothesig | 1993)); mutation is merely a “background operator” to prevent
total loss of genetic diversity. This process continues as long as there is sufficient genetic diversity
in the population for recombination to work with. Once genetic diversity has waned (inevitably

12Thjs will not, of course, occur if selection ditist (Section3.2.1).
B3Indeed so brief as to be virtually indiscernible on the time-scale of3ig.
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S0, due to the combined effects of selection pressure and finite-population stochastic sampling) the
population is deemed “converged” and no further fitness improvements are likely.

Thus it tends to be considered necessary to initiate the GA with a (usually large) randomly
generated population - that is, with a “Big Bangof genetic diversity for recombination to work
upon. This perception goes some way to explaining the obsession of much GA research with “pre-
mature convergence” and the multitudinous schemes prevalent in the literature for the avoidance
thereof. In this author’s view there are several serious flaws to this picture, particularly as regards
evolution on landscapes with high neutrality; we discuss this in Chapiamrecombination. Our
conclusions there lead us to reverse received wisdom and justify our viewtafionas the driv-
ing force behind evolutionary search. If recombination has a role to play we view it as secondary
(and obscure!) and consequently exclude it from our analysis.

3.4.1 Analysing Epochal Dynamics - Fitness Barriers and Entropy Barriers

Referring to Fig.3.1, during an epoch (i.e. during periods when transients associated with losing
the current neutral network or moving to a higher network have subsided) the evolutionary process
X(1) is, as a Markov process, “almogitationary( ) 1992); roughly speaking, the proba-
bility of finding the population in a given state does not vary over timeNin [.1997)

an evolutionary process during such an episode is describegi@stable As an approximation

we may consider a metastable evolutionary proegss as a (stationary) Markov process in its
own right. In particular, the sub-population of sequengeshe highest fithess network behave
similarly to a population diffusing on #at (i.e. selectively neutral) landscape; this situation is
analysed to some extent in¢ , 1991), where it is shown that neutrally diffusing
populations exhibit a characteristitusteredstructure, with sub-populations of sequences sharing
common genealogies.

In the previous Chapter we noted that, given some correlation, higher fitness sequences are
more likely to produce higher fitness mutants than sequences of lower fitness. In practice this
means that in an evolving population during a metastable episode, we can expect portal sequences
to be discovered, in the main, as mutants of the sub-population of sequdifiassg on the
current highest network Optimisation, then, is dominated by waiting times for this diffusing
sub-population to search the neighbourhood of the highest network; the larger the volume of the
network in sequence space (and the more sparsely distributed are portals) the longer we can expect
to wait. ( 11999) coin the ternentropy barrierto describe the search
obstacle presented by the volume of a neutral network under this scenario. He then contrasts
this with thefitness barrierpresented by entrapment of a population on a sub-optimal network,
where portal discovery is dominated by the time required for a lineage of “off-network” sequences
to cross a “ditch” of lower-fitness sequences. He then goes on to show that in general we can
expect crossing entropy barriers to be faster by orders of magnitude than crossing fitness barriers;
if portals from the highest network do indeed exist, he concludes, a population is more likely to
discover these portals - cross the entropy barrier - than to cross a fithness barrier. His analysis
also demonstrates that fithess barriers are most likely to be crossed where thagranest(i.e.
require shorter lineages of off-network mutants) than where theglabBowest(i.e. where the

14This term appears to be due to Inman Harvey.
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selective differential is smallest).

This thesis concerns itself explicitly with the case where entropy barriers dominate search; that
is, where there is a high degree of neutrality (hence large neutral networks) and comparitively few
locally sub-optimal networks (Chaptessand6 introduce some models for such landscapes). The
results of van Nimwegeat al. then suggest that the more efficiently we can search a network for
neighbouring portals the more effective our search will be. In the next Chapter we argue that this
is best achieved by maximisimggutral drift of our population on the highest network.

As regards optimal mutation rates, in the previous Chapter we noted thadieidual se-
guences on a neutral network, setting an optimal mode/rate is a balancing act between mutating
off the network (where portals are to be found) but taw far so as to lose fitness correlation
between parent and mutant offspring (SectioB.4). For populations our picture of a drifting
sub-population on the current fittest network during a metastable episode introduces a new ten-
sion, involving not just mutation rate but alpopulation size

e Thehigherthe mutation rate and ttamallerthe population size, the higher the rate of drift
and therefore the more thoroughly is the neighbourhood of a network searched.

e Thelower the mutation rate and tHarger the population size, the larger the search sub-
population of sequences drifting on the highest network.

Finding an optimal mutation rate/population size must now balance both the individual sequence
portal discovery probabilities with the above neutral drift effectsi( ;11998)

analyse optimal parameters for populations evolving on a class of fitness landscapes featuring
nested neutral networks They find a large “sweet spot” in the parameter space and calculates
scaling laws for search times. These results are echoed in our analysis and experiments on sim-
ilar landscapes in Chaptér ( |.1997) also analyse the epochal dynamics for
similar landscapes in some detail, using a maximum entropy approximation and a variety of statis-
tical dynamics techniques. They are able to predict successfully various aspects of the dynamics
such as epoch mean fitness and fitness variance, epoch destabilisation probabilities, portal fixation
probabilities and fixation times. Predicting epairationstends to be more problematic; this
seems to be due largely to inadequacies in our ability to analyse the structure of neutrally drifting
populations [ , 1991).

3.5 Measuring Search Efficiency

How are we to measure the “efficiency” of an optimisation process? Firstly, as stressed earlier, it is
almost inevitable for a non-trivial real-world optimisation problem that the most computationally
expensive aspect of any search process is likely tiitliess evaluationTherefore when compar-

ing evolutionary processes we should always measurértieescaleof our search processes in
terms of fitness evaluations, rather than generatfon§ G is an evolutionary operator anda

15The landscapes in this study are an instance otaarrelated landscapes introduced in Chapter
16There is an implicit assumption here that fithess evaluation are perfaseteebntially If we were to implement
an evolutionary operator so that fithess evaluations were performeatatiel during the execution of a generation -
quite feasible eg. for a multinomial selection operator - we should not, of course, measure time in fithess evaluations.
Although our definition of a selection operator (Appendizt) does not dictate the synchronisation of fithess evaluation,
we do not address parallel implementations in this thesis.
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population of sequences we have defined the random vatjalibe)|| to be the number of fithess
evaluationof new mutantshat we would have to perform in creating the next generation ftom
using G. The reasoning is that mutation, as the only creator of novel sequéndiesates when
fithess needs to be evaluated. The implicit assumption here is that evaluated fitness values may
always be stored alongside a sequence for future refefénce

What, then, is in fact the object of our optimisation quest? In much of the GA literature
optimisation performance tends to be gauged, as a matter of course, on attainmeyhbludla
optimum of the given fitness landscape; thus search efficiency is judged on the time taken to find
a global optimum, or the success rate in finding a global optimum within a pre-specified time.
For real-world optimisation problems this approach appears unrealistic or even unfeasible; how,
indeed, are we tknowwhen we have attained a global optimum without knowing the solution
to the problem in advance? Furthermore is a global optimum really what we are looking for, or
would some minimum level of fitness suffice? As an example, if we wished to evolve a controller
to facilitate the performance of a navigational task by a robot, the benchmark of success is likely
to beadequateperformance of the task rather than some putatptemal performance of the task.
To this author’'s mind, it seems that the emphasis in the GA literature on locating global optima
may be a result of the over-reliance on highly artificial “test functions” and toy problems by GA
researchers; the agenda for the practitioner wishing to solve difficult practical problems may well
be rather different.

Imagine, then, that we are given a succession of (unknown) fitness landscapes drawn from
some class of optimisation problem. Then there may well be:

1. aminimum acceptable fitness value, say

2. amaximum acceptable search tinig say (in fitness evaluations)

or (most likely) both. These quantities should be considerepgaaametersfor benchmarking

search performance. It may not be clear which search aspect - fitness or time - is likely to be
the more critical; we might therefore consider these aspects separately. Suppose we are given an
evolutionary procesX(t) with evolutionary operators (i.e. Markov transition probabiliti€X))
(Section3.2.2 recall that ‘T” represents generational time). Suppose that the initial population
X(0) has sizeM and that the number of fithess evaluations required to fornt'thegeneration

X(1) from the previous generatiof(t — 1) is given by the r.v||X(1)||. Note that|X(0)|| =M and

that || X(t)|| is distributed ag| G(t1—1)(X(t—1))]|| (cf. Eq. A.10in AppendixA.1). The number

of fitness evaluationaftert generations of the process is then:

T(0) = [IXO) | + XD +- .- + XDl (3.21)

Let [X(1)] be the best evaluated fitness in forming the populaXior), which is a r.v. distributed
as[G(t—1)(X(t—1))] (cf. AppendixA.1, Eq.A.15). Fort > 0 we may then define the random

1"The exception, as previously noted, is thitial population.

18Note that if fitness evaluation imisy( ¢2995) - that is, it is stochastic - this assumption
becomes suspect. We then have several choices, dependent ultimately on wkattlye are trying to optimise
(eg. mean fitnegs we might, for instance, decide to re-evaluate fithess of every sequence in the population once
per generation, as required by selection or (as before) only on creation.
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variableW*(t) to be thebest fitness so fasf our process up to and including tirhiémeasured in
fitness evaluations):
W*(t) = max{[X(1)] | T(t) <t} (3.22)

For realw let the random variabld@*(w) denote théirst passage timef our process (again in
fitness evaluations) to discovery of fithegsr higher; i.e.:

T*(w) =min{T(1) | [X(T)] > W} (3.23)
Let P(w,t) denote the probability that fitnesshas been achieved withirevaluations; i.e.:
P(w,t) = P(W*(t) >w) =P(T"(w) <t) (3.24)

The expectations dV*(t) andT*(w) are then candidate “benchmarks” for optimisation perfor-
mance:

1. E(W*(t)) = mean best-so-far fitness aftegvaluations

2. E(T*(w)) = mean first passage time to achieve fitn@ss

These quantities may still not really be what we want. For instance if there really is a minimum
acceptable fithess,, there is, perhaps, not much point in knowlBgT *(w)) if the distribution

of T*(w¢) is unknown. Rather, we might want some measuréay likely we are to achieve
minimum acceptable fithess within a given time. Thus we might, for instance, consider:

t*(w) = min{t | P(w,t) > .95} (3.25)

which answers the questiohtow long do we have to run our process to¥o sure of reaching
minimum acceptable fithess wCbnversely we might consider:

w*(t) = max{w | P(wt) > .95} (3.26)

to answer the questiohat is the maximum fitness that we carbb&osure of achieving within
maximum acceptable time t Phe measurek (W*(t)), w*(t) might be termedime-critical, the
measureg (T*(w)), t*(w) fithess-critical

Finally, it is quite conceivable that both time and fitness are critical. So we mighGaskn a
minimum acceptable fithesg and a maximum acceptable number of fithess evaluationbat
is the probability of achieving the fitnessg within t; evaluations? This suggests simply using
P(w,t) as a benchmark measure, which we teéime/fitness-critical Of course in practice the
probability P(we,tc) may be unacceptably small!

When it comes talirect comparisorof two search processes we might proceed as follows:
suppose we have two candidate proces§@s andX’'(t). A time-critical comparison might be
phrased asGiven a maximum acceptable number of evaluations t, which process is likely to have
achieved higher fitness within t evaluatioriBAus if:

P(W*(t) > W™ (t)) > P(W*(t) > W*(t)) (3.27)

we might consider choosing(t) in preference oveX’'(1). A corresponding fitness-critical com-
parison might askGiven a minimum acceptable fithess w, which process is likely to achieve fitness
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w in the least number of fitness evaluatiodgfain, we might be inclined to prefé(t) overX'(t)
if:
P(T"(w) < T™(w)) > P (T™(w) < T*(w)) (3.28)

Finally, if both time and fitness were critical we might prefgr) over X' (1) if:
P(w,t) > P'(w,t) (3.29)

i.e. if X(1) is more likely to achieve fitnesgin t evaluations than iX'(1).

In Chapters and Chapte6b in particular, search process comparisons arise and we shall use
the above framework of time/fitness criticality of performance measurement. A slight difficulty in
producing meaningful comparisons is that the number of evalualignispert generations may
be a random variable or may, at the very least, vary from process to process (eg.with population
size). This makes comparisons of processes sampled in simulation potentially somewhat complex.
In practice we will generally “cheat” somewhat by treating each generation as an arbitrary (pos-
sibly variable-length) sequence of mutation/fitness evaluation events (this procedure is possible
by Eq. (A.8) of AppendixA) and log best-so-far fithess as mutants are evaluated. For the pro-
cesses considered (eg. fithess-proportional multinomial selection) this gives unambiguous results
- i.e. the order of evaluations is not significant - since there is an equal chance of obtaining a new
best-so-far fithess at each mutation/evaluation during the course of a generation.



Chapter 4

The Utility of Neutral Drift

In this Chapter we consider why neutral drift might benefit evolutionary search. Although (neutral)
drift is generally associated with an evolvipgpulation- when a biologist speaks of neutral drift

he generally means the fixation of an allele at some locus due to finite-population sampling rather
than selective pressuré&i( , 1964; , 1983; ;1 1998) - essentially the
same mechanism may apply to a population-of-1 evolutionary process with stochastic sampling,
in the sense that replacement of an allele at some locus with a new allele that doesn't affect fitness
may be thought of as a “neutral move” of a population-of-1 on a neutral network. In this Section
we investigate neutral drift on a single neutral network using as an analytic tool a vanetytodl

walk with “tunable” drift (cf. Example3.2.5 on a single neutral network. We must, however, be
careful in extrapolating our conclusions to (larger) populations - we raise some caveats at the end
of this Section.

Consider an evolutionary process during an epoch (Seé&tidnwhere the highest neutral
network thus far discovered i§ say. Suppose now that during the course of the process a mutant
X' of some sequencec I' belonging to our population is created. Nowxifis fitter thanl” - X' is
aportal (Section3.4) to a higher-fitness neutral netwofk, say - it seems reasonableexploit
the discovery of’; we might thus be inclined to design our evolutionary process sothadkes
it into the next generation, possibly at the expense of its parent sequea motivation for
doing so lies in some assumption of fithess/distance correlation: we might expect the offspring of
X' to be nearer in fitness - and thus of generally higher fithess - than subsequent offspting of
If, conversely X is lessfit thanl then in general we might - again because of an assumption of
correlation - be inclined to allowto proceed into the next generation at the expense, perhaps, of its
inferior offspringx'... of course we might sometimes be inclined - if for instance we had particular
reason to believe that our current highest netwiorlvas sub-optimal - to accept lower-fithess
mutants, but in general this would be exceptional; we are, after all, explicitly concerned with the
situation where entropy rather than fitness barriers present the principal challenge to optimisation.

What, however, when the mutaxitis also onl" - that is, it isneutral? Do we then have any
reason either to accept the neutral mutant - possibly at the expense of its parent - or simply, rather,
to consider it a wasted move and retain the parent? In other words should we encourage our pop-
ulation todrift onT in the interests of finding portals to higher fithess networks? Intuition seems
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to suggest that we should indeed encourage drift. For if we always rejected neutral mutants at the
expense of their parents our process would, it might seem, be in danger of becoming trapped in a
neighbourhood of where the probability of finding portals happens to be negligible or even zero

- whereas there are in fact other region§ paccessible via neutral drift, where the probabilities of
finding portals are greater. We might envisage two extreme situations (real optimisation problems
might be expected to fall somewhere between the two):

[l portals froml” to higher fithess networks are evenly spread throughptitat is, the proba-
bility of finding a portal by mutation fronx € I' doesn’t vary much witkx

[Il] some sequences Inoffer a negligible chance of discovering a portal by mutation whilst
other sequences offer a reasonable chance

In case [l] it clearly won’'t make much difference to our chances of finding a portal whether we drift

- i.e. sample a variety of sequences frém or not. As regards case [ll], however, consider, the
following scenario: our neutral network comprises just two sequergesidx, and isconnected

in the sense that the probability of mutating from one sequence to the other is non-zero. Suppose
now that the probability of finding a portal - that is, discovering a higher fitness sequence by
mutation - fromx; is non-zero, while the probability of finding a portal fromis zero. Now if

we knewthat our sequencewas in factx; - or even that it wadikely to be x - then we should
evidentlynot, should the opportunity arise - i.e.Xf= x, - encourage drift ta,, since our chances

of finding a portal fronk; are zero. Conversely, if we knew that our sequena@s (or was likely

to be)xz then weshould in the event of a neutral mutation, encourage drift.

But in a real-world optimisation problem chances are that we would have no idea of portal
discovery probabilities for particular members of our population. In such circumstances we might
be inclined to adopt anaximum entropjike assumption, assuming minimal prior knowledge
of portal discovery probabilities. In the above example, for instance, we would assume equal
probabilities forx = x; andx = x,. In this Section, then, we argue thahder a maximum entropy
assumptionour original intuition was indeed correct - itadwaysbetter (in a precise if somewhat
restrictive sense) to drift.

The reason why this might be so is hinted at by the following constructionf1lee the
set of portals (i.e. higher fithess sequences) for our netWorlSuppose now that we select a
sequenceX, say, uniformly at random frorh and generate independently two mutaktsand
X of sequenceX. Let us sef = the probability that (at least) one of the mutants finds a portal
=P (Xg €M UXz €M) (inclusive “or”). Now let us choose independentiyo sequence¥ and
Y’, say, uniformly at random frorfi. LetY; be a mutant of¥ andY, an (independent) mutant
of Y’ (see Fig.4.1). Let P" = the probability that (at least) one tiesemutants finds a portal
=P e uY, €N).

Propostion 4.0.1.P’ > P always.

Proof. The proof is purely algebraic: suppose thatonsists oM sequenceg;, Xz, ..., Xy and let
pa = P(U(Xq) ¢ M) be the probability that a mutant & doesnot find a portal, wheréJ is the
mutation operator. Then:

P = P(XeluX en)
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Xs

Figure 4.1: Independent mutarig, X, of the uniform random sequengeand independent mu-
tantsYi, Y of the independent uniform random sequenteg respectively, on a neutral network
I"as in Prop4.0.1

1M . o
=M P(XpeMUX, €M | X=xq) sinceX is uniform onl
a=1
1 M
a=1
1 M
= 1- M pé sinceXy, Xy are independent mutants
a=1
On the other hand:
P = P(Y1€|_| UYz €M)

= 1-PM¢N, Y, ¢0N)
= 1-PM1 ¢ I'I)2 sinceYy, Y, are completely independent

1M ?
= 1- (M a; pa>
Thus it suffices to show that: y )
z%>&<;m> (4.1)
for any p, > 0 andM = 1,2,.... This we do by induction oM. Eq. @.1) is certainly true for
M = 1. Let us assume that it is true upNb Some algebra gives:

M+1 ) 1 M-+1 2 M 5 1 M 2 M 1 M 2
Zpa—m leor Zpa—m a;pa +m Mazlpa—pMJrl

a= a=1
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Mo (M 2
> Pa— Pa
C(Zl : M (le
> 0 by the inductive hypothesis (4.2)
so that Eq.4.1) holds forM + 1 and thence for aM > 1. O

From the construction of the proof we also see @galityholds (i.e.P’ = P) iff the py are all
equal, so that it does not matter “where we mutate from” - this is precisely situation [I] above. As
a measure of the degree talitesmatter where we mutate from, we may take ¢velvability drift
factor (Section2.3.4 Eq.2.72. In terms of the portal discovery probabiliti®g = 1 — pq it is
given by:
h (5 Ya1T)

whereh(x) = —xlog,(x) — (1—X)log,(1—X) is the entropy of a Bernoulli trial (biased coin-toss)
with probabilityx. Thus if D¢°! = 0 then ther are all equal and it makes no difference where
we mutate from.

Returning to Prop4.0.1, we would like to claim that in general thess “related” (by muta-
tion) are a set of sequences, there likelythat (independent) mutants of those sequences are to
find a portal. The above construction corresponds to the extreme case where the patgs of
are as related as can be - they are the same sequence! - while the pargntsare asun-related
as possible - they are independent. The above construction is, of course, naive. In the course of a
realistic evolutionary process we would expect varying degrees of relatedness amongst sequences
in (subsequent generations of) a population. We expand on this theme in the following Section.

(4.3)

4.1 The Nervous Ant

We now, as an analytic tool, introduce a neutral walk related to the so-called “blind ant” walk
(Eq. 3.13. The current sequence resides on a neutral netWorlAt each time step an (inde-
pendent) mutant is created of the current sequence. If the mutant is not on the network - i.e. the
mutation is non-neutral - we keep the current sequence. If the mutantis on the network we move to
the mutant with fixed probabilitg, where 0< q < 1. Thedrift parameter gthus tunes the degree

to which the process diffuses én if g =1 we have a blind ant neutral walk (maximum drift),
while if g = 0 we have atiin-place” neutral walk. We term this mervous antwalk (Eq.3.14).

Thus suppost = {xq |a =1,2,...,M} comprisesV sequences and we have a (compatible)
mutation model. Let the random variabl¥(t) represent the current sequenceloandY (t) =
U(X(t)) - not necessarily oh - the mutant, at time step=1,2,.... Thus for each, Y (t) depends
only on X(t) while X(t 4 1) depends only oX(t) andY(t). Note thatX(t) is a Markov process
butY(t) is not. We suppose that:

P(Y(t) =xq | X(t) =x5) =P (U(Xp) =Xa) = Hap (4.4)
gives the probability of mutating (neutrally) to a specific sequencé&.ohe probability of a
neutralmutation from sequenog < I is thus:
M

P(Y(t) el ‘ X(t) = XB) =Vp = Z Hap (4.5)

a=1
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Note that by symmetry of mutation (E8.5) we haveyg, = g foralla,f=1,2,...,M. We also

havep 1 = 2 = ... = WM. The nervous ant walk is then defined by E§4), Eqg. @.5) and:
P(X(t+1)=xXq | X(t)=Xg, Y(t) ¢T) = dup (4.6)
P(X(t+1) =X | X(t) =%, Y(t) =%) = 0aBay+ (1—0)3yp 4.7)

Conditioning onY(t), the transition probabilities foX(t) (considered as a Markov process) are
easily calculated to be:
Pap(@) = P (X(t+1) = Xa | X(t) =Xg) = Akp + (1 — WVa )0 (4.8)
or:
P(q) =gA+1 4.9)

whereA = (Uggp —vuéus)l andl is theM x M identity matrix. Note that by mutational symmetry
P(q) is bi-stochastiq 21973).

We now consider the following scenario: suppose that thdlset 4- —I' represents the
portals froml™ to higher fitness neutral networks. Let us definepbdal discovery probabilities
to be:

Ty =P (U(xy) €M) (4.10)

(some of that, may be 0) and note that we must have:
Th+Vae <1 Vo (4.11)

Let us define théirst passage time to portal discoveiyr a nervous ant walk with drift parameter
q to be the random variabl(q) defined by:

T(g)=min{t|Y(t) e M} (4.12)
We now calculate the distribution @f(q) conditional on a particular initial sequence. Let us set:
fa(t) =P (T(a) >t | X(1)=x3) =P(Y(1) ¢M,....Y([t) ¢ N | X(1) =xg) (4.13)
Conditioning on the (mutually exclusive) probabilities thél) = x4 (a =1,...,M),Y(1) € M or
Y(1) € 4 —T — N we may derive the recursion relation:

M
fa(t+1) = Z Pap(Q) fp(t) — T fa (1) (4.14)
=1

where theP,(q) are given by Eq.4.8). Let Q(q) = P(q) —diag(m,T,...,Ty) and letf (t) be
the (column) vecto( fg(t)). We have (in vector/matrix notation):

ft+1) = Q(t)-f(t) fort=1,2,... (4.15)

so that:
f(t) =Q(a)'-f(1) (4.16)

1For the case where the mutation madés fixed- that is, mutation flips a fixed number of loci - we may consider
the neutral network as a graph where two vertices (i.e. sequences) are incident iff there is a non-zero probability of
mutating from one to the other. TherA is (up to a constant) thgraph Laplacian( [ 1996) ofl - hence the
notation.
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Noting thatyM_, Q(Q)op = 1— 1 = fg(1), we may readily derive:

M

P(T(a) >t X(1) =xg) = fg(t) =G; [Q(a) ] g (4.17)
fort =1,2,.... Ifinitial placement of the nervous ant is specified by:
& =P (X(2) =xp) (4.18)
then we have: "
P(T(q) >t) = a; [Q(a)'-E], (4.19)

whereg = (&p).

Now as has already been pointed out in the introduction to this Section (and as we shall see
in more details below) portal discovery probabilities - specifically the (non-)discovery probability
P(T(qg) >t) - depend crucially on the initial placement probabilitigs What, however, can we
know of the&g? We are ultimately interested in the role of drift during an evolutionary search
process. Imagine then, that at some stage during such a process a portal to the (previously unseen,
higher fithess) network is discovered. It might seem reasonable to suppose that wenwave
specific knowledge as tahich particularsequence it is likely to be discovered. Indeed the
actual probability that a particular sequence be discovered may well depend on the neutral network
structure of the landscape, the mutation operator, the evolutionary process under consideration, etc.
In the spirit of our statistical dynamics approach then, we might (as intimated in the introduction)
make a “maximum entropy”-like assumption that in the absene@emfori knowledge the initial
sequence probabilitidd (X (1) = xg) should be taken to be equal.

There is, however, a reasonable alternative assumption we might mikewd |
1999) state, regarding discovery of a portal sequence to a hitherto-unseen Ret#ork rough
approximation, one can assume that the probability of a genotype ... being discovered first is
proportional to the number of neighbours ... that [that genotypejoffagie network”. In our
(comparable) scenario we might reasonably replace “number of off-network neighbours” with
“probability of mutating to4- — I — N” - on the grounds that the latter set is precisely that from
which our “pioneer” sequence must have mutated; i.e. we might take:

Unfortunately it turns out to be difficult to draw any general conclusions under this assumption;
indeed, the situation may be complex and counter-intuitive, as evidenced by the following exam-
ple:

Example 4.1.1.Consider the 4-sequence neutral netwiork {x; =011 x, =001, x3 =010 x4 =

111} in the sequence spaé®,1}3 under fixed 1-bit mutation and suppose that the portals com-
prise the single sequente= {110} (see Fig4.2). We then have:

1 1 1
0 3 3 3
1
1 o000
“:?000 (4.21)
3
1000

2|n this study mutation is fixed-probability 1-point.
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portal = 110 Xg4=111

x3=010 Xq1=011
100, 101

000 X o= 001

Figure 4.2: The 4-sequence neutral network plus portal (for fixed 1-bit mutation) of Exdriple
on the cubg{0,1}3. Red nodes represent sequence$ pthe green node represents the (single)
portal inl1.

111
11
m= <O,O,3,3> (4.23)
and Eq. .20 yields:
0
1
_| 2
&= ] (4.24)
4
1
4

Fig. 4.3 plotsP(T(q) >t) from Eq. @.19 againstq for thisI", M, for a range ot values. The
result is somewhat unintuitive. Note that if we arriveloatxz = 101 orxs = 111 then drift is not
helpful; we are better off staying where we are. If we arrivé aix, = 001 on the other hand, we
are obliged to drift if we are to have any chance of finding the portal. The most striking conclusion
to be drawn from this example is that whether drift is desirable ontayt depend on how long we
are prepared to waitThus fort = 2, the probability that we have still not found the portal after two
evaluations increases (linearly) with drgt- drift is counter-productive; presumably the chance
that we actually landed a3 or x4 (and thence discover the portal) outweighs the probability
that we landed at, (and thus had no chance of finding the portal). tAscreases the balance
shifts: already byt = 5 it appears that we can no longer risk becoming “trapped? @nd drift
becomes desirable. Fbr 5 we still have the somewhat curious situation that, even thgugh
- maximum drift - is the best strategy for discovering a portal witrewaluations, increasing drift
slightly from g = 0 is actuallycounterproductive. Portal discovery probabilities are not, as one
might have suspected, monotonic with respect to drift. By contrast, consider the casé4Fig.
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P(T(q)>1)
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0.4
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q

Figure 4.3: Portal (non-)discovery probabilR(T(q) > t) of Eq. 4.19, plotted against drift pa-
rameterq for thel", N of Example4.1.1with fixed 1-point mutation and off-network-proportional
initial placement probabilities, far=1,2,...,8. Note that, as regards discovery of portals, the
smallerthe probabilityP (T (q) > t) thebetter
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P(T(q)>1)

0.5 |
0.45
0.4

0.35

0.3 | | | |

Figure 4.4:P(T(qg) > t) plotted against| as in Fig.4.4, except that here initial placement proba-
bilities are equal (“maximum entropy” condition).
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where we make a “maximum entropy” assumption of equal placement probabilities: i.e.:

(4.25)

%
I
FNTENYTENNTINY TN

rather than Eq.4.24). HereP (T (q) > t) is always monotonic (non-increasing) with respectjto
drift is always desirable

Ultimately, we take the view here that in general there is insufficient evidence to justify the
assumption Eq.4(.20 - more research is required as to if and when it might be warranted - and
assume in general the “maximum entropy” initial placement condition:

1

=15 VB (4.26)

In this case it turns out that we can draw more concrete conclisigvesshall, in fact, argue that
the situation of Fig4.4is generic- that drift is always desirable. We thus (unless otherwise stated)
assume Eq4(.26 in the remainder of this Section.

With Eq. @.26), Eq. @.19 becomes:

<

M=z

1
M 1

a

P(T(q)>1)= [Q(a) ] (4.27)

1

B

From Eq. ¢.27) we may calculate, foar= 1,2, 3:

1 M

PT@)>1) = & 71(1—m) (4.28)
"

PT@>2) = & 71(1—Tfa)2 (4.29)
1 l\; 1 M M

PT(@)>3) = =Y 1-Ta)’—05r Y > Hp(T — ) (4.30)

1

Q
Il

a=1p=1
For the first two time steps, then, drift makes no difference to the probability that no portal is as
yet discovered. By the third time step we see that increasingaiintiys decreasdbe probability
that no portal is yet discovered; if we only had a maximum of three time steps at our disposal, we
would thus certainly choose to maximise drift.

For the caséVl = 2 - a neutral net comprising just two sequences - we may calculate portal
discovery probabilities explicitly for atl:

qm:<1_m_“ y ) (4.31)
u 1-To—u

where we assumieto be connected - i.qy2 > 0 - and we have set= p12q. For convenience we
set:

%(TT]_—FT[z) = (432)
%(T[Z—Tfl) =y (4.33)

3|t would, of course, be churlish to suggest that this might be reason in itself to concentrate on this case...



The eigenvalues d(q) may then be calcu
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lated to et L where:

1-¢—u (4.34)

+ /P2 +u? (4.35)

Note that by Eq.4.1) we have 0K Ty + 2 <1, 0< T+ 2 < 1sothat< u<min(1—m,1—
Tp) and thuK > 0O for all u. DiagonalisingQ(q) we may calculate:

fi(t) = ;Kk+utw)mﬁ¢f+<1—“tw>mf¢f] (4.36)

f(t) — ;[<1+u[w)(K+Lf+<1—u1w>(K—Lf] (4.37)
And, as a function ofi = pi.0;

mey>0:FaNy:;K1+E)m+¢f+(r—EyK—Lﬂ (4.38)

Propostion 4.1.1. For fixed t=1,2,... the F(t,u) of Eq. @.39 is monotone decreasing as a
function of u= pyoq for0 <u < min(1—1y,1—TH).

Proof. We know that for fixed tF(t,u) is a polynomial (of ordeK t) in u. We shall show that

aFéL’“) < 0 foruin the stated range, thus proving the proposition. We have:

oK
ou
o _ u
ou L

Fort = 1 the result is trivial. For largdrwe may calculate:

-1

u

L2 — u?
2L3

2
s T K+ (D2 + K] s

(2w g (e
5 D ts) _< t

1)~ (sha)
S even S+ 1
S <t + 1) KL-sLs

S even S+ 1

oF (t+1,u)
ou

[(tL—K) (K+L) (tL+K) (K—L)']

LIJZ
L2

IN

sinceK,L > 0. O

Thus we have, foM = 2 thatP (T (q) > t) is always monotone decreasing as a functioq.oiVe
interpret this to sayfor any network of siz&, for any time t, the probability that no portal is
discovered within t fitness evaluations decreases with increasing diifegconjecture that this is
the case foanyneutral network - that ilwayspays to maximise drift. We thus state:

Conjecture 4.1.1 (The [Strong] Neutral Drift Conjecture). For any M and for t=1,2,...,
P(T(qg) >t) is monotone decreasing as a function of ot g < 1.
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Note, again, that the uniform random initial condition is essential to the conjecture (recall the
example in the introduction to this Section, whéfe= 2, Ty > 0 andm, = 0). In fact, numerical
calculations indicate that if initial conditions an@t uniform random then for givehthe value

g = g*(t) which minimisesP(T(q) >t) depends ot and may be 0, 1 or - somewhat counter-
intuitively - we may even have @ g*(t) < 1 so that there is some intermediate degree of drift that
optimises the chances of discovering a portal. EveiMes 2 the situation is complex; it may be
calculated that, in the non-uniform random case, Eg& becomes:

P(T(g) >t)=F(t,u) = % {<1+ U+Lwe> (K+ L)t + (1— U+Lwe> (K- L)t] (4.39)
where:
0=¢81—-%& (4.40)

For givent we may calculatef*(t) (at least numerically) by solvinw =0 for u = p12q with
F(t,u) given by Eq. ¢.39.

Returning to the case of uniform random initial conditions, we have already demonstrated that
Conjecture4.1.1holds fort < 3 and arbitraryM, while Prop.4.1.1proves the conjecture for the
caseM = 2 and arbitrary. We have not managed to prove the general case; we do, however, prove
the somewhat weaker:

Theorem 4.1.1 (The [Weak] Neutral Drift Theorem). For any M and fort=1,2, ..., there is a
g1 > O such thatP(T(qg) > t) is monotone decreasing as a function of q@of. q < q;.

We first establish the following:

Lemma 4.1.1. For any integer t> 2 and any real uv:

t t—1
t+Du -2 z)usv“er (t+DV = (Uu-v)? Y st—sgu* V=t (4.41)
S= s=1
Proof. Expand(u— v)? and gather like powers af, v. O

Proof of Theoremt.1.1. We have already demonstrated that the result (in fact the Strong Neutral
Drift Conjecture) holds fot = 1,2, 3. Now note that for fixetl, P(T(q) > t) as given by Eq.4.27)

is a polynomial of ordeK t in g; in particular it isanalyticin g. Note also that sinc®(0) =1 — D,
P(T(0)>t)= LM (1- 1)t > 0 for anyt. To establish the Weak Neutral Drift Theorem it
thus suffices to show that far> 3 we have[g—qP(T(q) > t)] 0 < 0. For convenience, let us

setpy = 1—T1y. We then have(q) = qU +diag(py, . .., Pm) whereUgg = Hgg — VaOug SO that
[%Q(t)} =U. Fort = 2,3,... we then have:
g=0

PT@>0] = o 5 %[6(Q(Q>t) }
dq q=0 M & & 109 P
1 M M
= = Ugp (P51 + Py 2P+ + okt
Ma:m; “B( o o PP B )
1 M M B B B ~
= o Zp(,g(pglerta2p3+...+ptB1—tptﬁl)

Q
i
I
bk
Il
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after some re-arrangement of terms. Noting the symmetry giffieve swap indices and add the
resulting summations, to derive (foe 3,4,...):

<

Q
.[‘
Mz TM=

t—

=

2l 2w

aPT@>n] -

Hop [ toh -2
g=0

oz p{3“+tp};1)

T

<

t

Hap(Pa — Pp)? Y St —1-9)pg *p * 2

Il

|
i
i
g

by Lemma4.1.1 Since the terms in the summation ogaare all> 0, we have thus shown that
wP(T(a) >1) . ,S0fort>3. O

The generality of this result is quite striking; it is purely algebraic, holding regardless of the struc-
ture of the network’, mutation mode and portal discovery probabilities. We remark furthermore
that, as regards the Strong Neutral Drift Conjecture, extensive humerical simulation by the author
failed to discover any exceptions. In summary, we propose:

For any neutral network, from a uniform random start, increasing neutral drift al-
ways improves our chances of finding a portal within any given number of fitness
evaluations

4.1.1 The independent mutant approximation

If our neutral networK™ is connectedvith respect to the extant mutation operator (Sec#idnl)

then “in the long run” our nervous ant process (provided 0) spends asymptotically equal
amounts of time - that is, makes an equal number of attempts at finding a portal - at every sequence
on the network { 51996). More specifically:

Propostion 4.1.2.1f I is connected and g 0 then as t— o, P(X(t) = Xq) — & forall xq € T.

Proof. If ' is connected then the matrig,g) is irreducible ( ;r1960); so, thus, is the
matrix (Pyg(q)) of transition probabilities (Eq4(8)) for the nervous ant proce¥gt). The result
then follows immediately from stochasticity (Pg(q)). O

In the long run then, mutation has a “mixing” effect on the selection of sequences. We may
thus, for large times, approximate the nervous ant process by a process that at each time step
picks a sequendadependentlynd uniformly at random frorf, then evaluates a mutant of that
sequence. Provided that the waiting tifheg) to portal discovery is reasonably large - a portal is

not discovered too quickly - we may thus approximate the distribution of waiting time to portal
discovery by thegeometricdistribution:

P(T(q) >t)~ (1—m) (4.42)
independently of, where:
_ 1M
T=— 9 T (4.43)
v 2,

is the mean of the portal discovery probabilities. We might expect the approximation.&2).to
be better if the portal discovery probabilities are small (so that waiting times are long), if the neutral



Chapter 4. The Utility of Neutral Drift 68

mutation probabilitiesy do not vary much over the network - i.E.is reasonably “homogeneous”
- and the drift parametearis large.

Note that ifl" is connected and > 0 then from irreducibility of(Pyg(q)) it may be deduced
that themeanof T(q) exists and, provided the conditions outlined in the previous paragraph obtain,
may be approximated (independentlygodind the network structure 61 by:

1
E(T(a) ~ = (4.44)
Diffusion coefficient
We may define thdiffusion coefficient cf; 1.1996; { 1997) for the nervous ant
by:
DO:E(<h(X(t+1),X(t))2>) (4.45)

whereh(-,-) is Hamming distance and angle brackets denote time average. $gHiad (X, Xg)
we find*:

o - (4@m§h >2)
= Z Z hgplim — Z)P =X, X(t) = Xg)

1[51

T—>oo

— z z héBPOl ) lim = Z)P )=x3) fromEq. @.9)
a=1p=1

But by Prop4.1.2P (X(t) = Xg) — &, So that, from Eq.4.9):

QMZ

M
i 1
Z apPep(@) = Q- 1

HMZ

M
Y hégHap (4.46)
13=1

since the contribution of th&g terms vanishes. We see immediately that the diffusion coefficient
is proportional to the drift parametgr The proportionality factor depends on the topology of the
network and the mutation mode. If the mutation mode is give® by = n) = u,, then we have
(cf.Eq.2.9):

Hop = nibé(n, hog) (t) 1un (4.47)
and we can re-write Eq4(46) as:
Do=q- ionzv(”) Un (4.48)
=
where: LMo 1
v — o aZlBZlé(n, hap) <n> (4.49)

is just then-flip neutralityof the network. In particular, if the mutation mode is constabit then
we have simply:
Do = qui? (4.50)

4Assuming we may exchange the order of taking the limit and summation...
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wherev =v(™ is the observed neutrality - i.e. the neutrality for constahit mutation - andu=n

is the per-sequence mutation rate. For Poisson mutation in the long sequence length limit, we may
approximatey(" ~ (v<1))n wherev is the 1-bit neutrality - essentially we are neglectivagk
mutationto the network - and we may calculate that:

Do =~ qv(u+logv)(u+logv+1) (4.51)

1-v®)

whereu is the per-sequence mutation rate and e Uis the observed neutrality.

4.2 Neutral Drift in Populations

We have concentrated so far on population-of-1 hill-climbers. In this case, whether or not a mutant
survives at the expense of its parent is an “either/or” issue. This is not, of course, the case for evo-
lutionary processes featuring larger (or even variable-sized) populations; the situation then is less
clear-cut €f. Section3.4.1in the previous Chapter). A proposal comparable to Conjecturd
might be thatvhateverthe evolutionary process, we should never re-mutate, or indeed retain for
subsequent mutation, tiparentof a neutral mutant; we should rather retain the neutral mutant for
subsequent mutation (in the next generation). In the next Chapter we shall (with due care) invoke
Conjecturet.1.1to argue along these lines for a specific class of fitness landscape.

We note also that for large populations there is no analog of Prap2 to the contrary, for
large populations (at reasonably high mutation rates) the phenomenuutational bufferingor

the evolution of mutational robustnegs .1 1999; , 2001) implies that
sequences in a population drifting on a neutral network will be found preferentially at regions
of higher neutralityof the network. [ |.1999) have shown that in the infinite

population limit (for Poisson mutation and multinomial selection) pgulation neutrality(i.e.

the mean neutral degree of sequences in the population) approachssetheal radiusof the
network, considered as a (connected) graph. This raises some intriguing issues as to where portals
may be found in relation to the local neutrality in a neutral network. Some new res&araic,

2002) suggests that for the related question of discoveignaivations under certain conditions

(eg. some neutral networks on RNA folding landscapes) mutational buffering of a population
drifting under multinomial selection appears actually to improve the innovation rate (SB@&ién
compared with a (drifting) population of hill-climbers which sample a neutral network uniformly
according to Prop4.1.2 There is much scope for future research on these issues.



Chapter 5

e-Correlated Landscapes

5.1 Introduction

In this Chapter we make rather more specific structural assumptions about our fithess landscape.
A common feature of fithess landscapes in artificial evolution isfttress-increasingnutations
are rare compared to neutral or fithess-decreasing mutations; indeed, if this were not the case,
then optimisation would be a trivial matter. Since we are dealing wdthelatedlandscapes, it
also seems reasonable to suppose (and indeed appears to be the case for many artificial evolu-
tion landscapes) that mutations leading large fithess increase will be rarer than those (already
rare) mutations leading tosmallfitness increase. We are, in addition, interested specifically in
fitness landscapes where entropy rather than fitness barriers (S&dtif)rare the chief obstacle
to discovery of fithess-increasing mutation. Teorrelated landscapes of this Chapter, first in-
troduced in [ { 2001), formalise these properties: fitness-increasing mutation probabilities -
theevolvabilitystatistics (Sectio.3.4) - are specified by an order parametgassumed to be
neutral/fitness-decreasing mutation probabilities. We assume further that if the neutral networks in
our landscape are ordered by fitness, then the probability of mutation from a given neutral network
to the “next-highest” network is non-zero (there are thus no fitness barriers) and o ordeie
the probability of mutation to any yet higher network is negligible by comparison; icdeis We
note that-correlatior is a rather stringent condition. The next Chapter addresses a more general
family of landscapes where the interplay of correlation and neutrality is more explicit; they may
also feature sub-optimal networks.

e-correlated landscapes then, present a “ladder” to evolutionary optimisation, which proceeds
via epochs spent searching the successive neutral networks for portals to the “rung” &bove;
correlated landscapes are, in this sense, generalisations of the Royal Road family of landscapes
introduced (albeit with very different motivation) ifnv( , 1992). In particular, the sta-
tistical dynamics techniques applied ixii( |.1997) to the analysis of population evo-

1The appearance of the term “correlation” in the naming of these landsdapes:(; 2001) may strike the reader as
somewhat peculiar. We might, however, thinkeedorrelation as relating to the degree of genotype-fithness correlation
for fitness-increasingnutation; i.e. the degree to which a sequence nearby in sequence space to a given sequence
is likely to be of similar fitnesgiven that the nearby sequence increases fitn&ssis there is a small but non-zero
probability that a point-mutation from any neutral network leads to a (probably small) increase in fitness, while the
probability of a larger fitness increase is of a smaller order of magnitude.
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lution on the Royal Road (and related) landscapes transfer wholesatmteelated landscapes.
We now state the condition more precisely as follaws

Definition 5.1.1. Let £ = (4,L, f) be a fitness landscape and & = Y ;I'; be themaximal
neutral partitioning. Suppose thétx) = w; for x € I'; and that the neutral networks are listed in
order of increasing fitness: i.ey < wp < ... < wy. We say thatt is e-correlatediff there exists
ane with 0 < e < 1 andg; with0 < gj <efor j=1,2,...,N— 1 such that the 1-point mutation
matrixm = m(Y) takes the forr

V1
€1 Vo *
m= €& V3 (5.1)
o(g)

EN-1 VN

The neutralitiesy; and thex terms (i.e. the mutation probabilities from higher to lower fitness
networks) in the above arettaken to be necessarifyg 1 (i.e. ofo(1) in €). [

The portal discovery probability; is the probability that a point mutation takes a sequence se-
lected uniformly at random frorfi; to the “next neutral network upT;;;1. Since by assumption
thegj are all positive, there are no locally suboptimal neutral networks for 1-point mutation on
ane-correlated landscape, in the sense that for any neutral network there is always a portal to the
next-highest network.

From Eq. 6£.1) and Eq. £.11) of Section2.2.2we may verify that theelative volumes); =
|4|7|Tj| of the neutral networks satisfy:

(1—vj)uj=[gj_1+0(g)]Vj_1 (5.2)

for j =2,3,...,N, so thatv; = O(€1€5...€j_1) = 0(81*2) and neutral network size scales sim-
ilarly to the networks in, eg., )\ ;1 1998). We remark that-correlated
landscapes thus exhibit another typical feature of (non-trivial) artificial evolutionary fithess land-
scapesthe proportion of sequences of a given fitness diminishes rapidly with increasing.fitness
is interesting to note that this follows directly from the scaling of portal discovery probabilities.

For n <« L we now adopt the (strong) multiplicative mutation approximation (Eg§6 of
Section2.2.4 Then if L is e-correlated it is easy to show that foe= 2, 3, ... then-point mutation
matrix is given by:

(n)

Vi
eV v ¥
m™ ~ m" = SR (5.3)
o) -
0,

2Note that the definition given here differs slightly from that givenfminet; 2001).

SMore properly, we should say that there is a parametrised faniiy of fitness landscapes such that quantities
written aso(€) are understood to be(e) ase — 0". Nevertheless, we shall continue to talk @n"e-correlated
landscape” and treatsimply as a “small quantity 1. We shall frequently then work to leading ordekin
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wherev%”) = v? +0(1) and the (approximate}point mutation portal discovery probabilitie?)

are given by:
yi_yn
J j+1 . . .
() v B 0(8) Vi #Vin (5.4)
-1
it o€ 4+ 0(8)  Vi=Vju

Thus we have e.g. for Poisson mutatidnwith per-sequence mutation rate< L the portal
discovery probabilities:

e exp(*(lfvj')?j:\‘i‘fﬁ*(lfwﬂ)@ g + 0(6) V] #£Vj 59
vjuexp(—(1—vj)u) g + 0(g) Vj=Vju1

For a general (compatible) mutation operadothee;(U ) and hence also trevolvability’£ (U \Wj )
(Section2.3.4 at fitnessw; is evidentlyO (g;).

5.2 Optimal Mutation Rate

From Eq. 6.4) we may calculate immediately tloptimal (constant) mutation rate Section2.3.4
Prop.2.3.1( { 2001), by treatingn as a continuous variable, differentiating the expression
Eq. 6.4) for eﬁ”) with respect to and setting the derivative to zero. We may similarly calculate the
optimal per-sequence mutation rate for Poisson mutation by differentiatind Ejw(th respect

to u. We have:

Propostion 5.2.1. Let us define:

logAj—logAj 1

A A Vi # Vj+1
uj = e (5.6)
rlj Vi=Vj+1
for j=2,3,...,N—1, where we have s} = —logv;. Then the (constant) mutation ratgwhich

maximises the probability of mutating frdf to ;.1 is giverf by either|uj] or [uj], whichever

(n)

maximiseg; *. “Usually” we will simply have:

nf = [u] (5.7)

for j =2,3,...,N—1. Similarly, for Poisson mutation the optimal per-sequence mutation@;ate
for ' is given by:
—log(1-v;)+log(1-vj;1)
—vH Vi #Vj11
0 = VimVin b (5.8)
1

=, Vi =Vjs1

forj=2,3,...,N— 1 m

For I'1, the lowest-fitness network, our method breaks down since, bevausd +0(1) in ¢,
the expression fos(l”) seems to imply that the optimalshould be as large as possible. In fact
our strong multiplicative mutation assumption is untenable here; we cannot assgnhe Now

“Recall that for reak, |x| is the largest integer smaller than or equat,tfx] is the smallest integer greater than or
equal tox and[X] is the nearest integer to
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according to Prop2.3.1thereis an optimal (constant) mutation rate, but we do not have enough
structural information to determine it. Since, however, the relative volume of the lowest network
M1isO(1) in g, we can (in lieu of more detailed structural information) do no better tandom
search- i.e. completely random Poisson mutation (Secfidh]) - for sequences ifi1.

For the highestnetwork 'y, of course there are no fitness-increasing mutations! We thus
(formally) take the “optimum” mutation mode to be trivial (i.e. null) mutation.

Corollary 5.2.1.1. The optimum mutation operator U adapted to the maximal neutral partition-
ing on ane-correlated fitness landscape is that with = constant mutation with ratejrgiven by
Prop.5.2.1for j =2,3,...,N — 1, random search for £ 1 and null mutation for = N. [

Note that (somewhat surprisingly) the expressionsifoandu} aresymmetridn the neutralities
Vj,Vj+1. Fig.5.1plots thenj of Prop.5.2.1against a range of neutralities. In Sectiar below,
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Figure 5.1: The optimum constant mutation rate= [u]-*] of Prop.5.2.1plotted againstj,vj;1

we present results of simulations on a specific exampéeaafrrelated landscapes which strongly
support Prop5.2.1

5.3 Optimal Evolutionary Search

Our object in this Section is to determine an evolutionary process that minimises the (expected)
number of fithess evaluations to reach any given epoch. The argument, which proceeds in several
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stages, is hot mathematically rigorous - we hope that it is, at least, convincing. Consider thus an
evolutionary process (De8.2.1) on L, currently in epoch:

1. Firstly, itis clear that mutation should always maximise the probability that a fitter sequence
than the parent is discovered. This implies that (at every time step) the mutation mode for a
sequence i ; should betl; = constant mutation with ratej given by Prop5.2.7; i.e. the
(compatible) mutation operatbt should be that of Corollar$.2.1.1 It remains to find an
optimal selection procedure.

2. When in epochj, the probability that mutation finds a portal to a neutral netwagher
thanl"j1 is o(€) and therefore negligible.

3. When in epochj, the probability thatnore than onenutant is a portal td ;1 is o(g) and
therefore negligible.

4. During the (sequential) evaluation of sequences for a generation of gpacmutation
discovers a portal t j1, thenonly that portal sequencshould be selected to the new
populationand the next generation should commence immediatetyr having found a
portal, there is no point in evaluating mutants of sequencésngr fitness than that portal
sequence; such evaluations will be wasted - we would be better off evaluating mutants of the
new-found portal. Thus, for every> 1, epochj is initiated with a population comprising
asinglesequence i j. (We return later to the case of epogk: 1 - the “initialisation” of
the process.)

5. Thus consider the situation at tbasetof epochj, where the population comprises a single
sequence (our new-found “pioneer” portal sequencd);inDuring execution of the evo-
lutionary operator for the first generation in epgcive are going to begin by evaluating a
mutant of our single portal sequence. There are then three possibilities:

. If the mutant is inj,; we have found a portal sequence in one evaluation. As in the
previous step of our argument there is no point then in evaluating further mutants of
the original sequence during the same generation, so we select the mutant, disregard
the parent sequence and initiate a new generation (with the single newly-discovered
portal sequence) in epoght 1.

II. If the mutant is oflower fitness, it should not, by the arguments given above, be se-
lected and there is, furthermore, no point in evaluating angsahutants. We thus
disregard the low-fithess mutant and initiate a new generation with a population com-
prising just our original “pioneer” sequence. We are then back in the same situation as
before.

[l If the mutant isneutral - i.e. also onj - we are faced with a choice: we can either
create further mutants of the original portal sequence or we can choose to create mu-
tants of the new neutral mutant. We argue that in this circumstarcghould always
select the neutral mutant and disregard the original portal sequence

Our arguments in support of this last claim are those of the previous Chapter, that we should
maximise neutral drift; in particular Prop.0.1that the “more independent” are two mutants

the more likely is portal discovery and the (Strong and Weak) Neutral Drift propositions
(Conjecture4.1.1and Theoremt.1.]) for the nervous ant process. These arguments are, it
must be conceded, not rigorous since the scenarios of Chagtenot correspond entirely

with our present situation. Nonetheless, as we shall see, the arguments appear to stand
up well in practice. Note also that, unlike the prior steps in our argument, we are obliged
to appeal beyond any maximum entropy assumption to establish this point; indeed, under
a maximum entropy assumption it should make no difference which (neutral) mutant we
choose to evaluate...
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6. By extrapolation of the above argument we see that every time a neutral mutant is created
we should proceed by choosing to mutate that neutral mutant, rather than any of its (neutral)
ancestors. This implies that having created a neutral mutant we may as well forget about
selecting any of its neutral ancestors - we may, in other words, simply select the neutral
mutant and begin a new generation with a population comprisisigthe newly created
neutral mutant.

7. Putting the last three steps together, we find that we are left precisely witheterawler
selection operator of Chapt@r Example3.2.5

Returning to the initialisation stage, we note that, since the relative volume of the lowest network
is1+0(1) in g, then in the absence of more detailed information about our landscseéoice of

initial sequence (prior to discovery of higher fithess sequences) is likely tahenith probability

~ 1; we can do no better than random search. Noting that a netcrawler with completely random
mutation performs random search, we thus state the following:

Conjecture 5.3.1. The optimum evolutionary search process ortamrrelated fitness landscape
is a netcrawler with mutation operator given by Corollégy2.1.10f Prop.5.2.1 [

It is curious to note that the smaller the Markov coefficiguit(U) for the neutral network ;

and optimal mutation operator - and thus the better the maximum entropy assumption is likely to
obtain - the less compelling is the crucial argument in step 5 above, in the sense that it becomes
less important which of several neutral mutants we choose to mutate and evaluate. Intuitively, it
becomes less important to “explore” such a neutral network (by neutral drift) since we are as likely
to find portals in one region of the network as another... nonetheless there is nothing to be lost by
choosing an (optimal) netcrawler, which has the added advantage of being extremely simple and
efficient to implement.

5.3.1 Adaptive netcrawling and thel/e Neutral Mutation Rule

The astute reader will no doubt have realised that, given a fithess landscape and told only that it
is (or may bek-correlatedwe cannot actually rumhe optimal netcrawler of Conjectute3.1on
our landscape - for the simple reason that we don’t know the neutralities indeed anything
about the neutral partitioning! The situation is not irretrievable, however. While we don’t know
neutralitiesa priori, we can, during the running of a netcrawlestimateneutralities by treating
the neutral/non-neutral mutations that we see as a statistical sample of the current neutral network
during any given epoch. A problem still remains: Pre@®.1(somewhat curiously, it may seem)
implies that to calculate the optimal (constant) mutation rate for our current (best-fithess-so-far)
neutral network we need to know the neutrality not just of that network, but also of the next,
higher,as yet undiscoveredand hence un-sampled - neutral network! We are thus forced to make
further assumptions as to the structure of our fitness landscape. A conservative assumption might
be that the next network up from wherever we are tex®neutrality. This would lead us to set
a mutation rate at = 1 bits always (giving us precisely Forrest and Mitchell's Random Mutation
Hill-climber).

Another option might be to suppose that there is some correlation between fitness and neu-
trality, in the sense that neutral networks of similar fitness are likely to have similar neutrality. In
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particular we might take the view that, given a neutral network, then (for lack of better knowl-
edge) the next network up might be assumed to havedh®eneutrality as our current network.

(Of course once we have discovered the higher network we can begin to sample it and revise our
estimate of its neutrality.) This assumption has some interesting consequences. Suppose that we
mutate sequences on a neutral netwodt constant mutation rate where (unknown to ud) has

actual neutralitw. Suppose that after a good many mutations we have observed a frattidre

neutral. By Eq. .3) we may then assume that~ p'/". If we are assuming that the neutrality

of the next network up from is alsov then according to Eq5(6), if we wished to optimise our
chances of discovering a portal, we should re-adjust our mutation raté togv ~ —n/logp.
Curiously this implies thatwhateverthe neutrality off, we should, if our mutation rate is opti-

mal, ultimately see a fractiop= 1/e~ 0.368 of neutral mutations. It easy to show that the same
argument works too for optimal Poisson mutation. We thus state:

Propostion 5.3.1 (Thel/e Neutral Mutation Rule ( , 2001)). The optimal (constant or
Poisson) mutation rate for sequences evolving or-anrrelated landscape is that for which the
observed neutrality isz 1/e. ]

If anything we should expect the rule tverestimatehe optimal rate somewhat, since neutrality
might be expected to decrease with increasing fitnefsS¢ction5.4.1below and also Chapté).

The reader might note echoes of Rechenberg’'s “1/5 success rul&vimution Strategies
( 2[1991) (to which our netcrawler might be considered a discrete
cousin). In Sectiorb.4 below we provide evidence for the effectiveness of the rule for a specific
family of e-correlated landscapes. We in fact conjecture that fleeNkutrality Rule is a useful
general heuristic for setting mutation rates for evolution on fitness landscapes with neutral net-
works. In the next Chapter we present another argument for the rule and find good evidence for
its effectiveness on a more general class of landscapes.

We thus propose aadaptive netcrawlef { 2001) for landscapes which we know (or at
least suspect) to kecorrelated and for which the assumption that fitness correlates with neutrality
turns out to be reasonable: we either use tfertle to adjust the mutation rate - if we observe the
fraction of neutral mutations to be less thafe e increase the rate, if more thapelwe decrease
it - or by using Eg. 5.6) to calculate a mutation rate based on a sampled estimate of neutrality.
Later in this Chapter we shall test these schemes on some spenificelated landscapes.

5.3.2 Random search org-correlated fitness landscapes

In the next sub-section we shall analyse the netcrawlercorrelated landscapes in more detalil.

In the following section we analyse some specific examples-adrrelated fithess landscapes
which we shall use to test Conjectuse3.1. Firstly, as a basis for comparison, we analygsdom
searchone-correlated landscapes. Thus at each timetstep, 2,... (where a time step represents

a single fitness evaluation) we select a sequence uniformly at random from the sequence space.
LetZ(t) be the network of theth random selection let(t) be the fittest-network-so-far irtime

steps. Note that th&(t) are iid asZ where:

P(Z=i)=u (5.9)
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fori=1,2,...,N and that:
X(t) =max(Z(1),2(2),...,Z(t)) (5.10)

We also defind; to be the first passage time (in fitness evaluations) of the predéss network
i or higher, and set:
Rt)=P(Ti>t)=P(X(t) <i) (5.11)

We then have:
Rt)=P(Z(1) <i,Z2(2) <i,...,Z(t) <1i) (5.12)

fort =1,2,... and we have immediately:

R(t) = (1-N) (5.13)
where:
A= ui=1-Y v (5.14)
ThusT; is geometrically distributedvith decay parametey; and:
1
E(T) =4 (5.15)
|

We may also calculate thraean best-so-far fithess timet to be:
N
E (W) = _lei[(l_)\iJrl)t —(1-N)'] (5.16)
1=

5.3.3 The netcrawler one-correlated fitness landscapes

For a netcrawler with (possibly variable) mutation opera&igiinitiated with a uniform random
selection at = 1, let X(t) again be the fittest-network-so-far irtime steps - note that since a
netcrawler iselitist, X(t) may be identified with the netcrawler process itself. AgainTildte the
first passage time of the proces§) toi or higher so thaP (T, >t) = P(X(t) <i). Forj <, let
us also defing; ; to be the first passage time of the processjiven that X 1) = j. We then have:

P(Ti=t+1)={ z"<‘P(T;":t)Uj :ig (5.17)

where agaim\j = ¥ ;~;0;. Note that thet + 1 appears on the LHS because we count the initial
sequenc& (1) as a single fitness evaluation. Disregardin® ég the probability that ifX(t) =i
mutation finds a portal to a networkgherthani + 1, we have:

for j <i, whereT, denotes the number of fitness evaluations taken to discover a portal frton
Mk+1. Note that thél, in Eq. (5.18 aremutually independergnd that to a first approximatien

P(Tk >t) = (1—&(U))' (5.19)

SThis approximation assumes that the netcrawler has at each time step an equal prap@biliof finding a portal
- essentially our maximum entropy assumption. In reality the probabilities of portal discovery at subsequent time steps
will not be independent.
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We thus have immediately:

U1 U1+ U2 U1 +U2+...+Uj1

E(TH =1+ E(Ti;)vj=1+ 5.20
( |) J; ( |7J) J El(U) 82(U) si—l(U) ( )
Ty has generating function:
> U)z
P =t)z— Uz __ 5.21
t; (Te=1) 1-[1-&(U))z (-21)
so that from Eqg.%.17) the full distribution ofT; may be obtained from the generating function:
> -1 ek(U)z
G2=SPT=t)Z=2{A+S0uv,[|-———— (5.22)
@=3PTi=1 { +3 Nin ok
From:
PX(t)=i)=P(X(t) <i+1)—P(X(t) <i)=P(Ti1 >t)—P(T >1) (5.23)
we derive:

1 { Gi(z) -Gjj1(z7  i<N (5.24)

tZ\P(X(t):i)z‘:rz~ () N

so that we may calculate the mean best-so-far fitness at firam the generating function:
OOE Z= 71 + NE —
t (WX(t)) 1-7 W1 1(2) i (W, Wi 1) |(Z) ( )

5.4 Royal Road Fitness Landscapes

In this section we introduce the Royal Roadii( , 1992; | 1993)
fitness landscapes, of which, in a sense that should become slgarelated landscapes are a
generalisation. Throughout this section it is convenient to label the neutral networks with indices
i,j,... from O toN rather than from 1 tdN, so that there ardl + 1 neutral networks. For sim-
plicity we restrict ourselves to the binary alphatet {0,1}, although all results carry through
straightforwardly to higher cardinality alphabets.

5.4.1 Definitions and statistics

A Royal Road landscape depends on two integer paramidtersl,2,... andK = 1,2,.... A
sequence then comprisiscontiguous blocks oK contiguous loci - so that the sequence length
is L = NK. We shall say that a block &€ binary bits issetif all K bits have the value binary 1;
otherwise we shall call minset

Definition 5.4.1. The Royal Roadfitness landscape witR blocks of lengthK is the fitness land-
scape of sequence lendth= NK defined by the fithess function:

f(x) =i < exactlyi of theN blocks ofx are set (5.26)

fori=0,1,2,...,N; i.e. to calculate fitness we simply count the number of set bfocks

6In ( 11998) a related family of fithess landscapes, Ruyal Staircaséandscapes were
introduced - here fitness is calculated by counting the number of set blocks starting from one end of a sequence, until an
unset block is encountered. For the purposes of this study Royal Staircase landscapes are qualitatively similar to Royal
Road landscapes, so we restrict ourselves to the latter.
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Maximal neutral partitioning
The integers =0,1,2,...,N also label theN + 1 (maximal) neutral networks:

M={xea" | f(x) =i} (5.27)

We remark that for Royal Road landscapes the maximal neutral networks are not in general con-
nected. Throughout this Section the neutral partitioning is understood to be the maximal one.
Relative volumes of neutral networks are easily calculated. Setting:

k = 2K = P(a single block of lengtli chosen uniformly at random is $et (5.28)

we find that:

Vi = (':') K'(1—k)N (5.29)

Mutation probabilities anc-correlation
Let mj be the one-point mutation probabilities. Let us set:

1

2K-1
K

1-«k
= P(apoint mutation sets a uniformly randomly chosen unset block of ledgth

We then have, for Royal Road landscapes:

mj = ﬁéi,jfﬁ- (1— ,L) (1-€)3ij + <1— ,il) €3 j 41 (5.30)

so that (as suggested preemptively- by the notatidahctions as our order parameter for fitness-
increasing mutation; Royal Road landscapes are indeedrelated for largK (i.e. € < 1) with:

vj = (—’i)(l—s) (5.31)

g — <1—’i|)s (5.32)

We see immediately that (for 1-bit mutatioayolvability decayslinearly with fitness ¢f. Sec-
tion 2.3.4. We will also need to calculate (at least for smaland too(1) in €) the n-point
mutation matrixn(™. We proceed as follows: leh(u) be the mutation matrix for binomial (i.e.
per-locus) mutation with per-locus rateQu < 1. We then have:

L

m(u) = n;) (h) u"(1—u)-""m™ (5.33)

Given a sequence in; - i.e. with j set andN — j unset blocks. The probability that exackiyf
the j set blocks undergo at least one point mutatiof}}8%(1—8)I~* where:

8 =6(u) = 1— (1—u)¥ = P(a single block undergoes at least one point mutation(5.34)

It may easily be seen that for Royal Staircase landscapes the maximal neutral nesaxdsnected.
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Similarly the probability that exactlyof theN — j unset blocks undergo at least one point mutation
is (N;1)6'(1—8)N-I-!. For every such block the probability that mutatietsit is juste and the
probability thatr unset blocks become set is th@;sr(l— g)!~". Putting this together, we find:

MW= S 8 (ﬂ() (Nl‘j)e”'(l—e)N<k+'>('r>sf<1—s>'f (5.35)

k=01=0r=

It is now convenient to define the generating function:

N .
Gj(zu) = .ij'mj (u) (5.36)
i=
and a calculation give:
Gj(z,u) = [z+ (1—2)8(u)])! [1—(1—2)8(u)N! (5.37)
The generating function:
N
" =5 Z2m" (5.38)
j i; m;j
for them!” then satisfies:
< (M- w6 () = G (zu) (5.39)

whereG;j(z,u) is given by Eq. $.37). Thus Eq. $.37) and Eq. §.39 may be used to calculate the
Poisson and-point mutation statistics respectively. We shall in general work to two approxima-
tions:

1. block lengthK is reasonably large, so that 1 as required

2. the mutation rate is small, in the sense that the (mean) number of mutations per sequence is
< the number of blocksl

Under approximatiord we thus work generally to leading orderénAs regards approximatioh
we note in particular that the optimum mutation rates of Psop.1are likely to be small (roughly,
of orderN/ ) providedj is not too small ¢f. Fig. 5.1).

Entropy and Markov indices of neutral networks

Due to computational complexity, we calculate entropy and Markov indices analytically only for
1-point mutation (i.en = 1); asn increases we might expect the former to increase and the latter
to decrease. From Edb.G0 we have:

N
Hj = —%mjlogzmj
i=

= —%Iogzﬁ. - ( _Iil> log, <1— Iil) - (1_Iil> [elog,€+ (1—¢€)log,(1—¢)]

()b

for e < 1, whereh(p) = —plog, p— (1— p)log,(1— p) is the entropy of a Bernoulli trial (biased
coin-toss) with probabilityp. The first term represents the entropy of a neutral/non-neutral trial,
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while the second term is a small contribution from the probability that a portal is discovered. For
reasonably largl we haveh(g) ~ 27K (K + @) . We may use the network entropies to calculate
thepercolation indice®p; = 2Hi (Section2.2.9 - recall that?; can be interpreted intuitively as the
number of networks “effectively accessible” frdm. Fig. 5.2 below plots the percolation index

(for 1-point mutation) against neutral network number for Royal Road landscape®with6

and several values ¢€. We see that (as might be expected) neutral networks do not percolate
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Figure 5.2: Royal Road percolation indicsfor 1-point mutation, plotted folN = 16 and a few
values ofK.

much for Royal Road landscapes; indeed, for ldfgihe only “effectively accessible” networks
are the network itself and the next-lowest-fitness network, giding 2.

For the Markov indices we proceed as follows: fo€ I let m(x) be the probability that
X mutates td; under a single-point mutation and let(x) = — SN ;m(x)log, m(x). Then by
Eqg. 2.2]) of Section2.2.3we have:

1
Mi=Hj——— S5 HX) (5.40)
: J |rj | XEZ,-

Let us set:
Fjx={xeTl;j |exactlyk of theN — j unset blocks have exactly— 1 bits sef (5.41)

fork=0,1,...,N—j. Now an unset block can only become set under a single-point mutation if
it already ha¥K — 1 bits set and an unset block with less thé&n- 1 bits set remains unset under
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a single-point mutation. Thus, givenj,k, we see tham(x) is the samdor all x € ', as is the
entropyH; x = H(x). Thus:
‘ Mk ‘

“hi- 3 e (642
A simple calculation gives:
m(x) = ﬁ5i,j71+ <1— ﬁ - :f) &ij + E5i,j+1 (5.43)
forxejxand:
o (N e ke (5.49
[T k

A calculation yields:

M; = (1— |i|> {h(s) —':;i <N ; j) (Ke)k(1—Keg)N-I=k.h ('E (1— ,L) _1> } (5.45)

In particular, we see that: _
M < (1— |i|> h(e) (5.46)

so that (for fixedj) M = O(eloge) = O (K27X) asK — . Thus we might expect a maximum
entropy approximation to work well so long Hsis large enough.

We may also use the Markov indices to calculateptbeeolation drift factorsDP*"® = 4 /H;
(Section2.2.9: the higher the factor, the more important drift becomes as regards accessibility
of neighbouring networks. We see that drift appears to be relatively unimportant - the percolation
drift factors arex~ 1 - but only for accessibility of other networks “in general”. However, as noted
in Section2.2.§ this is somewhat misleading as regards the importance of drififtmisation
specifically, in this case the percolation drift factors tell us very little about the effect of drift
on accessibility ohigher fitnessietworks. We thus calculate tleolvability drift factors Q)je"o'
(Eq.2.72. Eq. @.3) then yields:

Dol 1 h<<1— lil) 8) o ':i; <Nkj>(K£)k(1—Kg)Njk.h (t) (5.47)

Recall thatﬂ)je"o' represents the fraction of information about the probability of finding a portal
from networkl”; conveyed by knowledge of the actual sequendg;inFig. 5.3 plots evolvability

drift factor (for 1-point mutation) against neutral network number for Royal Road landscapes with
N = 16 and several values #f. We see that, particularly for larger block siKe a substantial
quantity of portal discovery information is conveyed by the knowledge of the actual location of a
sequence in a given network - for large(more specifically, foN < 2X /K) we have roughly:

log, L
K

DO~ 1 — (5.48)

In fact, for a given neutral network on a Royal Road landscape, portals are accessible (for 1-bit
mutation) from only a sparse subset of the network. Neutral drift is thus likely to be essential for
the discovery of portalsc{. Chapterd).
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Correlation properties
For Royal Road landscapes the mean fitn€gsl |j) of an d-point mutant of a sequence se-

(d)
lected uniformly at random fror; is given by dG:jZ(Z) Whereng)(z) is given by Eqg. .37
z=1

and Eqg. 6.39. The local correlation properties are contained in the quarfitg|j ) (cf. Sec-
tion 2.3.1). Now:

0Gj(zu) L ,
oz | —i-U-(N-Deew (5.49)

Settingw = % in Eq. 6.39 and using Eq.§.34) we find:

dz_L <d> (“) ( J)( W)L [J (N j)E}(l W)L (5.50)
=0
which yields:

(N=De+li-(N=Del{(4)/(@)} d<L-K
F(d]j)= (5.51)
(N—j)e d>L-K

We thus see that Royal Road landscapedinearly correlated(Section2.3.3. In particular, if
d < L and (as assumed)x 1 we have the approximation:

T(dlj)%<1—;>dj (5.52)

so that (to a first approximation) correlation does not depend on the block IEngttd Royal
Road landscapes are approximatelgmentarySection2.3.2 with auto-correlation function:

p(d) ~ <1— ;)d (5.53)

and hence correlation length:
(=N (5.54)

Optimal mutation mode
To test the accuracy of Prop.2.1for Royal Road landscapes, we ran a series of Monte Carlo
simulations as follows: for each value b, K and network numbej and for a series of per-
sequence mutation rates, we generated a sam@eioiform random sequencesiij. Each se-
guence was mutated according to the current mutation mode and the number of sequences which
found a portal tol 1 totalled. 95% confidence limits were calculated according to Student’s
T-test ( , 1966). For each set of parameters the experiment was performed firsp@int
(constant) and then per-locus (Poisson) mutation. Results were plotted against the analytic ap-
proximations Eq. %.4) and Eq. 6.5 for portal discovery probabilities fan-point and Poisson
mutation respectively - see Fig.4and Fig.5.5.

We see that for the larger block sike= 8 (Fig. 5.5 and particularly for smaller mutation
rates, the analytic results are in good agreement with experiment; less so for the smaller block
sizeK = 4 (Fig. 5.4) and larger mutation rates. This is to be expected as, firstly &4) &nd
Eqg. 6.5 are only too(g) =0 (Z‘K) and secondly the analysis relies on the (strong) multiplicative
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Figure 5.4: Portal discovery probability plotted against per-sequence mutation rate for a Royal
Road landscape with parametéls= 12 K = 4 and several values ¢f= network number, fon-

point (constant) and per-locus (Poisson) mutation modes. Solid lines give the analytic values from
Eqg. (6.4) and Eg. 6.5); the vertical arrows indicate the optimum mutation rates of Psap.L

Points are values from a simulation with a sample siz& ef 100,000. Error bars give 95%
confidence limits.
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confidence limits.
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mutation approximation (Sectich?2.4 which, as we have seen, is likely to apply if the Markov
index Eq. 6.49 is small. For the larger block size at least then, our results support Peopfor
Royal Road landscapes, insofar as:

e Optimum mutation rates are correctly predicted

e The optimum portal discovery probability is higher for constant than for Poisson mutation

We remark that there is a fairly significant difference between the optimum portal discovery proba-
bilities for constant and Poisson mutation (the optinmate for the latter is also generally higher).

As suggested in Chapt2i(Section2.3.4), there may be sound reasons, Piaf.1and Prop5.2.1
notwithstanding, to use Poisson mutation rather than a constant mutation mode on occasion.

The adaptive netcrawler on Royal Road landscapes

To test the adaptive netcrawler suggested in SediBrilon Royal Road landscapes, we tested
two schemes. They are both based, as suggested in SBctidnon a working assumption that

the next-highest neutral network is @fjual neutralityto the current network. The first scheme is
based on the observation that under the above assumptiobskeveceutrality should approach

1/e at the optimum mutation rate. Thus an estimaig of observed neutrality (i.e. proportion

of neutral mutations) is accumulated over the previpysfitness evaluations. At the end of
eachtiyg evaluationsyops is compared with fe. If it is smaller, the current mutation rate is
incremented; if larger the current mutation rate is decremented. This scheme, however, proved
to be somewhat unstable, in that the mutation rate tended to fluctuate wildly. We thus settled on
the following alternative scheme: a sliding estimaggs of observed neutrality (i.e. proportion of
neutral mutations) is maintained over a “window” of the previgusfitness evaluations. After

each fitness evaluation the current mutation reieupdated according to:

e [_ Nave ] (5.55)
l0gVobs

wherenge is the average (arithmetic mean) of the actual mutation rate used over the previous
tiag fitness evaluatiofs The idea is thah tracks the optimum mutation rate, based on a sliding
estimate of actual neutrality, for a neutral network where the next-highest network is of equal
neutrality. We note that there are essentially two parameters involved: the “window,giaad

the initial mutation rate. It proved judicious also to specifpaximunmutation rate (which could
usually be taken to be the same as the initial mutation rate). In practice both parameters would
be tuned for best performariceThis latter scheme proved more stable and successful in tracking
the (known) optimum mutation rate. Fig.6illustrates a typical run. As might be expected (since

for Royal Road landscapes the next-highest network has somewhat smaller neutrality than the
current), there is a tendency to overestimate the optimum mutation rate - this may be seen clearly

8We have glossed over a subtlety here: the mutation rate is likely to be changing over the “window”. If the mutation
rates over the window aney,nz, ..., My, andtyeut Of the tjgg evaluations are neutral, then the best estimate for the
actualneutralityv is given by:v™ v 4 4+ v™as =t This equation is not (efficiently) solvable for However,
sincen will not generally change too rapidly, using instead the arithmetic nmgaproved sufficient and efficient to
implement.

9 In the case of Royal Road landscapes we in fact know that the (optimum) initial mutation rate, assuming a random
start lands on the lowest network, is simply the block $izso that in actual experiments we might allow ourselves to
cheat a little...
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for the first few epochs in Figh.6. For general (unknown) landscapes for which one suspected
some relationship between fitness and neutrality (see e.g. the next Chapter), one might attempt
to correct this effect by the addition of a (possibly fithess-dependent) parameter to reduce slightly
the estimate of optimum mutation rate.
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Figure 5.6: A typical run of an adaptive netcrawler (Sectio®.l) on a Royal Road fitness land-
scape. The horizontal axis measures fitness evaluations. The current epoch of the netcrawler (i.e.
current neutral network) is plotted against the left-hand vertical axis. Actual and optimal mutation
rates (in bits) are plotted against the right-hand vertical axis. Parameterl arel6, K = 12,
“window” size = 100 fitness evaluations, initial/maximum mutation raté6 (= N).

With the above proviso, we note that neither scheme depends on any knowledge of the un-
derlying fitness landscape; an adaptive netcrawler may be run on an arbitrary fithess landscape,
even if not known to be formallg-correlated (but which may, in some sense, behave “locally” as
though it were). We return to this issue in the next Chapter.

5.4.2 Search performance on Royal Road landscapes

The principal contention of this Chapter is contained in Conjeciusel - that a netcrawler with

the optimal (constant) mutation mode is the most effective evolutionary search process-on an
correlated landscape. Here we put Conjectufz1to the test on some Royal Road landscapes,
where we pit a hetcrawler against some commonly encountered GAs.
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Performance comparison

Firstly we establish a basis for comparison of search performance on Royal Road landstapes (
Section3.5). For a full time/fithess-critical comparison we should have to compare the full dis-
tribution of T;, the first passage time to netwarlor higher, for each network(or equivalently

of X(t), the best-so-far network at tinme for all t within a reasonable range), for every set of
parameter values. This is unfeasible on grounds of time and space; we limit ourselves, then, to
the fitness-critical measur&s(T;) and the time-critical measur&s(X(t)), remarking that simu-
lations (not illustrated) measuring the full distributionsTofand X(t) do not change any of our
conclusions.

We are still, however, faced with the inevitability that our simulations can only run for a finite,
albeit large, maximum number of fitness evaluatiahssay. This is in particular a problem when
it comes to estimating (T;) for the various search processes we shall be examining, since in any
given instantiation of a search process and for a givear process may not have attained network
i within the maximum time*. Simply ignoring runs which do not reachwvill not do; apart from
reducing the sample size we would also thus bias our estim&¢®f. To address this problem
we make the following observation, borne out through many simulations and indeed for all search
processes tested: given a networkor some suitably larg€®, the distribution ofT; given that
Ti > t* is similar to ageometriadistribution; i.e. fort > t* we haveP (T; >t) ~ (1— ;)" for some
decay facton,;.

Consider, then, an experiment where we wish to estimate by sampling theEj&arof a
random variablel representing the first passage time of a proced$ to a given state. We
assume that there is some latgeand a decay factox such that fot > t* we haveP (T >t) =~
(1—-A)t. Suppose, now, that we r@instantiations of our proces§(t), whereSis assumed large,
terminating each run dt=t*. Suppose that of th8 runs, someS of them reach statewithin
timet*. We may then estimate:

p=P(T >t*)w1—sslz(1—)\)t* (5.56)
We then have:

P(T=t) = P(T=t|T<t"P(T
= P(T=t|T<t"P(T
~ P(T=t|T<t"P(T

<tY4+P(T=t|T>tHP(T>t") (5.57)
< (T =t
-1

t
tY+P(T>t" | T=t)P(T =t) (5.58)
) +P(t >t )AL= (5.59)

IN

We thus find: .
E(T)=E(T|T<t")P(T St*)+p<t*+)\> (5.60)

Now suppose that of th® samples which achieve statwithin timet*, the first passage times to
i arety,t,...,tg. We then have:

1
E(T| Tgt*)z§(t1+t2+...+tg) (5.61)
which yields:
1 1
E(T)%S(t1+t2+...+tg)+p<t*+)\> (5.62)
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A similar argument yields

ET2~1t2 t2 t2 t* AR 5.63
( )N§(1+2+-~-+S)+p ) Ty (5.63)
where we nowdefine
S
=1-= 64
P S (5.64)
and:
A=1—p¥t (5.65)

We may then estimate (T ) andvar (T) from Eq. £.62) and Eq. §.63); the results will be reason-
ably accurate provided the sample s&is large, andp is small. In practice we found that good
estimates were obtained providpd< 0.1. If no processes in the sample failed to reach the state

i it was found to be acceptable to tage= 0 provided the sample size was large enough. In all
cases we used this technique to estimate means and standard deviation3;fdf the resulting

p was found to be> 0.1 we rejected the result and, if possible, repeated the experiment with a
larger value fot*.

The netcrawler on Royal Road landscapes

To test the analytic results for the netcrawler on Royal Road landscapes, we ran simulations of
netcrawlers (with optimal constant mutation) for several ranges of parameters and checked the
results against the predictions of Sect®f.3 For each trial a sample of 1000 netcrawlers (each
initialised to a random starting sequence) were run to a maximurin=ofL, 000 000 fitness eval-
uations. Results were generally found to be in reasonably good agreement with theory for the dis-
tribution of the first passage timé@s(Eq. (5.22), the mean first passage timesT;) (Eq. 6.20)

and the mean fitneﬁ(wx(t)) (Eq. 6.29). Fig.5.7illustrates simulation results f& (T;) (points

with error bars) plotted against the analytic approximation of EQ( (solid lines) for a range of

N andK values. Means and standard deviationslfavere calculated as described in the previous
sub-section; the value of used ensureg ~ P(T; > t*) was< 0.1 in all cases. We remark again

that the analysis of Section3.3is based on our maximum entropy approximation. For Royal
Road landscapes a Markov analysisi(; ) 1992) may be carried through for the precise dis-
tribution of the first passage tim@g from epochk to k+ 1. The results yield values fdf (Tk’)

slightly higher than our estimate of 4 (U ), but approaching it asymptotically for large block size

K (this is in line with our analysis of the Markov indices for Royal Road networks). Nevertheless,
we see from Fig5.7 that we are still able to predi& (T;) quite accurately, even fd¢ as small as

4,

Comparison with GA’s
Given the huge proliferation of GA's in the literature we choose a suite of GA's which we hope
may be seen as representative of at least some of the major aspects of more “conventional” GA's.
As has been remarked earlier, a common perception of the functioning of GAs places the onus
of search omecombination whereas in the current work we have explicitly rejected recombina-
tion for reasons to be discussed more fully in a later Chapter. We thus divide our test suite into
GA's with and without recombination. For GAlsithout recombination mutation is the (unique)
search operator. To level the playing field, we thus deploy the same optimum (i.e. constant)
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Means (points) and standard deviations (error bars) were estimated usiag®Epagd Eq. §.63;
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(which proved sufficient to ensure thak 0.1). Solid lines plot the theoretical estimate Eg20)

for E(T)
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mutation mode and rate for all such GAs as for the netcrawler. For @hls recombination

we adopt the conventional view of recombination as the principal search operator, with mutation
as a “background” operator to maintain genetic diversity; we thus deploy a more conventional
(per-locus) mutation operator. Since it might be deemed unfair to match such a GA against an op-
timal netcrawler (where mutation rate/mode depends on knowledge of the landscape) we compare
performance in this case to adaptivenetcrawler, as described in the previous sub-section.

In either scenario, where there are “tunable” parameters for our GAs (including the adaptive
netcrawler) we take care to attempt, as far as possible, to tune parameters for optimal performance
on the given landscape and for the given performance criterion.

Key features of GA's that we attempt to cover are:

fitness-proportional vs. fithess rank selection

multinomial sampling vs. stochastic universal sampling

generational vs. “steady-state”

one-point vs. uniform recombination

enforced elitism

fithess scaling

Of course we cannot be exhaustive; some commonly encountered schemes which we explicitly
exclude (on the grounds that they would lead us too far afield) include:

o distributed GA's
e associative (and other) mating schemes

¢ nicheing/fitness sharing

The final list of population-based GA's to be matched against a netcrawler was as follows:

FP Fitness-proportional selection
RANK Fitness rank selection
2TWRL 2-Tournament winner-replaces-loser

The “generational” GA's FP and RANK were run with either multinomial (roulette-wheel) sam-
pling (MNS) or stochastic universal (roulette-wheel) sampling (SUS) and also both with and with-
out enforced elitism. FP and RANK were also run with either linear (LIN), power law (POW) or
exponential (EXP) scalir§ - for FP, the actual fitness is scaled, while for RANK the fitnessk
is scaled (see below). With recombination, 1-point, 2-point@amiébrmcrossover were trialled.

We firstly describe the generational GA's FP and RANK. Scaling was performed as follows:
ascale factorparametes > 0 controls the selection pressure. For linear scaling (LIN) the scaled
“roulette-wheel sector size” is given by:

Xscaled= X+S (5.66)

10we did not implement the so-called “sigma-scalingii , 1992; ; 1989) often encountered in
the literature.
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For power law scaling (POW) the scaled size is given by:
Xscaled= (X+1)° (5.67)
an for exponential scaling (EXP) the scaled size is given by:
Xscaled= € (5.68)

wherex represents the fithess£ 0,1, 2, ..., N) for fithess-proportional selection (FP) and the fit-
ness rank number in the population, minus one-Q,1,2,...,M — 1) for rank selection (RANK).
Note that for linear scaling increasisgreducesselection pressure, while for power law and ex-
ponential scaling increasingincreaseselection pressure. If we take as a measure of selection
pressure the I’ati%fslcf% of a sector to the next-smallest (possible) sector, we find, for a sector
of sizex, selection pressures offl <, (1+ %)S ande’® for LIN, POW and EXP respectively.
Note that for LIN and POW, for a given scale facsselection pressure decreases (approaching
1 from above) with increasing sector sizenhile for EXP it remains constant.

Both FP and RANK selection utilise a simulated a roulette-wheel. For FP each population
member is allocated a sector of size equal to its scaled fithess. For RANK the population is
sorted! into (ascending) rank order by fitness and each population member is allocated a sector
of size equal to its scaled rank. For multinomial sampling (MNS) selections are performed so that
for any selection event thgrobability of selecting a given population member is proportional to
its sector size (thus so too is #gpectechumber of selections). For stochastic universal sampling
(SUS) ( , 1987) selections are performed such that, given a fixed number of selections (gen-
erally equal to the population size), tagpectechumber of selections of a population member is
proportional to its sector size and thariancein its selection probability is minimal.

In the limit of very high scale factors (for power law and exponential scaling), the interplay
with selection is as follows: for FP selection the entire roulette-wheel is allocated equally among
the highest fithessequences in the population. Thus MNS sampling amounts to uniform random
selections from the highest fitness sequences, while SUS sampling yields (approximately) equal
numbers of selections farach of the highest fithess sequences. For RANK selecte of
the highest fitness sequences is chosen uniformly at randbihé previous footnote regarding
shuffling of the population prior to sorting); the entire roulette-wheel is then allocated to this single
sequence, which consequently recei@tsamples, for both MNS and SUS sampling. Frequently
in seeking optimal GA settings, it became clear that performance increased toward the maximum
scale factor limit. Due to floating-point storage limitations, if a scale factor w&® (POW) or
> 10 (EXP) the limiting case was assumefl Table5.1).

With no recombination, the generational GA's operate as follows. Population $izeHsr the
initial generatiorM sequences are created at random. For each subsequent gené¢sientions
are performed according to the operant selection/sampling method. Each selected sequence is
mutated (according to the theoretical optimal mode/rate for the selected sequence; i.e. according
to its neutral network) and added to a new population. Aftesuch selections the new population
replaces the old to become the current population.

Hmplementation note: before sorting the populatiostiaffled This avoids the possibility that the sorting algorithm
- gsortin our case - always rargqually fitsequences in the same order - which would, of course, violate the Markov
property of the evolutionary process!
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With recombination there is an additiorrecombination ratgparameter X r < 1 and amu-
tation rate parametews equal to the expected number of mutations per sequence, although (for
reasons given above) mutation is now opea-locus basis’. Again an initial random population
of sizeM is created. For each generation we again perfbtreelections. This time, after each
selection, with probability a recombination event occurs and an additional “parent” sequence is
selected. This parent selection is somewhat different for MNS and SUS sampling: in the former
case another roulette-wheel selection is performed, while in the latter case a uniform random se-
lection is made from the current populatiénThe selected parents are crossed over according to
the crossover mode (1-point, 2-point or uniform), mut&texthd added to the new population as
before.

For the “steady-state” tournament GA 2TWRL (ChapielExample3.2.2 again an initial
population of sizéV is created at random. The following procedure is then iterated: two sequences
are selected uniformly at random and without replacement from the population for a “tournament”.
The tournament winner is declared to be the fitter (or, if the selections are of equal fitness, the first)
of the two selections. If there is no recombination a copy of the winner is then mutated and the
mutant copy replaces the tournament loser. If there is recombination then with probability
winner crosses over with the loser and the offspring mutates and again replaces the loser. Note that
2TWRL is “almost”elitist insofar as, if there is just one maximally fit sequence in the population,
then the only way that sequence might be eliminated at the expense of a less fit sequence is if it is
selected twice for a tournament (so it becomes both winner and loser...) and then mutates (and/or
mates) to produce an inferior offspring which replaces itself! We note that if selections for the
tournament were performeuthoutreplacement then the process would be strictly elitist.

In the case of recombination, it was found that 2-point and (more markedly so) uniform
crossover were invariably inferior in performance compared to the corresponding process with
1-point crossover. This is reasonable, if we consider that uniform recombination (and to a lesser
extent 2-point crossover) is more likely to destroy already set blocks. We therefore present results
for 1-point crossover only.

As regards elitism, we found that enforcing any form of “pure” elitism - i.e. ensuring that we
never lose all of the current fittest sequences - merely reinforced the main thesis of this Chapter
rather strongly, in that performance generally favoured smaller population sizes (and smaller re-
combination rates). In particular, best results were always obtained with a population size of 1
and a recombination rate of O - in which case the corresponding GA simply became a netcrawler!
Results involving explicitly imposed elitism are thus omitted.

Simulations were performed for a Royal Road landscapeshvitf8 andK = 8 as follows: for
each GA the process was simulate@d0 times (with different random seédsfrom random ini-
tial populations up to 1@00 fitness evaluations. For each time (number of fitness evaluations) the

12plthough we mutate on a per-locus basis, we still prefer - contrary to common practice in the GA literature - to
guote mutation rates as an (expected) per-sequence rate as, in the author’s view, this is a more meaningful figure. The
reader irritated by this practice may feel free to avail them self of a pocket calculator...

13The reason for this is that SUS sampling presuppose®dnumber of selections per generation. Other schemes
are of course feasible, but for simplicity we choose random “other parent” selection.

14We note that some GA practitioners|i( 7 1996) prefer to separate recombination and mutation; i.e. a
sequenceithermatesor mutates. The practical difference proved minimal in our case.

15For pseudo-random number generation we used the “Mersenne Twister(( 21998) RNG.
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sample mean best-so-far fitness over tf@0D runs was calculatéd Standard deviations in best-
so-far fithess (not shown) were also calculated (the relative deviatstandard deviatiofactual
fitness tended to range between 5%5%). Great care was taken to tune the various parameters
(population size, scale factors, recombination rates and mutation rates) for best performance over
the alloted 10000 evaluations, where the mean best-so-far fithess @00D@&valuations was taken
as the performance indicator. Results are displayed inF=&and Fig.5.9 with optimised pa-
rameters as in Table.1 and Table5.2 respectively. For comparison, (theoretical) random search
results and (simulated) optimised/adaptive netcrawler results are shown alongside.

We remark that for reasons of time and space we have presented results only for a Royal Road
landscape wittN = 8 andK = 8. This proved quite representative - other Royal Road landscape
parameters did not spring any surprises, provided the blocksizas reasonably large.

selection| sampling| scaling | scale | pop. | performance
method | method | method| factor | size indicator

ONC - — — 1 7.911
RSH — — — 1 2.018
FP MNS LIN 0.00 | 100 4.632
FP MNS POW max| 45 7.673
FP MNS EXP max| 35 7.713
FP SUS LIN 0.00 | 100 4.809
FP SUS POW max| 50 7.694
FP SUS EXP max| 50 7.756
RANK MNS LIN 0.00| 80 3.025
RANK MNS POW | 1500 55 7.339
RANK MNS EXP 0.16 80 7.207
RANK SUS LIN 0.00| 80 3.133
RANK SuUS POW | 1600| 50 7.420
RANK SUS EXP 0.19 70 7.355
2TWRL — — — 20 7.052

Table 5.1: Optimised GA parameters and results (no recombination), on a Royal Road landscape
with N = 8, K = 8. ONC = optimal netcrawler, RSH = random search - see text for other ab-
breviations. The final columperformance indicato= mean best-so-far fithess at, D00 fitness
evaluations. For scale factors markeddX see text.

We give a brief discussion of the results, beyond pointing out that they generally support our
contention well that the (optimised/adaptive) netcrawler yields optimum performance on Royal
Road (and, we would claing;correlated) landscapes. We remark in particular that it is clear from
the results that, while some GA's came close in performance under the time-critical “mean best-so-
far fitness at* evaluations” indicator for* = 10,000, those GA's had to be finely tuned to achieve
good performancéor that particular time scalgthe netcrawler frequently outperformed geme

16Note that even for the generational GA's we count fitness evaluations strictly sequentially, in the sense that at each
actual fitness evaluation - i.e. after a mutation, a recombination or (in the initialisation phase) a random creation - we
check if we have discovered a new best-so-far fithess.
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Figure 5.8: Optimised GA performance (no recombination) on a Royal Road landscape with
N = 8, K = 8: mean best-so-far fithess (sample siz@0D runs) plotted against time in fithess
evaluations. See text and Talild for key and parameters. The bottom figure shows a histogram
of mean best-so-far fitness at the end of each run, ranked by performance.
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Figure 5.9: Optimised GA performance (with recombination) on a Royal Road landscape with
N = 8, K = 8: mean best-so-far fithess (sample siz@0D runs) plotted against time in fithess
evaluations. See text and Talle for key and parameters. The bottom figure shows a histogram
of mean best-so-far fitness at the end of each run, ranked by performance.
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selection| sampling| scaling | scale | (per-seq.)| (1-point) | pop. | performance
method | method | method| factor | mut. rate| rec. rate| size indicator
ANC — — — adaptive — 1 7.906
RSH - — — - — 1 2.018
FP MNS LIN 0.00 0.6 1.0 | 250 5511
FP MNS POW 6.00 1.0 10| 700 7.370
FP MNS EXP 1.00 12 1.0 | 500 7.014
FP SuUS LIN 0.00 0.3 05| 250 4.963
FP SuUS POW 8.00 1.0 0.9 | 500 6.412
FP SuUS EXP 2.00 0.7 10| 500 6.391
RANK MNS LIN 0.00 0.6 1.0 | 300 6.447
RANK MNS POW 8.00 1.0 1.0 | 700 7.702
RANK MNS EXP 0.01 0.9 1.0 | 800 7.712
RANK SuUsS LIN 0.00 0.5 0.4 | 200 5.814
RANK SUS POW | 1200 1.0 0.9 | 500 6.875
RANK SuUS EXP 0.04 0.6 0.9 | 500 6.836
2TWRL - — — 1.7 0.6 | 400 6.582

Table 5.2: Optimised GA parameters and results (with recombination), on a Royal Road landscape
with N = 8, K = 8. ANC = adaptive netcrawler, RSH = random search - see text for other abbre-
viations. The final colummperformance indicator= mean best-so-far-fithess at,000 fitness
evaluations. Parameters for the adaptive netcrawler were: “window’=siz@0 fithess evalua-

tions, initial/maximum mutation rate 8 (= number of blocks).

GA by orders of magnitude over either smaller or larger time scales. Furthermore the netcrawler
still outperformed any GA finely tuned tmy particulartime scale* tested’. Similar results (not
shown) were found to hold for the fitness-critical performance indicator “mean first passage time
to fitnessw*” for all (non-trivial) fithess levels tested and indeed we contend that the netcrawler is
optimal in the strong sense that for anw we haveP (Tanc(w) <t) > P(Tea(w) <t) or equiva-
lently P (Wanc(t) > w) > P (Wga(t) > w) for the adaptive netcrawler (ANC) for any GA (without
knowledge of the landscape beyond that itisorrelated), wherd (w) = first passage time to
fitnessw or greater andlV(t) = best-so-far fitness at time

One possibly surprising feature of our results is the efficacy of (often quite drastic) scaling in
improving GA performance. Firstly we note that for linear scaling a scale factedi is always
preferable - not surprisingly considering tisat 0 furnishes maximum selection pressure in this
case. Itis also clear that either power law or exponential scaling is generally useful. The simple
explanation for this is probably that severe scaling tends to force the @&#ptoitany fitness gain
- and this is, as we have argued, precisely what we want for optimisisecarrelated landscape
(at least by mutation).

Another initially puzzling feature is the “stepiness” evident in the mean best-so-far fitness
graphs for some of the GAs with severe scaling and large population sizes. An explanation is
as follows: consider the case of severe scaling (i.e. laygitness-proportional selection with

1"Not quite... see Figs.10below and discussion regarding recombination.
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multinomial sampling and a large population sie After the random initial population stage
(generation 0) suppose that the highest network fourgl @nd that, sayk members in the initial
population are on théy network. During the next generation (generation 1), tHosequences
dominate the roulette-wheel to the extent that every selection is more or less a uniform sample of
thosek sequences. Suppose that there is no recombination. Eachlot#tectees mutates with
a certain probability of finding a portal to netwojk+ 1. There is a reasonable chance, if the
population is large, that (at least) one such mutant does so - but there is only a tiny chance (by the
nature ofe-correlation) that any mutant finds a portal to a netwhidherthan jo+ 1. As a result,
we can expect the best-so-far fithess to change (quite early on in the generation fgpyfrath
joto jo+1 -and then to stay therd his theme is then repeated for the next generation (generation
2) at jo+1, and so on. The “stepiness” decreases with increasing fitness, since for hibleer
probability of finding a portal tg + 1 becomes smaller and so portals tend to be discovated
during a generation (or not at all, so that the averaged out “steps” begin to overlap). We would
expect (and indeed find) a similar effect with other sampling methods (SUS) and with fitness
ranking (in this case only the top-ranked sequencejfomf course) is repeatedly selected, but
the effect is similar. Something analogous also appears to occur with recombination, even at small
mutation rates (see below). The prerequisite is that it be “easy” to find (by whatever means) a
portal to the next step up but “difficult” to find a portal to ahigher step. These conditions
appear to exist too for recombination. We would not expect (and indeed do not find) the effect in
our steady-state GA.

Although not the point of this Chapter, we do have some interest in the utility of recombina-
tion in our GAs. By and large they support well the conclusionskafr( | 1993),
a landmark study of the efficacy of recombination andBoéding Block Hypothesi€Chapter?7,
Section7.1) on Royal Road landscapes. They found similarly that their GA's were invariably
outperformed by a “Random Mutation Hill-Climber” (RMHC) - basically our netcrawler with
constant 1-bit mutation. Their analysis of the reasons for the GA's poor performance - in particu-
larly the apparent failure of recombination to splice together sequences with different set blocks as
per the Building Block Hypothesis - fingehétch-hiking(Chapter7, Section7.2) as the principal
culprit. This is the phenomenon, long known to population genetics, whereby whenever a geno-
type in a population discovers a “good gene”, that genotype (and its identical-but-for-mutation
progeny), rapidly take over the population with all its “bad genes” in tow, thus leaving insufficient
genetic variation for recombination to work with. In effect, there raegtysequences wittiffer-
entgood genes simultaneously in a population and recombination has nothing to splice together.
Thus we may well ask what role recombination is fulfilling in our GAs. Firstly, we note that the
optimised parameters generally haviigh recombination rate (frequently near 1 and occasion-
ally, amusingly, near the folkloric “magic” rate of@® ( ;7 1996). This implies that
recombination is at least not a hindrance to our GA; quite the opposite, in fact.

To test the efficacy of (1-point) recombination we ran several of our GA's with a recombination
rate of 1 and a mutation rate of O; this is, perhaps, a “Big Bang” GA (Ch&ptgection3.4) in
its purest form - optimisation will (hopefully) continue until there is insufficient genetic variation
(which may be lost through stochastic sampling or may not have been present in the initial random
population) for recombination to be effective. The situation appears complex, but it appears that
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with careful tuning of selection pressure (“exploitation”, but danger of hitch-hiking and running
out of diversity too quickly) and population size (“exploration”, but danger of wastefulness) quite
good results may be achieved - but parameters, as pointed out above, have to be finely tuned to
meet specific time/fitness criteria. Fig.10 demonstrates the “exploit/explore®|( , 1992)
trade-offs involved. In summary, while it is clear that (1-point) recombinatiamput together
“puilding blocks” very effectively on a Royal Road landsc&pe indeed, this was theaison

d’etre for their design - it seems difficult to exploit this capability in a GA{( , 1994)

to the extent that it can compete with an (optimised/adaptive) netcrawler.

We note finally that the adaptive netcrawler achieves a performance almost as good as the
optimal netcrawler and that tuning was quick and simple - there seems to be a large “sweet spot”
in the parameter values (primarily the “window” size), which are also, happily, rather insensi-
tive to time/fitness scales. In contrast, tuning the parameters of the population GA's was (as any
GA practitioner will verify...) a tedious and time-consuming task - while parameters sometimes
exhibit large “sweet spots” they very frequently turn out to be sensitive, difficult to predict and
interact “synergistically” (i.e. performance appears to depend on highly non-linear combinations
of parameters), as well as depending critically on the time/fithess scale for which one wishes to
optimise performance. Population size in particular seemed often to be quite tightly related to the
time scale, particularly with severe scaling and recombination (see above for a partial explana-
tion). We note with interest that an analytical study on the related “Royal Staircase” landscapes by
( ;11998) reaches a seemingly opposite conclusion, noting a large “sweet
spot” in population size and mutation rates for a simple fitness-proportional GA (without recombi-
nation). However the performance measure in that study is the (fithess-critical) first passage time
to achieve maximum fitness as opposed to our (time-critical) best-so-far fithess measure, so - quite
apart from the landscape differences - we shouldn’t expect comparable qualitative behaviour.

5.5 Discussion

In this Chapter we introduced the statistical propertg-gbrrelation to describe landscapes with
neutral networks for which higher networks are accessible only from the current network. For such
landscapes we have calculated (Prag.1) the optimal mutation mode/rate and argued (Conjec-
ture5.3.0) that there is also an optimal evolutionary search strategy which is not population-based
but rather a form of hill-climber which we have dubbed tietcrawler On the basis of these
results we have proposed a heuristic - thie Neutral Mutation Rulg¢Prop.5.3.1) - which we

claim to have more general application on fitness landscapes with neutral networks. We have
also proposed aadaptivevariant of the netcrawler which gathers statistical information about the
landscape as it proceeds and uses this information to self-optimise.

We remark that a major motivation for the research presented in this study was a series of ex-
periments by Thompson and Layzell in on-chip electronic circuit design by evolutionary methods
( |I2000), during which an algorithm almost identical to our netcrawler was
used with some success. The mutation rate deployed in these experiments, albeit chosen on heuris-
tic grounds different from ours, in fact turns out to be almost precisely the optimal rate predicted

18350 well, in fact, that in Fig5.10(top figure, pop. size= 100) we see that for (very) short time scales/low fitness
recombination actually slightly outperforms the adaptive netcrawler...
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Figure 5.10: Recombination onlyperformance of a fithess-proportional GA with multinomial
sampling and power law scaling on a Royal Road landscapeNvih8, K = 8: mean best-so-

far fitness (sample size Q00 runs) plotted against time in fithess evaluations. In the top figure
selection pressure is high (scale factod0) and population size is varied. In the bottom figure
population size is high= 1,000) and selection pressure is varied.
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here, given the (estimated) neutrality inherent in the problem. There is, we note, no particular ev-
idence that the fitness landscape in these experimesisdgelated to any degree; indeed, work

in progress by the author suggests that the principal results presented in this Chapter may obtain
under considerably less stringent assumptiehOhapter6) thane-correlation.



Chapter 6

The NKp Family of Random Fitness Landscapes

6.1 Background

The NK family of random fitness landscapes were introduced by Stuart KauffifamT(

, 1987, } 1989; ) 1993) as a statistical model to investigate the phe-
nomenon okpistasis where the effect on fitness of substituting an allele at some locus depends
on the particular alleles at other loci on the genotype. While this phenomenon had long been
recognised by population geneticists { , 1932) it tended either to be absent or vastly over-
simplified in their models. Kauffman’s model, it might be said, is more in line with random energy
models from statistical mechanics, (s8gin glasse$ <1975; ]

1985)) or from combinatorial optimisation (eg. Travelling Salesman problem|¢
5 1985), graph bi-partitioningH( 1 1986), etc) than standard pop-

ulation genetics models. The gist of Kauffman’s construction is to abstract away the details of
how genotype maps to fithess - that mapping is deemed unknown and inscrutable and is therefore
(in the spirit of statistical mechanics) modelled as a random mapping - except that this random
mapping assumes a degree of epistasis in that fithess depends (additively) on contributions from
overlapping groups of “epistatically linked” loci. Crucially, the degree of epistasis in the NK
model can be “tuned” by means of theparameter, making NK landscapes a candidate test bed
for investigating the effects of epistasis.

The emphasis in Kauffman’s analysis was on ‘theggedness”or correlation properties of
NK landscapes arising from epistatic interactions of loci and on how this ruggedness mediates
the behaviour of evolutionary processes. The NK model was extend&diingt} 1997; {
1998) to the NKp family of landscapes, to incorporate the phenomenaelettive neutrality
(Sectionl1.2). The key feature of the NKp model turns out to be the “statistical independence”,
in a sense to be made precise below, of epistasis (as tuned Bygammeter) and neutrality (as
tuned by thep parameter), making NKp landscapes a candidate test bed for investigating the ef-
fects and interaction of epistasis and neutrality. NKp landscapes feeut@l networkslthough
(probably) not, it should be remarked, structurally similar to those of the RNA folding landscapes
which inspired the concept - indeed, (arguably) more realistidlom graphstatistical models
( ; 1995; 1.1997) have been developed to investigate the neutral network struc-
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ture of RNA folding landscapes. NKp landscapes, thus, do not set out to model these landscapes
but might (we shall argue) merit consideration as models for fithess landscapes arigitifj-in

cial evolutiorioptimisation. They might, at least, serve as an aid to intuition for the structure and
evolutionary dynamics on fitness landscapes featuring both epistasis and selective neutrality.

NK landscapes (and NKp landscapes) have been placed in the more general caatetoof
additive landscapelsy ( r2001) in which the statistical properties of epistasis and
neutrality may be analysed. In this Chapter we do generalise somewhat the original NK (and NKp)
constructions but concentrate more on properties specific to these landscapes. We remark that we
approach the concept of “random fitness landscape” in the “constructive” (rather than the more
mathematically rigorous “prescriptive”) fashion outlined in Chapter 2.

We note that the basic NKp landscape construction was originally introducedaim«t;
1997), where the statistical independence of epistasis and neutrality was also conjectured (to be
proved rigorously by K 2001)). A few further statistical results on NKp land-
scapes were presented ina(net; 1998); nonetheless, the majority of the analysis in the this
Chapter represents new research.

A note on notation and terminology

As regards notation, we forsake compatibility with the literature in the interests of internal con-
sistency; in particular, we retain the notatienw, etc.for fitness values (rather thaqyy, ...)
andW, W', ... (rather tharX, Y, ...) for random variables representing fitness values. We shall,
furthermore, continue to write for sequence length, rather théhas implied by the notation
“NK”. We shall also, for convenience, use the tetambitrary” in a specific technical sense, to
mean“drawn from a uniform random distributionfrom some set (which will generally be clear
from the context). In particular, throughout this Chapter the random vanN&bhall denotethe
fitness of an arbitrary sequence (i.e. one drawn uniformly at random) from a sequence®pace

6.1.1 Construction

The Generalised NKp Model

In Kauffman'’s original scheme for NK landscapésa( 1 1993) each locus on a sequence of
lengthL contributes additively to the fitness of that sequence. The contribution of a locus, drawn
(independently and at random) from some underlying distribution, then depends on the allele at
the locus itself and the alleles at some otKefrandomly chosen) loci. While in a biological
context there may be some justification for considering fitness contributions on a per-locus basis,
this seems less obvious if we intend to use the NK scheme to model an artificial evolution fitness
landscape. Rather, we introduce a variation on the NK theme as follows: suppose that the fitness
of a potential candidate for the solution of an optimisation problem depends, via some genotype
— phenotype mapping, on some sefofeaturesof the phenotype. For example, in attempting to
evolve a neural network controller for a robot that is required to perform a specified task, we might
consider the neural network design to be the “phenotype”, while the “features” might be higher
level robot “behaviours” associated with the phenotype (engve towards lightavoid collision

with object etc.), on which fitness is ultimately evaluated. Now the sequendéeature mapping

may be assumed complex and inscrutable - otherwise we would probably not bother applying
artificial evolution to our problem! We thus, in the spirit of the standard NK model, assume (i)
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that ourF features contribute additively and independently towards fitness; (ii) thdittiess
contribution of a feature depends on the alleles at some subset of loci of a sequence - we shall say
that a locudgnfluencesa feature if the fitness contribution of that feature depends on the choice
of allele at that locus - and (iii) for each combination of alleles at the influencing loci the fitness
contribution of a feature is drawn independently from sameéerlying distribution (i.e. real-

valued random variable. As yet we make no assumptions about the assignation of influencing
loci nor about the underlying distribution.

Epistasis in the NK Model

We now make the assumption that the loci influencing a given feature are chosen independently
per featuré and define theepistasis parametex to be the probability that an (arbitrary) locus
influence an (arbitrary) feature. We do allow some flexibility in the choice of loci that influence a
feature; in particular, we shall consider tiiseed epistasisnodel, where each feature is influenced

by exactlyK loci, chosen uniformly at random from thepossible loci (so that = K/L) and the
variable epistasisnodel where, for each feature, the probability that it be influenced by a locus

is decided (independently for each locus) by a biased coin-toss with probabilifyhere are,

of course, other possible choices for assigning epistasis (e.g. the “nearest neighbour” scheme in

( , 1993)); as we shall see, however, the significant quaniti} turn out to be simply
thenumberof loci that influence an arbitrary feature. We note that the fixed epistasis model with
F = L correspondsto the standard NK model with “fully random” epistas!$( ) 1993;

j 1995).

The Generalised NKp Model

We shall also extend our generalised NK model to include (a generalisation of) the NKp landscapes
( { 1997). The motivation for the NKp construction is that it seems reasonable to suppose
that for many (if not most) combinations of alleles at the loci influencing a feature, that feature will
be “ineffective” in the sense that it will makezero contributionto overall fithess. Specifically,

in the spirit of the NK model, we suppose that a feature make a zero contribution - independently
for any combination of alleles at the influencing loci - with fixed probability @ < 1 so that the
underlying fitness distributiod takes the form:

7 0 W'i'[h probab'il'ity p (6.1)
Y with probability g=1—p
whereY is a continuous, non-atornfic , 1966) real-valued random variable. In other words,

for each feature and for each particular combination of alleles at the influencing loci, whether that

feature makes a zero contribution is decided on a biased coin-toss controlled tgutinality

parameter0 < p < 1. Neutrality is (as we shall see) zero foe= 0 and increases with increasing

p. The casg = 0 yields (almost surely) a trivial landscape where every sequence has fithess 0.
NKp landscapes are thus specialisations of generalised NK landscapes. When discussing NKp

10ne might, alternatively, choose the features influenced by a given locus indepermrdygus Our choice is
based on analytic tractability and simplicity of (computer) implementation.

2At least in the absence of any consideratiomemombination

3Almost... in the usual NK construction a locus always “influences itself".

4.e.P(Y =w) =0 foranyw € R.
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landscapes we will, by abuse of language, refeY f@ather thanz) as the “underlying distribu-

tion”.

The Underlying Distribution

In contrast to the standard NK (resp. NKp) model - where the underlying distribution is usually
(but not always) taken to be uniform d@, 1] - we shall frequently specialise to the case where

the underlying fithess distributian (resp.Y) is Gaussian with meaf. This case might be inter-
preted in a similar spirit to quantitative genetics: a feature may contribute either advantageously
or detrimentally (or, in the NKp case, not at all) to fithess. Most changes to a sequence will cause
comparatively small changes to the contribution of a feature while a few changes will have a more
drastic (advantageous or detrimental) effect on a feature. Since we have no particular reason to
expect changes in features to be biased towards the advantageous or the detrimental a normal
distribution seems a reasonable choice.

Of course we cannot in this case interpret fitness in the biological sehsieg discussion in
the introduction to Chaptet) since fitness may be negative. This is not a problem if we are (as
is frequently the case) concerned more with fitness than fitness itself; if we wish to inter-
pret fitness in a more biological manner (e.g. to use fithess-proportional selection) the Gaussian
model could either be made multiplicative by considegh§"esS where the paramet&rcontrols
selection pressure, or alternatively we might consider negative fitness as “lethal” (or perhaps, for
artificial evolution, as a “constraint violation”) and truncate fithness values below zero.

Another justification for the Gaussian choice is an appeal to the Central Limit Theorem: if the
fitness of a feature is in reality itself due to an (additive, independent and identically distributed)
combination of a fairly large number of contributions from an unknown underlying distribution,
the contribution of the feature will be approximately Gaussian. It must also be conceded that the
pleasant additive properties of Gaussian distributions allow us to proceed further with the analysis,
particularly as regarditness-dependestatistics.

The Fitness Function

The fitness function for generalised NK landscapes is described as follows: suppose that feature
nis influenced by thé, influencing loci(an 1,0n2,...,0n,); In and thea,; are to be considered

as (jointly distributed) random variables, corresponding to the random assignment of influencing
loci to features. Given a sequence A" we defineXy = (Xup1: Xans - - - Xanz, ) € A" to be the
sequence of alleles at the influencing loci for featareNow we consider any elemefte 4'

to be “an index into thditness tablé for featuren - that is, any such index references a fitness
contributionZ,(&) where theZ, (&) are (real-valued, jointly distributed) random variables mutually

iid asZ, the underlying fitness distribution. The fitness of a sequereel" is then given by:

f(w) = %(fl(w)+ Fo(W) 4+ T (W) (6.2)

where (W) = Zy(X,) is the fitness contribution of theth feature.

We remark that the Royal Road landscapes of the previous Chapter may be considered as
specialinstancesof a class of NK (or indeed NKp) landscapes, where each ofthocks of
lengthK represents a feature influenced by every locus in that block, and fitness table entries are
zero except for the entry indexed by the block comprising all 1's, which has an entfjNof 1
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Throughout the remainder of this Chapter we drop the “generalised”: by “NK landscape” we mean
a generalised NK landscape as described above. By “NKp landscape” we mean a generalised
NK landscape where, as described above, the underlying fithess distridutiades the form in

Eq. (6.1 with neutrality parametep and (continuous, non-atomic) underlying distributdonki-

nally, we restrict our analysis toinary NK landscapes. Most results generalise straightforwardly

to higher order alphabets.

6.2 Statistical Analysis - Global Structure

Throughout this sectior is a random family (in the sense of Sectidd) of NK landscapes as
described above, with features, sequence lendthepistasik and underlying fitness distribution
Z. In the following sub-sectiod may be an arbitrary real distributigrthereafter we specialise to
the NKp case with neutrality parameteand underlying distributioly.

6.2.1 NK landscapes - Correlation

Let the real-valued r.\V be the fitness of an arbitrary (i.e. uniform random) sequencg'omas
in Eq. (2.75 of Chapter2. We then have:

W:é(zl—i-“-—i-ZF) (6.3)

where theZ’s are iid asZ. This gives immediately:

EW) = E(2) (6.4)
var(W) = %var(z) (6.5)

More generally, ifM(t) is the mgf ofZ then the mgf of is justM(t/F)F.

Now let W@ be the fitness of theamesequence withl (uniform) randomly selected loci
mutated (i.e. flipped), where<0d < L; thatis W% corresponds to th&/’ of Eq. (2.76), Chaptei2
for the constant uniform mutation operatdt?). We now examine the joint distribution &, W@
- how, in other words, the fitnesses of “nearby” sequences compare. Suppose that altogether
features are influenced by at least one of dhiipped loci forn=0,1,...,F. Since the loci
which influence a given feature are chosen independently per feature, the probability that there are
exactlyn such features is given by:

F
n

Pa(d) = ( )(1—p<d>>”p(d>” (6.6)
where:

p(d) = P(an arbitrary feature imotinfluenced by any of d arbitrary logi  (6.7)

The choice of notation will become clear below. For fixed epistasisnodel we find:

@ { (49/6  d<ik 5
0 d>L-K

5Technically, we should demand thatpossess a well-definedoment generating functipmr at least first and
second moments.
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while for thevariable epistasisnodel:

p(d) = (1K) (6.9)

We may then write:
W = E(zl+ 4+ ZF) (6.10)
w@ = 1(Zl+ A Zh+Znir 4+ ZF) (6.11)

where all theZ's are iid asZ. We can rewrite this as:

W = Upn+VEq (6.12)
W@ = U+ Ve, (6.13)
where:
1
U = E(zl+~--+zn) (6.14)
1
u, = E(z/1+-.-+z,’1) (6.15)
1
VEon = (Zn+1+ +ZF) (6.16)

TheU,, U/, andVg_, are (mutually) independent; essentialli, , represents theorrelatedand

Un, U/ theuncorrelatedfitness contributions of the original sequence and its mutant. Noting that
the mgf of% (Z1+---+Zy) is given byM(t/F)" whereM(t) is as before the mgf o, we find
immediately that the joint mg¥1(@ (s, t) of (W,W(@) is given by:

M@ (st) = % M(s/F)"M(t/F)"M((s+1)/F)F " (6.17)

= {(1—p(d)M(s/F)M(t/F) +p(d)M((s+t)/F)}" (6.18)

From this expression we may calculate the (ensemble) auto-correlation for our landscape family.
By Eq. (2.79 this s justcorr (W,W@) = cov(W,W@) /var (W), recalling that since the mutation
operatorU (@ is uniform the (marginal) distributions & andW9 are the same. The variance
term has been given above. The covariance may be calculated from the joint mgf as:

cov(w,w<d>) - E (W\/\/(d)) _EW)E (W<d>) (6.19)
. OZM(d) (S,t) 2
S e | E(2) (6.20)
= ép(d)var(Z) from Eq. 6.19, after some algebra  (6.21)
= p(d)var(W) (6.22)

We have proved the basic result (and justified our choice of notation):

Propostion 6.2.1.The (ensemble) auto-correlation function for a family of (generalised) NK land-
scapes is the(d) of Eq. 6.7). n
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Thus for NK landscapes auto-correlationinslependent of the number of features F and of the
underlying distribution Z In particular, we note thatuto-correlation is independent of neutrality
since any neutrality in our model must depend on a particular form for the fithess distridution
This was first conjectured for NKp landscapestim(net; 1997) and proved rigorously for a wide
class ofadditive random landscapgef which NKp landscapes are an example) lite(
;1 2001).

We see from Eq.q.9) that for the variable epistasis model our generalised NK landscapes are

elementary(Section2.3.2 with correlation length:

0=1/k (6.23)

That is to say, auto-correlation decays exponentially with Hamming distance and with decay factor
K. For the fixed epistasis model, from E§.&) we havé:

d
p(d) ~ (1— 'E) = (1—k)° (6.24)

for d < L — K. Thus for the smalk = K/L the fixed epistasis model is approximately elementary
with correlation length:
(=L/K (6.25)

6.2.2 NKp Landscapes - Contributing Features

We now specialise to the NKp case with neutrality parameterfd< 1 and underlying fitness
distributionY so thatZ is given by Eq. §6.1). In analysing NKp landscapes, tleentral Property
(regarding mutation) is the following:

A mutation at a locus is neutral iff every feature influenced by that locus makes a zero
fitness contribution fobothalleles at that locus

To see this, suppose that some feature influenced by the locus in question makes a non-zero con-
tribution for one or both alleles at that locus. Then flipping the allele will necessarily reference
a differentfitness contribution for that feature. This alternative fitness contribution will either be
zero (with probabilityp) or a different non-zero value. In either case, by atomicity pthe al-
ternative contribution will be (with probability 1) different from the original fithess contribution.
The same will thus be true (again by atomicity¥gffor the fitness of the entire sequence.

NKp landscapes are by no means “homogeneous”. In particular, the structure local to a se-
quencex depends crucially on the number of non-zero fithess contributions to the fitnesé/ef
introduce the terminology that forc 4%, featuren is acontributing feature(for x) iff f,(x) # 0,
where f,(x) is the fitness contribution of the-th feature for sequence We may thus partition
4" into subsets distinguished by number of contributing features:

Ce= {x€ 4" | fn(x) # O for exactlyc values ofn } (6.26)

SNote that ifd > L — K theneveryfeature must be influenced by flippimgloci, so thatw, W() are completely
uncorrelated.

“Strictly speaking, this is trualmost surely- i.e. with probability 1. We shall not in general specify explicitly
whenever a result obtains almost surely.
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forc=0,1,...,F. Let the r.v.C be the number of contributing features of a sequence with fithess
W picked (uniformly) at random fronA, so thatw andC are jointly distributed. Le®. =
P (C = c) be the probability that the sequence has exaxtgntributing features. We have:

Pe= (i)qCpF‘° (6.27)

whereq=1— p. We note thatC| = P:- \ a- ] ; in particular,(p, the subset of sequences of fithess
zero, occupies a fractiop of the sequence space. In general (as will be seen below), to achieve
a reasonable degree of neutralipywill lie close to 1; i.e. we will havey <« 1. In this case? will
occupy a fractione 1 — Fq of the sequence space.

It is clear that in general the fithess of a sequence will depend in large part on its number of
contributing features, since the fitness of a sequenceotimtributing features is a sum of.v.’s
iid as %Y. Specifically, the distribution diV conditional orC is given by:

P(W<w\C:c):P(é(Y1+...+YC)<W) (6.28)

for realw, whereYy,Y,, ..., Y., thec nonzero fithess contributions¥g, are iid asy. Thus knowing
the number of contributing features for a sequence tells us at least something about the fitness of
that sequence. E.g. we have:

EW[C=0) = £E(Y) (6.29)
var(W|C=¢c) = évar v) (6.30)
etc (6.31)

Later we shall examinétness-dependesstatistics of NKp landscapes. Here we remark that the
“contributing feature-dependent” statistics which we will encounter below go at least some way
towards addressing fithess-dependence of statistical properties. As can be seen frérBJeq. (
this will be particularly true if the variance of the underlying distributiois small.
For reference we note thatrif(t) is the mgf ofY andM(t) is (as in the previous Section) the
mgf of Z then:
M(t) = p+agm(t) (6.32)

The mgf of the fitnessV of a uniform random sequence is thgmt qm(t/F)]" and we may
readily calculate that:

EW) = qE(Y) (6.33)

var(W) = éqvar(Y)Jr épqE (Y)? (6.34)

6.2.3 NKp Landscapes - Neutral and Lethal Mutation

We have already seen that auto-correlation does not depend on the underlying distribution. We
now investigate neutrality andthal mutations- i.e. those that yield a zero fithess mutant.
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Neutral mutation probability
Firstly, note that if” is a neutral network of an NKp landscapethenl” C (. for someg; i.e. the
neutral networks lie completely within the subsgts We shall return to this point later. Now let
us writev(d) for the probability that flippingl (arbitrary) loci of a (uniform) randomly selected
sequence is neutral; i.e.:

v(d) =P (w<d> :w) (6.35)

whereW,W(@ are as in the previous Section. Let us writel|c) for the probability thad flips of
an arbitrary sequenceare neutral given thate ; i.e.:

v(dlc) = P(w<d> :w‘ C:c) (6.36)

and we have:

v(d) = iPC~v(d|c) (6.37)

Now suppose that € ¢ and that flippingd loci of x is neutral. Then none of thoskloci may
influence any of the contributing features. Furthermore, if any of tidoci influences anon
contributing feature then the fitness contribution of that feadfiter flipping thed loci must also
be zero - which will occur with probabilitp. Now the probability that a feature is not influenced
by any of thed loci is (from the previous Section) juptd). Thus the probability that none of the
¢ contributing features and exactly(say) of theF — ¢ non-contributing features is influenced by
(at least one of) thd flips is (7 ) (1 - p(d))"p(d)"". Putting this together, we find:

v(dic) = p(d)[p+ap(d)"* (6.38)
which, with Eq. 6.37), yields:
v(d) = [p(d) + p(1-p(d))] ~ e d-F)Fx (6.39)
(see alsoff { 1998)) where the approximation holds (for both the fixed and variable epistasis

models) at small Hamming distandesmall epistasig and high neutrality. Note thatv(d|c) and

v(d) depend on the epistasis’lHamming distance only via the auto-correggtiprwhich, as we

have seen, is independent of the underlying distribution and the number of features 38dh(is
summarises succinctly the interaction between neutrality, correlation and number of phenotypic
features - in short, neutrality:

e increasewith increasing neutrality parametpr
e increasewith increasing auto-correlatiqmd)

e decreasesvith increasing number of featurés

For Hamming distance = 1 we havep(d) = 1— k (for both the fixed and variable epistasis
models) and the expression fafl) takes the particularly simple form:

V(1) = [1— (1- p?)k]" ~ e (1-P)Fx (6.40)
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Lethal mutation probability
Analogously to the neutral mutation probabilities, let us wiite) for the probability that flipping
d (arbitrary) loci of a (uniform) randomly selected sequencketisal - i.e. yields a sequence of
fitness zero:

Ad)=P (vv<d> - o) (6.41)

with W@ as previously. Sinc&V@ is identically distributed taV, we have immediately that
Md)=P(W=0)=P(C=0) =Py ie.

A(d) = p© (6.42)

Again, lethality depends on fitness only via the number of contributing features. We thus write
A(d|c) for the probability thad flips of an arbitrary sequence are lethal given ; i.e.:

Adl) =P (W@ :o‘ c=c) (6.43)
An argument similar to that for the neutral case gives:
A(d[c) = [p(1— p(d))}[p+ap(d)]" ° (6.44)

Neutral degree distribution
Another statistic of interest is the distributionredutral degreeof sequences. We define the neu-
tral degree of a sequence to be the fraction ottpessible 1-bit mutations of that sequence which
are neutral. Neutral degree relates to¢banectivityof neutral networks and is of interest in par-
ticular as regards the phenomenomaftational bufferingpr mutational robustness
 1999; , 2001) - whereby sequences ipapulationdiffusing on a neutral network
will tend to be found preferentially in regions of the network where the local connectivity is high-
est. (We note that this effect does not occur for population-offoihelimbers see (
, 1999) for a detailed analysis.)

Thus, for a (uniform random) sequence, let the& e the fraction of loci at which a 1-bit

mutation is neutral. Let us write(n) for the probability that exactly 1-bit mutations are neutral:

X(n)=P (A = E) (6.45)

and letx(n|c) be the probability that exactly 1-bit mutations are neutral given that the sequence
hasc contributing features:
n
x(njc) = P(A: - ‘ C:c) (6.46)

so that:

F
X(n) = ;Pc-x(nlc) (6.47)

We note that - from the Central Property for NKp landscapes - a 1-bit mutation of a sequence
at a particular locus is neutral iff (i) that locus influences ombn-contributing features for the
sequence and (ii) the fitness contributeiter mutationof each such feature is also zero; i.e. the
feature remains non-contributing after mutation. Here we calculate the distributibordf for
thevariable epistasisnodel; the calculation in this case is simpler since, for any subset of loci, the
probabilities that each locus influence a given feature are mutually independent. For the interested
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reader, a calculation (of mean and variancé)pfor the fixed epistasis case (in fact for the more
general class of additive random landscapes) may be fouritkiil{ r2001).
For the variable epistasis case then, we may calculate that:

(o) = (- )viaier(a-viao)t " (6.49)
since the probability that flipping a particular single locus is neutral is just:
v(1c) = (1-K)*(1—gk)F ¢ (6.49)
as previously calculated in E¢6.89. In particular, we have:
E(A|C=c) = v(1c) (6.50)

var(A|C=c) = (1lc)(1—v(1c)) (6.51)

— Vv
L
The expected fraction of 1-bit mutations which are neutral is, of course, just the 1-bit neutral
mutation probability. The (global) mean neutral degree may be calculated to be:

E(8) =v(1) = [1— (1—p))k]" (6.52)

and we may calculate similarly the varianae (A) (see alsof 2001)); the result
is not particularly illuminating.

6.3 Statistical Analysis - Fitness-Dependent Structure

In the Introduction to this thesis it was mentioned that the global statistical properties of a fithess
landscape are not necessarily particularly useful, since the sequences sampled by an evolutionary
process are by no means uniform - in particular, they are (hopefully!) biased tofittedse-
quences. This is particularly relevant for NKp landscapes - we saw in the previous Section that
they are structurally far from homogeneous. In particular, “most” sequences in an NKp landscape
lie in the “uninteresting” zero-fitness subspageand any global statistics based wmformsam-
pling of the sequence space will consequently be biased towards the zero-fitness sequences. We
remark that this appears to be a common feature of non-trivial “real world” optimisation problems
( 1 1996; 1 1998; , 1993; ). 1995; , 2001;

, 2001; Nn1996; 1 1997). In this Section, therefore, we examine
the statistics of (mutants of) of a uniform randomly selected sequmonwitional on the fitness of
the un-mutated sequen(s. Section2.3).

6.3.1 NK Landscapes - Mean Mutant Fitness

We now investigate the distribution (@ conditional onwW = w for specific fitness values,

where as befor@/ is the fitness of an arbitrary (i.e. uniform random) sequencg-imndw@ is

the fitness (evaluated on the same landscape) of the same sequendehitinary loci flipped.
In particular, we shall calculate the ensemble mean mutant fitness (se2. EQ) for constant,
uniform d-flip mutation:

F(djw) = F (U @ |w> —E (W<d> ‘ W= w) (6.53)

ford=1,2,...,L. To this end, we first establish a technical lemma:
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Lemma 6.3.1.Let Z be a real-valued r.v. (with finite mean) and lgt 2, . .. be iid as Z. Then for
n=12,...,m>nandreal w:

n
E(Zl-i-Zz-i-...-l-Zn‘21+Zz+...+ZmZZ):aW (6.54)

Proof. Since all thez; are iid asZ, the LHS of the above remains unchanged if we replace any
of then z on the left of the {” with any of them Z on the right of the {”. From linearity

of (conditional) expectation, adding up trﬁﬁ) possible combinations and noting that eath
appearg™ 1) times on the left of the|* in the resulting sum, we find:

m
<n>E(Zl+Zz—|—...+Zn| Z1+Z2+...+Zm=W)

m—1
= E((n_1>(zl+zz+...+zm) Zl+22+...+zm:w)

- m-—1 w
N n—1
and the result follows. O

As in Section6.2.1we condition on the number of featuresnfluenced by at least one of thke
flipped loci, to derive (in the notation of Secti6r?.1):

F
Fdw) = Z)Pn(d)E(ur’,Jer_n\un+vF_n:w)
n=!

_ ipnw) {E(U)+E(Ven| Un+Ve n=w)}

_ 5 P(d){nE(Z)—i—F_n } by Lemmas.3.1
pRICIE - 3.

= W+ (1-p(d))(E(W)—-w) byEq.(.6)
wherep(d) is as defined in Eq6(7). We have thus proved:

Propostion 6.3.1.Generalised NK fitness landscapese linearly correlated with respect to con-
stant uniform mutation @ ford =1,2,...,L.. n

Note that this provides an alternative proof that the auto-correlation is indepédhef Eq. (6.7);
but note too that Prof®.3.1is amuch strongestatement than Prop.2.1, which says just that the
p(d) of Eq. (6.7) is the auto-correlation.

As remarked in Chapte?, linear correlation appears to be a remarkably ubiquitous phe-
nomenon - we have already seen that the Royal Road landscapes of the previous Chapter are
(at least approximately) linearly correlated. Preliminary research by the author (unpublished)
suggests that linear correlation holds (again approximately) for RNA secondary structure folding
landscapes where fitness is taken as the (tree-edit) distancac( 1. 1994) from a pre-
defined target structure (see also; 1.1996)), for some 1-dimensional cellular automata

81t would seem that the above proof should generalise tcaaldjtive random landscapé 2001).
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classification landscape&/{ 5 2000) and for some fitness landscapes
based on recurrent dynamic neural netwoiks«(;, 1995).

We propose that linear correlation might be applied to the analysis of fithess distributions (at
least in the infinite population limit), using the “statistical dynamics” technique$!ofi(

, 1997). However, it does not tell us anything about other fithess-dependent phenomena of
interest, such as fithess-dependent neutrality (for NKp landscapes) or beneficial mutation proba-
bilities - this would require knowledge of the full joint distribution (or at least higher moments) of
W, W@ In the following sub-sections we address these phenomena.

6.3.2 NKp Landscapes - Fitness-dependence of Neutral and Lethal Mutation

Before proceeding we introduce some notation. Let the underlying distribution of an NK landscape
beZ and letZy,Z,,... be iid asZ. We set:

1
@n(w) = pdf of E(Zl+Zz+...+zn) (6.55)
with the convention thaty(w) = d(w), the Dirac delta pdf. In particular:
o (W) = pdf of W (6.56)

Now suppose we have an NKp landscape with neutrality parameted underlying distribution
Y, so thatZ is given by Eq. §.1). LetY:,Y>,... beiid asY. We then set:

We(w) = pdf of é Mi+Y2...+Ye) (6.57)

again with thapp(w) = &(w) and we have, conditioning on the number of contributing features:

n

w(w) = 3 (3)eo ueiw (659
Finally, we set:

y(clw) = P(C=c|W=w)
(E)qCpF—C—(”;;m c>0, w0

0 otherwise

As will be seen below, the quantitigéc|w) - the probabilities ot contributing features given a
fithess ofw - may be used to derive fithess-dependent statistics from statistics which depend only
on the number of contributing features.

We have previously calculated the probabihtid|c) that flippingd alleles of an (arbitrary)
sequence witlt contributing features is neutral. From the analysis of Sedi@r3it is easy to
see thatonditional on the number of contributing featurése probability ofd flips being neutral
is independent of the actual fitness of the sequence. That is:

P(w<d> Y ‘ W=wC= c) - P(W(d) -y ) c= c) —v(d|c) (6.60)
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Then, setting v(djw) = P(W® =W | W =w) and conditioning on the number of contributing

features, we have:
F

vidiw) = 3 V(o) (ciw) (6.61)

c=

wherev(d|c) is given by Eq. 6.39 andy(cjw) by Eq. 6.59. This formula may be used to
calculatev(d|w) for a particular underlying distributiowf. Similarly, for lethal mutation, setting
A(dw) =P (W@ =0 | W =w) we have:

F
Aw) = 3 Adle) vicw (6.62)

with A(d|c) given by Eq. 6.44). Fig. 6.1 plotsv(d|jw) andA(d|w) againstd, w for a range of
values, for a Gaussian underlying distribution (iveis normally distributed). For the fithess-
dependent distribution of neutral degree, we may calcyjaigv) = P (A =T } W= W) as:

X(nw) = i X(nlo) vichw) (6.69

with x(nlc) as in Eq. 6.48. This yields in particular:
E(A|W=w) = v(lw) (6.64)
var(alw=w - (1-) i VAP VEm) + VAW -~ vIW? (665

Fig.6.2plotsvar (A | W = w) against a range af values and auto-correlatigril) = 1— K, again
for a normally distributed underlying distribution

6.3.3 NKp Landscapes - Mutant Distribution
In this section we will examine the full distribution of the fithess af-point mutant on an NKp
landscape - that is, the distribution\®f% conditional oW = w. We calculate the mutant fitness
distribution explicitly for a Gaussian underlying distribution and use it to calculatevtbleability
(Section2.3.4:

 (d|w) = z:(u<d> \w) - P(w<d> >w‘ W:W) (6.66)

Let us define the (conditional) mgf:

@ (tjw) = E ("

W = w) (6.67)

The obstacle to calculation ofi®(t|w) is that there is no analog of Lemnta3.1 for higher
moments. The best we can do is calculate the distribution for specific underlying distribdtions
We have:

MO (tjw) = ;Pﬂ (exp(t(Uy+VE-n)) | Un+VE_n=Ww)

Un +VF7n - W)

- ZOPn E (exp(tU})) E (V-

“Note that forw = 0 our notation is consistent with the definition E§.36) of v(d|c), sinceW = 0< C =0 (a.s.).
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Figure 6.1: Fitness-dependent neutrality (top figure) and lethal mutation probability (bottom fig-
ure) for NKp landscapes plotted agaidstw for a range ofv values. Parameters: variable epista-
sis, Gaussian underlying distribution with variamde= 1, F = 20,N = 32,k = 0.125, p = 0.99.
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- ;Pr«d) M(t/F)" / €n(W— V)@ n(v): (W) dv

- Zponeer 38 () ()

< [ @ alw—v)pe_a(V)e(w) v

- gpamuer 375 () () vew

x / Va (W—V)Uie_a(V)We(w)~2dv

ExpandingP,(d) and rearranging some terms we get:

= 3w 35 (2)(2) et e mier

« /V VWa(W— V) We_a(V) We(w) ~dv (6.68)

The integral in this expression may be thought of as the méf(dfl +...4+Yc_a) conditional on
% (Y1+...4+Y:) =w. We calculate the corresponding conditional distributions for the case where
the underlying distributiolY is Gaussian.

Gaussian underlying distribution
Suppose now that the underlying distribution for our NKp landscape is Gaussiar%With
N (0, 62). Noting that forc = 1,2,... we havel (Y1 +...+Yc) ~ N (0, c 02) we have:

1 1 1 w?
We(w) = E m exp<2Coz> (6.69)

and we may calculatgc|w) immediately from Eq.€.59. Next we state:

Propostion 6.3.2.Let Y1, Y, be independent Gaussian r.v.’s with¥N (0, %) and % ~ N (0, 03).
Then:

2 252
o 040
Yo | (Y1+Yo=w)~N L ow, 12 6.70
1] (Y+Ye ) (0%+0§ 02+ 0% ( )

Proof. Straightforward calculation. O

Settingo? = (c — a)0? anda3 = ac? in Prop.6.3.2we thus find:

/vet"lIJa(W—V)llJc_a(V)llJc( w) tdv= eXp<WH‘;a( c ) 2t2> (6.71)

which is the mgf of a Gaussian distribution with meg#w and varianc@@oz. Note that the
mean - as it must be by Lemnga3.1- is linear inw. We also have:

M(t/F)=p+qgmit/F)=p+q exp<;02t2> (6.72)
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Putting this all together, we find:

D (t|w) Z) y(clw) i) < ) Fr_ga (i_‘;) p(d)F"(1—p(d))" bi (E) P

X exp<c_cawt +1 [a(cc— 3 + b} 02t2> (6.73)

2

We note that this equation is singular whes: 0 or whenb =0 anda=0ora=c. Nowc=0
corresponds t€ = 0< W =0 (a.s.). Fow # 0, then,y(0jw) = 0 so that thec = 0 term does
not contribute and should be omitted from the summation. Stilfef O, theb =0, a= 0 term
corresponds to a Dirac delta distribution aroumdvhile theb = 0, a = ¢ corresponds to a Dirac
delta distribution around 0. Expanding the= 0, a = 0 term for givenc > 0, we find that the
coefficient of the delta distribution is just the conditional neutralitgfjw) as given by Eq.q.61).
The coefficient of the delta distribution for the= 0, a = ¢ term may similarly be calculated
to be the conditional lethal mutation probabilkyd|w) of Eq. (6.62. Forw # 0 we thus write
symbolically:

WD W=w) ~ v(dw)D(w)
(

+ A(dw) D(0)
T
x N <C;aW7 [a(cc— a) +b} 02) -

where the summations are to be understoodugerposition®f distributions,D(-) indicates a
Dirac delta distribution and the terms far= 0, b =0 anda = c, b = 0 are to be omitted in the
summation. Thev = 0 case yields:

WD (W =0) ~ v(d|0)D(0)

- ni (E) p(d)"~ i ( >qbpn "N (0, bo?)  (6.75)

Fig. 6.3 plots the continuous part of the conditional probability density funaié(w/|w) of the
distribution of W(@ | (W = w) againstw’ for several (positive) values af, for d = 1,2. Note
that asw increases, the distribution becomes increasingly multi-modal. FromGEg) fve may
calculate the evolvability fow # 0 to be:

E(djw) = Adw)(1-H(w))
1

- Eoen 3050 o acnar 3 (e

n=a b=0

X W ( a W) (6.76)
c(ac+bc—a?) 0

(omita=0, b= 0 anda=c, b= 0 terms) where:

H(W):{ ; ng 6.77)
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Figure 6.3: The conditional probability density functipf (w'|w) of the continuous part of the
NKp mutant distributionV@ | (W = w) of Eq. (6.74) at Hamming distance = 1 (top figure) and
d = 2 (bottom figure), plotted against for several (positive) values of. Parameters: variable
epistasis, Gaussian underlying distribution with variagée= 1, F = 20, N = 32, k = 0.125,
p=0.99.
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is theHeaviside(step) distribution function and:

Y(w) = leTx/Wm exp(—;uz> du (6.78)

is thecomplementary error functiofGaussian tail), defined By(w) =P (Y > w) forY ~N (0O, 1).
Note that the neutral term(d|w) D(w) does not, of course, contribute to evolvability. Foe= 0
it is clear (by symmetry) that:

1 1

£(d[0) = 5 —Zv(d[0) (6.79)

i.e. given that a mutation of a fithess zero sequence is not neutral, it has an equal chance of
being fithess-increasing or fitness-decreasing. &igplots £ (d |w) againstd, w over a range of
(non-negativeyv values (see alsds( , 2001, 22002)).

The presence of the Gaussian tail in the expression for evolvability indicdexsagof the or-
der ofe‘kWZ/Wfor somek of evolvability against fithess. This rapid decay suggests that NKp land-
scapes will bénard to optimise (Sectiors.4.4) - as we move up the landscape fitness-increasing
mutations quickly become difficult to find. This may be compared with the (approximéitedgy
evolvability decay (Sectioh.4.1) of the Royal Road landscapes of the previous Chapter, which
are consequently far easier to optimise (Secfigh?).

Optimal mutation rates
It is evident that for a given fithess there must be anptimal mutation rate ¢f. Section2.3.4);
that is, ad = d*(w) which maximise<£ (d |w), the probability that mutation finds a higher fitness
sequence (this may be seen clearly in Figl). Note thatd only enters Eq.q.76) via the auto-
correlation termp(d). Now p(d) = (1— k)¢ for the variable epistasis model ard(1 — k)¢ for
the fixed model for smald, k, so thatp/(d) = (1—«k)%log(1—k). For fixedw we can thus
differentiate’Z (d|w) with respect tal, set the result to zero and solve (at least numerically) for
an optimald. This may be extended to other mutation modes; for instance, for Poisson mutation
we may calculate an optimum per-sequence mutatiornurgve).

From Eq. 6.79 we see that for the particular cage= 0 this amounts to minimising the
probability that ad-bit mutation isneutral but this implies settingl to its maximum value of.: if
we have a sequence of fitness zero, we shoul@éflgrybit! This may seem peculiar, until we note
the essential difference from e.g. the situation in the previous Chapter. There we were dealing
with a single fithess landscapes. Here we are dealingevitemblevolvability statistics, which
implies that in collating the statistics through sampling we sample a different landscape on each
trial. Our conclusion - that we should flip every bit - is correct. It is, however, evidently less than
useful, as it does not tell us what to do if our mutant doeesfind an innovation and we have to
mutate again; Eq.6(79 then only tells us what we might expect foddferent landscape(We
certainly do not, for instance, wish to flip dllloci back to their original alleles...)

This is, in a sense, an inherent problem with ensemble statistics, at least insofar as they don’t
“self-average” (as is evidently the case for théd |w) of Eq. (6.76)). A more meaningful statistic
- in the current case of evolvability - might be the probability that of, &ayniform randomly
selectedd-flip mutants ofk sequences of given fitneses the same NKp landscap@t least) one
of them be fitness-increasing. We might then attempt to find a mutation rate so as to minimise the
expected time to discovery of such beneficial mutations. This approach, while perhaps not entirely
intractable to analysis, would certainly involve far more work... we do not pursue it here.



N ——
e ——

Chapter 6. The NKp Family of Random Fitness LandscapEx3

=(d|w)

s

SSS oSS

=

e ——

—
SO

i
1

i
'

—_—

=
—

—

=
—
—

===
—

=
S

N W

<

ANV
AN

——
AN
AV AN

_———

N

AN
SO
AVAVA W W W WA WA Y
A W W W

S
ST W W W W

S
O SN

S

0.1 ¢
0.08 |
0.06 |
0.04 |
0.02

0.99.

32,k = 0.125,p

ST SO

S

—_—— =SS
===

SOIIS SO

1,F=20,N

S

AR
S~

A AN

ANAN

RUENRN W
S

ANANANAN
==

TSNS
==

==

< 0.01 (bottom figure). Parameters: variable epistasis,

ANAN
<
==

2N VA VA VA VA VA VA NN

SN

—
==
==

=

ANAN
SSSx

LTSS ST

VAV A VA AN
O
< w

S

<2

<>
<>

(top figure) and
Gaussian underlying distribution with varianac®

E(d|w)

01

1
o
<
o

Figure 6.4: The NKp evolvability statisti€ (d|w) of Eq. (6.76 and Eq. 6.79 plotted against

dand 0<w< 1



Chapter 6. The NKp Family of Random Fitness Landscapet

Nonetheless, the mutation raté(w) which maximisest (d|w) might still be useful as a
“heuristic” for setting a mutation rate in the circumstance that we are attempting to optimise on an
(unknown) member of an NKp family of landscapes. We shall test this hypothesis below.

The “1/e rule” revisited

Another possibility was raised in the conclusion to the previous Chapter: we might assume that
NKp landscapes are “localls-correlated” and use an on-the-fly neutrality estimate plus gar 1

rule to set a mutation rate. We may justify this procedure further by the following argument, which
suggests that the/& rule may apply in more general circumstances thaorrelated landscapes.
Inman Harvey" has espoused the idea that, in the presence of neutalitgorrelation in order

to maximise the probability of finding a portal to a higher-fitness network by mutation we should
mutate “just enough” to get off the current network but (due to the assumption of correlation) at
the same time to stay as near as possible to the current network. We already know frotm3top.

that we should use constant mutation - i.e. flip a fixed number of bits. However, without detailed
knowledge of the local network topology it would not seem possible to calculate what the optimal
rate might be. As a crude approximation let us suppose that neutral networks in our landscape are
(at least locally) “block-like”; suppose specifically that in the locality of our sequence - i.e. within
small Hamming distances - there aréneutral loci” andL — n “non-neutral loci”, so that locally

v = . Then if we flip exactlyd (arbitrary) loci, the probability th&k of these loci ar@on-neutral

andd — k are neutral is given by:

(M) / o) = () amvr 650

where the approximation holds fdr< n - a reasonable assumption if neutrality is high and, as
we are in any case assuming, the “block-like” approximation holds for small Hamming distances.
Now in order to “get off the network” but remain “as close as possible” to it, we want to clibose
S0 as to maximise the probability that= 1. This is tantamount to choosimgso as to maximise
dvd-1. Asin Prop.5.2.10f the previous Chapter we find that the optimal ratie approximated

by the nearest integer te@ which implies the e rule for observed neutrality. For Poisson
mutation we may check that the optimal (per-sequence)u&eaiven, again as in Chapter 5, by
ﬁ, which again yields a fe rule for observed neutrality.

We remark that for NKp landscapes with reasonably high neutrality and correlation, investiga-
tions by the author (not shown) suggest that neutral networks are in fact quite “block-like” locally.
To test the viability of Ye Neutral Mutation Rule mutation we calculated, f@in a given range,
the optimum mutation rates (w) (resp.u*(w)) for fixed (resp. Poisson) mutation from E.76).

Then, for eachw in the range, we calculated the (1-flip) neutrality- v(1|w) from Eq. 6.61) and

the mutation ratedegt= —@ (resp.ugst= ﬁ) predicted by the Aerule for (1-flip) neutrality

v. These estimated optimum rates were then compared with the “true” optimundtatggresp.

u*(w)). Except at very small fitness (in which case discovering innovations is comparatively sim-
ple and mutation rates non-critical) the estimated optimum rates calculated in this fashion proved
to track the true optimum rates surprisingly well. Fig5 plots a sample calculation for constant

and Poisson mutation. As in the previous Chapter there is, due to the diminishing of neutrality with
increasing fitness, a tendency slightly to overestimate optimum mutation rates, particularly at low

10personal communication.
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fithess. With the caveat regarding ensemble statistics, these results are encouraging and suggest
that the Yerule may be at the very least a useful heuristic for estimating optimal mutation rates

on NKp(-like) landscapes. This proposition will be further tested below where wadaptive
netcrawlerson NKp landscapes.

6.4 Landscape Modelling with NKp Landscapes

The“typical” scenario for the type of real-world artificial evolutionary optimisation problem we
wish to address exhibits the following features:

e large search space - i.e. long sequence lengths
e substantial neutrality, especially at low fithess

e reasonable degree of correlation

e “most” sequences have low/zero fitness

¢ higher fitness networks “percolate” to some degree - i.e. are accessible via a few mutations
from an arbitrary sequence

It is this type of landscape that we hope to model using NKp landscapes. In simulation, for the
purposes of gathering statistics (where substantial sampling is likely to be necessary) there will
inevitably be a trade-off between realism and time/space/processing constraints. After some ex-
perimentation we arrived at the following NKp parameters which (hopefully) capture the features
itemised above:

= 40

= 64
K = 0.1875 (variable epistasis)
p = 0.999

These parameters settings, which we shall refer to as defininigrmgisequence length baseline
landscapes, yield the following statistics:

e sequence space size2%* ~ 1.84 x 109 sequences
e ~ 96.08% of landscape is zero fitness
e neutrality at zero fitness 0.99

e (auto-)correlation at Hamming distance 1 i8125

with network percolation to be investigated.

Now the large sequence space and high degree of “lethality” presents a sampling problem: we
are (for reasons already explained) interested in fithess-dependent statistics, but uniform sampling
introduces a heavy bias towards lethal/low fithess sequences. It is non-trivial efted haher
fitness sequences (if it weren't we would hardly attempt to model a difficult optimisation problem
using NKp landscapes!) so that ultimately we must use a search technique to locate higher-fithess
sequences. But this will inevitably introduce (probably unknown) biases into our sampling. There
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d*%W;= optimum ——
dogi(W) = estimated

(constant mutation)

(per-sequence) mutation rate

O 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4

w (fitness)

u*(w) = optimum ——
Ugst(W) = estimated -

(Poisson mutation)

(per-sequence) mutation rate

O 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4

w (fitness)

Figure 6.5: Optimum mutation rates calculated from the evolvability statisticRE€) and esti-

mated optimum rates based on neutrality (E6.1) and the Ye Neutral Mutation Rule (see text)

for constant (top figure) and Poisson (bottom figure) mutation modes. Parameters: variable epista-
sis, Gaussian underlying distribution with variam@e= 1, F = 20,N = 32,k = 0.125, p = 0.99.
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would not seem to be a way around this conundrum. The best we can perhaps do, is to check our
sample statistics againsinall (i.e. short sequence length) landscapes, where uniform sampling
is feasible by exhaustive search; if our optimisation-based sampling technique produces statistics
that tally well with those produced by true uniform sampling at short sequence lengths, we then
hope that our methods scale up benignly to longer sequence lengths... Such checks were carried
out as far as possible on all statistical analyses presented in the following sub-Sections.
Anticipating some results below on optimising on NKp landscapes, the technique we chose to
sample long sequence length landscapessivaslated annealin¢Chapter3, Example3.2.7) with
constant mutation at the theoretical (fithess-dependent) optimal rate based 6r7Bq.The an-
nealing schedule was as followstemperaturd (1) decays exponentially with time. Temperature
decay rate and “Boltzmann’s constaktivere controlled by two (constant) parameters:

1. afitness decremedw defined by the property that at the start of a run i.e.0) a drop in
fitness of sizé\w is accepted with probability

2. a“half-life” T,/, such that the temperature halvegin, time steps

Exhaustive (and exhausting!) experimentation revealed that, for long sequence length baseline
landscapes, best results (over a range of time scales) were achieved with parameter settings:
Aw =0.01 andry/, = 0.2 x (runtime) (cf. Eq.6.83). It was found by lengthy simulations that the

mean maximum fitness achieved by this technique for our baseline landscapes is approXimately
0.2 with a standard deviation of approximatel¥)8. Due to the atomicity of the underlying dis-
tribution around zero, statistics for fitness zero networks were generally omitted from optimising
runs and compiled separately.

Of course there are some statistics which, due to the size of the sequence space and of the
neutral networks themselves cannot be estimated by sampling. These include neutral network
connectivity, distribution of network size and of network number. For these statistics the best we
can do is exhaustive sampling of short sequence length landscapes and again hope that (qualitative)
results scale to higher sequence lengths. We chosshout sequence length baselinendscape
parameters to be:

= 20

= 16
K = 0375 (variable epistasis)
p = 099

yielding:
e sequence space size2'® = 65536 sequences

e ~ 81.79% of landscape is zero fithess

Lwe experimented with other (possibly more conventional) annealing schedules, but the exponential cooling scheme
described here turned out to be the most effective.

12\We suspect that this is close to the mean global optimum fitness for the long sequence length baseline family of
NKp landscapes. Runs of up toGDO0,000 evaluations were used to derive these results. For comparison, in a run of
similar length random searcfiinds a mean maximum fitness of around.0



Chapter 6. The NKp Family of Random Fitness LandscapE28

e neutrality at zero fitness 0.93
e (auto-)correlation at Hamming distance 1 i§Zb

e network percolation to be investigated

For both long and short sequence length baseline landscapes, the underlying distribution used was
Gaussian with varianog? = 1.

6.4.1 Estimating landscape parameters

A question of interest is the following: suppose we are given an atrtificial evolution landscape to
optimise and we suspect that it may resemble structurally an NKp landscape with variable epistasis
and Gaussian underlying distributiocf.(the discussion in Chaptér Sectionl.1.2. How might

we then go about verifying our suspicion and estimating the landscape parafmeatefsando?

(with a view, perhaps, to exploiting some of the theoretical results of this Chapter)? Let us first
suppose that the “ground level” of our landscape - thes&lf sequences with zero contributing
features - is indeed at fitness zero. This set may be easily established for our unknown landscape
by evaluating fitness for a sample of random sequences, the overwhelming majority of which will
(by assumption that we can indeed model our landscape as an NKp landscape) yield the same
“poor” fitness value. If this value inot zero, we may either have to offset fithess by an appro-
priate amount or, if fitness is always positive and we suspect that the fithess of features aggregate
multiplicatively, we might redefine fitness to its logarithm. Next we might explorectireslation
properties of our landscape. Thus we begin to optimise (using, perhaps, a simulated annealer as
described above) and gather statistics on the mean fitnelsbibmutants of sequences of a given
fitness. If mean mutant fitness appeared to satisfylittear correlation property (Prop6.3.])

then we would havef (d|w) = p(d)w. Repeating this process for several valued ofve could

then check how well the relatiop(d) = (1— k)% (Eq. 6.9) holds up and estimate the epista-
sisk. Next we check the neutrality and lethality properties of our landscape. We should have:
v(d) ~ exp(—d(1— p*)Fk) (Eq.6.39 andA(d) = p" (Eq. 6.42) for anyd. If these properties
appear to obtain we may use them to estimate neutralégd number of featurds. It remains

to estimate the variana# of the underlying distribution. We may verify from Edf.84) that if,

as in Sectior6.3.3 the underlying fithess distributio is defined by%Y ~ N (0, 02), then the

fitness variance of an arbitrary sequence is giveudsyW) = F (1— p)a?. Alternatively, we may
calculate from Eq.€.75 that the variance of d-bit mutant of a fithess zero sequence is given by

var (W@ | W =0) = F(1— p)(1—p(d))o?. Of course the statistics suggested above to estimate
model parameters asnsembletatistics, but, we hope, may nonetheless yield useful insights into
the structure of our landscape; there is much scope for research in this area.

6.4.2 Notes on NKp computer implementation

Due to the necessarily intensive nature of our statistical sampling, efficiency of implementation
was paramount. An inherent problem regarding computer implementation of NK landscapes in
general is storage requirements: for each feature, if therk imftuencing loci, the fitness table

for that feature must contairf Zreal) numbers. Ik is too large, available computer memory
resources may be insufficient and the processing overhead of pseudo-random number generation
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required to fill the tables unacceptable. Several schemes to overcome these problems have been
suggested in the literature - see egli¢ ; 1995). One option to reduce storage requirements
is to storeseedsto the random number generator in tables, rather than fitness itself. Fitness is
then calculated “on-the-fly” using the random number generator with the appropriate seed. This
effectively shifts resource limitation problems from storage to processing time.

We addressed this issue with something of a compromise: we did not actually require very high
epistasis for the modelling intended. For consistency with our analysiéidv@owever, wish to
use variable-length epistasis, which implies that there could potentially belLipflaencing loci,
with a storage requirement of 2eal values. The practical limit to the number of influencing loci
as regards storage/processing was found to be &be®0, requiring about 64Mb of storage per
table'®. However, it may be checked that for tkeandL in our long sequence length baseline
parameter settings, the probability of more than 20 influencing loei @005, which was found
to be acceptably small; we simply rejectedt 20 when assigning epistasis. This was found to be
statistically insignificant.

For (pseudo-)random number generation - for assignation of epistasis as well as sampling the
underlying distribution for the fitness tables - we used\legsenne Twistegenerator|{

, 1998), which combines speed and good statistical properties, as well as having a
very long period. Fitness table values were generated from 64-bit random deviates and stored in
double-precision (64-bit) floating point forntét

As regards neutrality, we have found from past experience on a number of computer plat-
forms that comparing floating-point fitness values in order to determine whether two sequences
are actually of equal fitness - i.e. in the same neutral network - can oftenrekable due to
floating-point arithmetic rounding error. To avoid this problem, we devised an efficient binary
“phenotype” for NKp landscapes as follows, based on the “Central Property” (Sé&ctiah for
NKp landscapes: for each feature the phenotypes has a string of bits ofllendthr he first (low)
bit is set to 1 (resp. 0) according as that feature is contributing (resp. non-contributing). If the
feature is contributing, the remainingbits are filled sequentially (low to high) with the (binary)
allele at each of thé< L) loci (again read low to high on the sequence bit-string) influencing the
given feature and then padded with zeroes; if the feature is non-contributing, the renhaliiiag
are filled with zeroes. These phenotypes may be safely compared (bit-wise) to decide whether two
sequences are of equal fitness.

6.4.3 Neutral Network Statistics

We now turn our attention to some statistical properties of the neutral networks on NKp land-
scapes, namelgonnectivity network size/numbeaind percolation/innovation All but network

size are not easily amenable to mathematical analysis. Connectivity and network sizefiumber
distribution, furthermore require exhaustive sampling; we use our short sequence length baseline
parameters to compile exhaustive-sampling statistics. Percolation/innovation statistics may be col-

13Based on 64 bits per double-precision floating-point number.

14This is arguably "overkill” as regards our statistical needs. For instance, even with 32 bit precision, the probability
that two sequences evaluate to the same fitness when different fithess table entries are indexed - thus violating the
“Central Property” - would bec 2732,

I5Investigations into network connectivity and number distribution are at the time of writing still preliminary. We
hope to present more detailed results at a later stage.
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lated by the optimisation-based method described above; we use our long sequence length baseline
parameters.

Distribution of network size

To estimate the fitness dependence of neutral network size, a little thought convinces that, since all
sequences on a neutral network share the same non-zero fitness contributions, the distribution of
sizeof neutral networks for NKp landscapes depends just on the number of contributing features
rather than on fitness itself. We thus (for the variable epistasis case) estimate the expected size of
the neutral network of an arbitrary sequence given that that sequencetasibuting features.

Consider a sequence chosen uniformly at random from an arbitrary NKp landscape. Let the
random variableC be the number of contributing features of our sequence and let the (jointly
distributed) random variabl® be the size of the (maximal) neutral network of which our chosen
sequence is a member. We wish to calcua{& | C = c).

We condition on the rAR representing the number of loci whido not influence angf thec
contributing features of our sequence: giRE:r, it is clear that altering the allele at any locus
other than these cannot be neutral, so that the size of our neutral network is consequegtly
The probabilityP (R=r) that there are such loci is easily seen to b(é)ar(l— a)-~" where
a= (1—«)° Now the number of neutral mutants of our sequence among'teediences that
may be formed by altering theloci is precisely the number of sequences with zero contributing
features that we would expect to find on an NKp landscape with the same epistasis and neutrality
parameters, but witk — ¢ features and sequence lengthrrom Eq. 6.27) the probability that an
arbitrary sequence chosen from an arbitrary NKp landscapeRnigatures is fitness zero (i.e. has
zero contributing features) is jugt. The expectechumber of sequences of fitness zero, where
sequence length isand there ar& — ¢ features, may consequently be approximategfas - 2'

(this will not be exact, since the probabilities that different sequences csathelandscape are
fitness zero are not independent). Thus we derive, summing conditionally:over

E(S|C=c)~pF°[1+(1-k)" (6.81)

We may now use Eq6(59 to approximate the fithess-dependence of expected network si¥e: if
is the fitness of an arbitrary sequence, then:

E(S|W=w)~ iE(S|C:c)y(C|W) (6.82)

Exhaustive sampling on short sequence length landschpe20) indicated that the approxima-

tion is reasonably accurate (Fig.6). Fig. 6.7 plots fithess-dependence of (estimated) mean net-
work sizeE (S| W = w) from Eq. 6.81) and 6.82) against neutrality (top figure) and epistasis

K (bottom figure) for a range of fitness valuesExcept at very low fitness, we see that for small to
medium fitness values network size drops off quite slowly with fitness. Beyond a (roughly defined)
critical fitness (the “ridge” in the size/fitness plots) network size attenuates roughly exponentially
with increasing fitness. For given fithess, network size increases approximately exponentially with
increasing neutrality. Scaling of network size with epistasis is somewhat more complex. At low-
medium fitness, network size increase roughly exponentially with decreasing epistasis. Beyond
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line parameters (variable epistasis, Gaussian underlying distribution with vagarcg, F = 20,
N =16,k = 0.375, p = 0.99) plotted against fitness. Number of landscapes sampled 000.

Error bars indicate 1 standard deviation (note large variance). The dashed line is the analytic

(estimated) valu€& (S| W = w) of Eq. (6.81) and 6.82.
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the critical fitness “ridge”, network size increases at a roughly exponential-exponential rate with
decreasing epistasfs

Fitness distribution of number of networks (preliminary results)

We exhaustively sampled short sequence length baseline landscapes to identify neutral networks,
binning them according to fitness (we thus approximate the “density” of networks vs. fitness).
Results of one such experiment are illustrated in Eig§(Fig. 6.8). Further experimentation with

16 T T T T T T T T T T

14 + T -

12 + -

10 ¢ -

number of networks
(00]
T
1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
fithess

Figure 6.8: Exhaustively sampled NKp mean number of networks (binned vs. fitness) for short
sequence length baseline parameters (variable epistasis, Gaussian underlying distribution with
varianceo? = 1, F = 20,N = 16,k = 0.375, p = 0.99). Number of landscapes sampled.000,

error bars indicate 1 standard deviation. Mean total number of networks per landscape was
783+ 44.1.

different parameter values (not illustrated) suggested the following:

o Number of networks per fithess band drops off with increasing fitness; the attenuation is
approximately linear for small fitness values

e Number of networks increases with decreasing neutrality
o Number of networks increases with increasing number of features

e Number of networks increases with increasing epistasis

16see alsoff [ 1998) for the (somewhat different) scaling of network size for the fixed-epistasis, uniform fithess
distribution case.
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Further research is required to elucidate the relationship between number of networks, network
size and network fitness.

Network connectivity (preliminary results)

We partitioned short sequence length baseline landscapes into maximal neutral networks (by ex-
haustive sampling) and then decomposed the maximal networks into connected components with
respect to the Hamming graph structure (i.e. 1-bit mutation). It was foundligtainnected net-

works were rare: as an example, for one experiment, out of a sample @A.andscapes - for

which 78,299 (maximal) neutral networks were found - only 1£7/0(15%) of the neutral net-

works were found to be disconnected. Further research is required to elucidate the relationship
between network connectivity, size and fitness.

Percolation and Innovation

Simulated annealing as outlined previously was used to collate percolation/innovation statistics
(Section2.2.6 for our long sequence length baseline landscapes. As suggested our sampling
technique was also applied to the short sequence length baseline landscapes and results compared
with equivalent statistics obtained by exhaustive sampling. Results were in good agreement so
that we may hope that sampling bias does not distort results significantly.

The technique was applied as follows: for each landscape of the family sampled, a simulated
annealing run was performed. Each time the simulated annealer discovered a higher fitness net-
work (i.e. a new best-so-far fitness of the current simulated annealing run) a blind ant neutral walk
(Example3.2.5 Sectior4.1) of a given number of steps was performed on that network using the
extant mutation mode/rate A blind ant neutral walk spends asymptotically equal amounts of
time at every sequence of a (connected) network (Seétibrl) and would thus be expected to
sample the neutral network approximately uniformly. At each sequence along the walk a mutant
was created - again according to the extant mutation mode/rate - and its neutral network collated.
The networks encountered were then used to compile the percolation index4Bcand cumu-
lative innovation statistics for the current network. Results were binned according to fitness and
means and variances of the (binned) samples calculated. As mentioned previously, fithness zero
statistics are quoted separatethe “zero bin” doesnotinclude fitness zero statisticge remark
that percolation statistics thus compiled appeared to be very robust with respectengtieof
the neutral walks.

Fig. 6.9 and Fig.6.10 demonstrate the fithess-dependence of effective number of accessible
networks and cumulative innovations for constant 1-bit and 4-bit mutation respectively, for a sam-
ple of 1,000 long sequence length baseline landscapes over neutral walk900Keps. Results
support the following (somewhat counter-intuitive) interpretation:

e As we move higher up the landscape in fitness, neutral networks percolate more (in the
sense that they have more accessible neighbouring networks) despite the fact that, as we
have already seen, they decrease in size. Thus, although we start a neutral walk seeing new
(i.e. previously unseen) neighbouring networks at a higher rate, we “run out” of accessible
networks sooner than for lower fitness networks.

1"The mutation rate used by the simulated annealer was not necessarily the same as that used to compile network
statistics.
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Figure 6.9:Top: Mean (sampled) effective accessible networks (percolation index) for constant
1-bit mutation plotted against network fithess. Error bars denote one standard de\Batiimm:
Cumulative innovations plotted against neutral walk steps. Inset shows first 100 steps of walk.
Parameters: variable epistasis, Gaussian underlying distribution with vadéned, F = 40,

N =64,k =0.1875,p = 0.999. Sample size =000 landscapes, neutral walk steps s0dD.
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Figure 6.10:Top: Mean (sampled) effective accessible networks (percolation index) for constant
4-bit mutation plotted against network fithess. Error bars denote one standard de\Batiimm:
Cumulative innovations plotted against neutral walk steps. Inset shows first 100 steps of walk.
Parameters: variable epistasis, Gaussian underlying distribution with vadéned, F = 40,

N =64,k =0.1875,p = 0.999. Sample size =000 landscapes, neutral walk steps s0ID.



Chapter 6. The NKp Family of Random Fitness Landscapk&7

Now we also know that networkgeutrality decreases as we ascend the landscape. We compiled
neutrally adjustedoercolation statistics for the same parameter values {E§, Section2.2.9);

i.e. neutral mutations are omitted from the entropy calculation. Results showed surprisingly little
difference from the comparable un-adjusted statistics. We could interpret this as follows:

e Lower percolation at lower fitnegsmnnotbe ascribed simply to higher network neutrality.

As might be expected, network percolation also increases with increasing mutation rate. We also
compiled statistics for Poisson mutation. Results (omitted) were similar to those for constant
mutation.

6.4.4 Hill-climbing on NKp Landscapes

A thorough (empirical) comparative investigation of evolutionary optimisation performance on
NKp landscapes - perhaps along the lines of Sediidr2for Royal Road landscapes - is beyond
the scope of this study. We did, however, conduct some experimentstadhastic hill-climbers
(Chapter3, Example3.2.5 to test some of our theoretically motivated assertions regarding opti-
mal mutation mode/rate, adaptive netcrawling and theNeutral Mutation Rule. The artificial
evolution scenario we attempt to model is the following: we @oe&necessarily attempting to
locate a global optimum fitness; rather, much as in the previous Chapter, we tieke-exitical
perspective ¢f. Section3.5 and suppose that there is a maximum acceptable number of fitness
evaluationsT *, say, beyond which we will terminate any optimisation run. The object of optimi-
sation is then to achieve the highest possible fitness withiT thavailable fithess evaluations.
Our performance measure is the expected best-so-far fithess achidveeMaluations.

We chosel* = 10,000 evaluations as our benchmark for evolutionary optimisation. At this
number of evaluations, the best achieved performances (see below) were in the region of fithess
= 1.8, which we think to be (see footnote above) approximately 90% of the mean global optimum
fitness for the landscape family; we consider this to be a credible scenario for a real-world optimi-
sation problem, in the sense that 90% of maximum achievable fithess may be a reasonably realistic
“acceptable” figure for fitness. The hill-climbers tested were a netcrawler (NCR) and stochastic
annealing with the “multiplicative” schedule/parameters described in the introduction to this Sec-
tion (SAM). These were each run with constant (CON) and Poisson (POI) mutation at both a fixed,
“hand-optimised” rate (FIX) or at the theoretical optimal rate (OPT) - i.e. the (fithess-dependent)
rate which maximises the evolvabili# (U |w) as calculated from Eq6(76). The netcrawler was
also run in an adaptive mode (ADP) as described in Seétid2for Royal Road landscap€s so
as to implement the /& Neutral Mutation Rule (Profb.3.1). Random search results (RSH) are

18Note that a comparable adaptive mutation rate scheme for a simulated annealer would not be practicable, as the
annealer will not generally linger long enough on a network to estimate its neutrality reliably, particularly at higher
temperatures.
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included for comparison. Hill-climber parameters were as follows:

NCR CON FIX u=4

NCR POl FIX u=40

NCR CON ADP tjag = 350

NCR POl ADP tjag = 500 (6.53)
SAM CON FIX (=2  Aw=0.006 Ty;=040xT"

SAM POl FIX (=325 Aw=0.007 Ty, =035xT"

SAM CON OPT AW=0.010 Ty, =0.20x T*

SAM POl OPT Aw=0.007 Ty/,=0.25x T

(note that NCR CON OPT and NCR POI OPT do not have any tunable parameters). We make the
following observations on results:

1. NKp landscapes atgard to optimise (certainly compared, eg., with Royal Road landscapes;

contrast Fig6.11with the comparable Figh.8 of the previous Chapter and note that in the
former the time scale i®garithmic). This is consonant with our theoretical results on
evolvability(Section6.3.3, in particular our observations on the decay of evolvability with
increasing fitness.

. Constant i¢-bit) mutation (CON) generally outperforms Poisson mutation (POIl), as cor-
rectly predicted by Prop2.3.1 For constant mutation, furthermore, since (per-sequence)
mutation rates are generally low £ 1 — 3 for the theoretical optimal (OPT) and adaptive
(ADP) mutation regimes at medium-to-high fitness) portals are being discovered close to the
current network. This implies that optimisation tends to proceed via the crossamgropy

rather tharfithessbarriers as described in Sectidnt.1 Even for quite high fithess, neutral
network volumes are large (as may be calculated fromeERg) , but portals to still higher
networks become increasingly sparse and difficult to find. However...

. ...the simulated annealers generally outperform the netcrawléFhis suggests that there

are indeed fitness barriers separatinghighestneutral networks frontocally optimalnet-

works, which the annealers, with their capacity to “back down” from a local optimum, are
able to escapé (note, however, that towards the end of a run, as the annealing tempera-
ture approaches zero, the process increasingly - as remarked in EXatgleresembles

a netcrawler). The behaviour of simulated annealers seems to suggest a “global” structure
consistent with observations on local optima on (non-neutral) NK landscapes, as reported
eg. in ( } 1993).

. Theoretical optimal mutation rates (OPT) - which we recall are based and@mblstatis-
tic £ (U |w) - generally outperform fixed mutation rates (FIX). This suggests that in the
parameter regime of the experiment ensemble statistics may be useful, although...

. ...adaptive mutation rates (ADP) outperform theoretical ensemble optimal rates (OPT) for
the netcrawler. Since setting a “true” optimal mutation rate on a per-network basis would be
expected to outperform the “per-fitness” ensemble rate (OPT), this provides good evidence
for the efficacy of the 1e Neutral Mutation Rule as a heuristic for setting mutation rates.

191n fact, in our preliminary investigations, simulated annealing outperformed every GA tested, both with and without
recombination.

20This conclusion is further supported by results of the author (unpublishetjuttiple independent netcrawlers
on NKp landscapes: over some time scales and population sizes, multiple netcrawlers (with random start) outperform
single netcrawlers. Analysis reveals that this is because the multiple netcrawlers may “hedge their bets” - while most
will generally start in the “basin of attraction” of a locally sub-optimal network, a few tend to strike it lucky and start
from the basin of attraction of a globally optimal, or at least high fitness, network.
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Figure 6.11: Top: Optimised hill-climber performance on long sequence length baseline NKp
landscapes (variable epistasis, Gaussian underlying distribution with vad&neel, F = 40,

N =64,k =0.1875,p=0.999): mean best-so-far fitness (sample siz®@0 runs) plotted against

time in fithess evaluations. See text for key and parameters. The bottom figure shows a histogram
of mean best-so-far fithess at the end of each run, ranked by performance.
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We see in particular that the long sequence length, variable epistasis, Gaussian NKp landscapes of
our experiment differ significantly from treecorrelated landscapes of the previous Chapter. From

a practical point of view we also note that the adaptive netcrawlers have a single parameter (the
“window” time-lagtjag) which has a very large “sweet spot”, making them particularly simple to
tune, almost independently of time-scatd. Chapter5). Simulated annealing parameters were

also comparatively easy to tune, although there was some dependence on run length.



Chapter 7

Recombination

We have previously in this thesis, counter to orthodoxy, expressly rejected recombination as an
effective mechanism in evolutionary optimisation. In this Chapter we present some justification

for this prejudice; we discuss three reasons why recombination may be ineffective or actually
counter-productive. In brief, they are:

e Failure of the Building Block Hypothesis
e Genetic drift (“convergence”) and hitch-hiking

e Error thresholds and the “bi-stability barrier”

The Building Block Hypothesis may be regardedsasictural by nature; it is deeply bound to

the coding of an artificial evolution problem. Although it has been quite extensively criticised
in the literature ( >11989; ; 1994) it nevertheless still appears to
underpin (consciously or not) much of the thinking in the GA community; to this author’s mind,
this may be ascribed, to some extent, to over-reliance on unrealistic model fitness landscapes.
The related phenomena of genetic drift and hitch-hiking arise from finite-population stochastic
population sampling. Genetic drift - under item-de-guerref “(premature) convergence” - is
widely perceived as a serious problem for genetic algorithms and generates a wealth of literature
(although surprisingly little serious analysis). Its partner in crime, hitch-hiking, although not
as widely appreciated as it should be, has been identified and quite thoroughly analysed in the
literature ( | 1993; , 1992). The third phenomenon - the main
subject of this Chapter - has not, to the author’'s knowledge, been identified previously. It makes its
presence felt in the (deterministicifinite population limitbut is exacerbated by finite population
effects.

We do not wish to write-off recombination completely; indeed, GA researchers routinely re-
portimproved performance with recombination - although to what extent this may be due to unsuit-
able evolutionary algorithms or poor choice of parameters (in particular mutation rates) remains
moot. It is perhaps worth noting that, while the evolution of sex and recombination remains a
highly active (indeed frequently somewhat overheated) topic in evolutionary genetics, few popula-
tion geneticists would quote similar justification for recombination as the standard GA perspective
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might have it; for whatever reasons recombination evolved in the natural world, those reasons are
unlikely to be those identified as “useful” from the traditional GA perspective.

7.1 The Building Block Hypothesis

Perhaps at the root of the traditional GA perspective on recombination is the so-Balldithg

Block Hypothesipromoted by John Holland and subsequent researchets(1d, 1992). This
identifies genetic “building blocks” witlschemata subsets of loci along with specific alleles at
those loci. A genotype is said to “instantiate” a schéiifizhe genotype possesses the requisite
alleles at corresponding loci. It is then supposed that the power of GA's derives principally from
the ability of recombination to assemble short, fithess-enhancing schemata present in different
genotypes in a population into new, fit genotypes. The “building block” schemata are assumed
short in comparison to the genotype sequence length, so that they are not too frequently disrupted
by (say, one- or two-point) crossover (Fig1l).

crossover point

Figure 7.1. The Building Block Hypothesis: recombination (here with single-point crossover)
splices two parent genotypes with short, fitness-enhancing schemata, so that both schemata are
present in the offspring genotype.

In the next Section we shall question how effective this mechanism is likely to be with re-
gard to the dynamics of population-based evolutionary algorithms. Here, we ask two perhaps
more fundamental question&Vhy should we expect fithess-enhancing schemata to recombine
successfully?and: Why should we expect short, fithess-enhancing schemata to exist afcall?
answer these question we need to examine more carefully what we mean by a “fithess-enhancing”
schema. We might be tempted to describe a schema as fithess-enhancing if sequences instantiating
that schema are fitter “on average”. A schdmsay, may be identified with the subset of all those
sequences that instantiate it; i.e. we may consider4- where4" is the sequence spacéhus
we might callg fithess-enhancing if the mean fithess of sequences instantiatpigher than
the mean fitness of an arbitrary sequence; more precisely, if the fitness function for our landscape

is f: 4 — R we have: . .
EZT(X)>W Z f(x) (7.1)

XEE xeAt

1Alternatively, the schema is “present” in the genotype.
2Note, though, that not every subset®f may be identified with a schema.
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This doesn't, of course, imply thdtx) is higher than average fevery xc &. Nor does it follow

that there will beshort schemata satisfying this condition. Now suppése 4" is some subset

of sequence space. Thenl) doesnotimply that sequences &N A are on average fitter than an
arbitrary sequence drawn frofn This is due tepistasisthe effect on fithess of a particular allele

at a particular locus may depend on the alleles at other loci. The effect on fitness of a schemalis in
this senseontext-dependenThis observation engenders two major implications:

1. Aisthe set of sequences represented in an evolving popul&ehave stressed previously
(Sectionl.1.3, that uniform sampling is likely to be highly unrepresentative of sequences
sampled by an evolutionary process; even if a schema is fithess-enhancing “on average” it
need not be fithess-enhancing for sequences in an evolving population.

2. The set A is that defined by another schenide implication is that even if a schema
enhances fitness on average for arbitrary sequences, it need not enhance fitness for sequences
that instantiate sometherschema.

The first point might conceivably be remedied by re-defining “fitness-enhancing” to mean “fitter
than average within the context of a (given) population”. The second point seems more diffi-
cult to address; it implies in particular that we cannot assume in general that splicing sequences
instantiating fitness-enhancing schemata will yield above-average fithess sequences.

Of course, there are landscapes where we may readily identify fithess-enhancing (in some
sense of “above average fitness”) schemata which manif@gstigcombine successfully; perhaps
the best-known example would be the Royal Road landscapes (Chapidrich were designed
specifically with this in mind I , 1992); here, set blocks may be considered as emi-
nently splice-able building blocks. The above objections do not apply to such landscapes (although
those of the next Section do).

A related problem with the Building Block Hypothesis is that recombination can only assem-
ble disjoint schemata. For the Royal Road landscapes this is not a problem, since the “good” (i.e.
short, fithess-enhancing) schemata are in fact disjoint. In contrast, consider the NKp landscapes
of Chapter6: given some feature, we may may pick out the loci influencing that feature and a
set of alleles for those loci which reference a high-fitness contribution; this yields a candidate
fitness-enhancing schema. We note that for the “random epistasis” models presented in Chap-
ter 6 these schemata are not particularly likely to be short; other epistatic assignment schemes
such as “adjacent neighbourhoods( 1 1993) might be expected to yield shorter schemata.

But (even for nearest-neighbour models) if we examined these “natural” schematadoctuah
high-fithess sequence, we would be likely to find, particularly at higher epistasis, thaivibey
lap to a large degree and thus could not have been spliced together by crossover. Epistasis in the
NKp model dictates that “good” schemata are not generally good in the context of other “good”
schemata - they frustrate each other. In the terminology of Gavritetsy landscapeg

; 1997), on an epistatic landscape recombination lands us in the holesi{erg 1995)
addresses similar concerns. He uses Price’s Covariance and Selection Theoremi970) to
derive a version of Holland’s Schema Theorériw|(and, 1992) which goes some way to identi-
fying “good” schemata (with respect to a particular recombination operator - essentially the short,
disjoint schemata for one or two point crossover) and, by incorporating the fitness distribution of
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recombinant offspring into the analysis, quantifies the extent to which a GA is liable to exploit
them successfully:

“[The variant Schema Theorem] ... makes explicit the intuition about how schema
processing can provide a GA with good performance, namely: (1) that the recombi-
nation operator determines which schemata are being recombined; and (2) that there
needs to be a correlation between [disjoint] schemata of high fithess and the fithess
distributions of their recombinant offspring in order for the GA to increase the chance
of sampling fitter individuals.”

We turn next to some real-world artificial evolutionary problems and ask whether we might
expect to find combinable building blocks. Consider the thought experiment (the “Fitness Land-
scaper”) of the introductory Chapter: here the problem to be solved is the design of a software
controller for a robot required to perform, say, a navigational task. The chosen implementation
is a highly recursive neural network, with the connections, weights and timescale parameters en-
coded in a genotype after some “natural” fashion. Now we might expect that the fithess function
is “modular” in the sense that high fitness is conferred by success at various behaviours (“move
towards light”, “turn away from obstacle”, “move in an ar@tc). Yet, if we looked for a causal
origin of these behaviours in the neural network - that is, if we attempted to map modularity at
the fitness level to structural modularity in the neural network - we would be likely to fail. The
reason for this is that highly interconnected recursive neural networks are notosyuaskgistic
in their functioning; every part effects every other (recursively!) and, though a network may in-
deed appear to exhibit discrete behaviours, these behaviours cannot in general be localised, say, to
sub-networksNow it may be that the genotype neural network mapping is “modular”, insofar
as codings for sub-networks may be localised on the genotype; notwithstanding, there will still be
no modularity (or localisation on the genotype) in the mapping from genotyipetaviour(much
in the same way as fithess contributions in the random epistasis NKp model are not in general lo-
calised on the genotype). Where then are we to find building blocks - fithess-enhancing schemata
- on the genotype? And even if such building blocks existed, network synergy would be likely
to induce extreme context-dependence; we would not expect schemata to recombine successfully,
since (like schemata in the NKp model) they would likely interact to their mutual detriment. Note
that this is not an argument agaircgirrelatiory neural network landscapes may well be quite
highly correlated (they may also exhibit substantialitrality). Similar synergistic “phenotypes”,
with concomitant lack of a modular genotypefitness mapping, may also be found in other real-
world evolution problems, such as evolving electronic circuits, either on-chipr( 11996;

11998; Nn1996) or in software emulation , 2001).

In summary, for a class of real-world optimisation problems - those featuring what we might
termsynergistic phenotypeswve can expect the Building Block Hypothesis to fail because: (1) it
is not clear that suitable building blocks will exist and (2) even if they do exist, they are unlikely
to recombine successfully. We might contrast this with that favourite GA “benchmark”, the Trav-
elling Salesman Problem. Here, (depending on the coding) we may well have a modular genotype
— fitness mappingsub-touramay be fithess-enhancing, may be coded for locally on the genotype
and may well recombine successfully. Note that, nonetheless, TSP landscapes are in general quite
epistatic ¢ 1 1996) (as indeed are Royal Road landscapes) - correlation in itself does not tell
us much about whether preconditions for the Building Block Hypothesis to apply will prevail.
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7.2 Genetic Drift and Hitch-hiking

Genetic drift is the phenomenon whereby stochastic sampling redeoesic variatiorwithin a

finite (fixed size) population. It is most easily apprehended in the absence of mutation - i.e. in the
absence of any mechanism for producing new alleles at a locus. Suppose that at a given locus,
locusi, say, and for a given allela at locusi there are, sayy sequences in the population with
allelea at locusi. After some number of generations, there isfaite probability that, through

failure (via sampling fluctuations) of such sequences to be selectedpfathese sequences have
disappeared from the population; then, since there is no mechanism for regenattiogusi,
alleleaiis irrevocably lost from the population at locusThis extends to all alleles at all loci. The
result is that after a sufficient number of generations, there is a finite probabiligltsajuences

in the population are copies of a single sequencall genetic variation has disappeared.

Crucially, recombination does not affect this conclusion: recombination can only “mix-and-
match” alleles at a given locus. Mutation will counteract this effect by generating new alleles, but
at low mutation rates (and traditionally mutation has been relegated to the status of “background
operator”, implying low mutation rates) there will still be a pronounced loss of variation; the
population will belocalisedin sequence space, somewhat like a classjoaki-speciegcf. the
next Section). If, now, a GA relies on recombination as the principal search mechanism, this loss
is catastrophic; recombination requires genetic variation to produce novel sequences. The term
premature convergende ; 1989) has been used to describe the effect whereby variation
is lost - and crossover rendered ineffective - before appreciable fitness levels have been achieved.
From the traditional GA perspective, premature convergence has been perceived as therhaps
most important problem for the GA designer to overcome, and a remarkably large percentage of
the GA literature is devoted to schemes (crowding, nicheing, fitness sharing and spatial distribution
to name but a few) to reduce the effect.

Hitch-hiking ( , 1992)may be viewed as an exacerbation of the effects of genetic
drift by strong selection: if a new sequence with a strong selective advantage is discovered (by
whatever mechanism), then that sequence (and its neutral offspring) will be strongly selected at
the expense of other sequences. Within a short “takeover” tithegquences in the population
will be descendants of the new sequence and its neutral variants, with a concomitant drastic loss of
genetic variation. If, in particular, there were useful “building blocks” present in sequettoas
than the new fit sequence, these building blocks will not survive into post-takeover populations.
Conversely, “bad” building blocks in the new fit variant will “hitch-hike” along into future gen-
erations; it is then up to mutation to regenerate variation. Now the takeover time for a sequence
with a strong selective advantage tends to be orders of magnitude shorter than the times between
discovery of fitter variants/( |.1997). The result is that, even if good, potentially
recombine-able building blocks exist for a GA implementatigood building blocks will rarely
be present simultaneously in different sequences in an evolving popul&emombination thus
is not afforded the opportunity to assemble good building blocks.
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7.3 Recombination, Error Thresholds and the Bi-stability Barrier

In the previous two Sections, we have argued that recombination is likely to be ineffective in
the sense of the Building Block Hypothesis; that is, at discovering fit sequences by recombining
building blocks. But, we should perhaps ask, might not recombination be usefatefating

good building blocks? We are assuming that our fithess landscapes are to some degree correlated;
this provides a rationale for supposing timatitationmight discover high-fithess sequences (
Section2.3.4). Might recombination, then, have a similar value? We observe that recombination is

a “contracting” operator; the Hamming distance between a recombinant offspring and either of its
parents is always less than or equal to the Hamming distance between the parents themselves. Thus
the offspring of sequences nearby in sequence space do not stray too far from their parents - but in
this case mutation could achieve the same effect. If, on the other hand, parent sequeatisenare

in sequence space (and, as we have seen in the previous Section, localisation of the population in
sequence space implies that this is in fact unlikely to be the case much of the time), there does not
seem to be any reason to suppose that recombination should “respect” the (mutational) correlation
structure; more probable that recombination then merely actresceomutatiorr an uncorrelated

“jump into the void”. Indeed, Gavrilets’ “holey landscape” theofya( r1997)

posits this as a mechanism for sympatric speciation.

One particular phenomenon associated with recombination has been identified by population
geneticists: that recombination has the ability, in the right circumstances, to aid evolution by re-
ducing the accumulation of deleterious mutations; more specifically, it may reduce the “genetic
load” - the reduction in population mean fithess engendered by the cumulative effect of muta-
tion ( v1982; 11966; n1990; , 1994) (in some
sense recombination acts here as a kind of “error repair’ mechanism). A consequence is that a pop-
ulation evolving with recombination can bear a higher mutation rate without “destabilising” than
in the absence of recombination. It seems reasonable that this may be an advantage in artificial
evolution for the following reason: we have previously seen (Se@iBn) that setting optimal
mutation rates involves a “balancing act” between mutating away from a current (sub-)optimal net-
work but not mutating too far off. Now a potential problem, particularly if the selective advantage
of the current optimum is small, is that if the mutation rate is too high (and “too high” might be just
what we require for efficient search!), the population may be unable to maintain its “foothold” on
the current optimum in the face of the information-degrading entropy of mutation. At this point the
population may slip to a lower optimum, or even wander at random in sequence Space ¢

- 1993; >11994). This phenomenon, known as the (mutatioaabr
thresholdis addressed by Manfred Eigen’s theory of thelecular quasi-specieghich analyses
information-processing in populations of self-replicating biomolecuiessy 1971, ,

1989; >11982). Although quasi-species theory is formulated strictly in the infi-
nite population-size limit, the effects of error thresholds may actually be be amplified by genetic
drift in finite populations { ;r1989).

The property of a fitness landscape for which recombination can be demonstrated to be ad-
vantageous in the above sense is knowrswsergistic epistasi$ y 1982;

» 1966) - roughly, that around a fitness peak, fitness drops off at a greater-than-
exponential rate with respect to Hamming distance from the peak. Now it is not clear (there is
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much scope for research here) why one might expect fithess landscapes in artificial evolution to
demonstrate synergistic epistasis (or not) in the neighbourhood of fithess (sub-)optima. It seems
at least worthwhile to investigate the situation regarding recombination whamp ffusiteof syn-

ergistic epistasis obtains; that is, when fitness drop off latver-than-exponential rate with in-
creased Hamming distance from a fithess peak. This is what we do in this Section. We investigate
the infinite-population dynamics (under the quasi-species formalism) of a population on the sim-
plest non-synergistic landscape, the single-spike landscape. This research was inspired by a recent
study of recombination in a retro-viral quasi-specigsd k1996).

There, the dynamics were found to exhibitstability, with a stable and an unstable equilibrium.

We find a similar phenomenon in our research. We show that the stable and unstable equilibria
coalesce at an error threshold which represents a first order phase transition, in contrast to the
classical mutational error threshold which is a second order (discontinuous) phase transition. We
derive analytical expressions for the equilibria and error threshold and analyse the stability of the
equilibria. Implications of results for artificial evolution are discussed,; in particular, we argue that
the unstable equilibrium representsisstability barrier to the fixation of a newly discovered fit
sequence.

We note that the landscape is, of course, unrealistic with respect to any serious optimisation
problem; in particular, we do not take neutrality into account. We do note, however, that although
neutrality was not explicitly included in Eigen’s pioneering work, the formalism is certainly flex-
ible enough to take neutrality into account; error thresholds (for mutation only) have indeed been
analysed for landscapes with neutralitye( 2001) and some experimental research
has been performed where recombination is preseni y 1999;

, 1999). The author hopes to extend the current analysis to the neutral case in the near
future; it would not appear to involve particular difficulties.

7.3.1 The Quasi-species Model

Manfred Eigen, in his quasi-species formalisiigern 1971; 2r1979;

, 1989), developed an approach to analysing the evolution of large populations of information-
encoding sequences based on (deterministic) flow-reactor kinetics, whereby concentrations of se-
guence types change according to differential rates of replication, destruction and, via mutation,
transformation to different types. This formalism led to the conceptqfasi-specieas a distri-
bution of sequences localised in sequence space and clustered around the most frequent sequence
variety. The existence of agrror thresholdof mutation (or replication fidelity) was established,
beyond which the fittest sequence type would inevitably be lost from the population. The impli-
cation is that if the mutation rate is too high a favourable mutant can never become established
in an evolving population. Furthermore, the error threshold typically decreases with increasing
sequence length, so that there is effectively (for a given per-allele mutation rate) a limit to the
sequence length beyond which an evolving population of sequences can maintain sufficiently high
fitness to be viable. This observation leads to the so-called “error catastrophe”; in nature, the
genomes of organisms have comparatively low effective per-allele mutation rates due to the ex-
istence oferror correctionmechanisms in effect during replication. However, these error correc-
tion mechanisms must themselves be coded for in the organism’s genome - they are functionally
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non-trivial and are likely to require lengthy coding sequences, greater than the “raw” per-allele
mutation rate would permit due to the error threshold. How, then, could these error correction
mechanisms (and hence complex organisms requiring long genomes) have evolved?

There has been a persistent and recurrent idea that an answer to this conundrum may lie with
sex and recombinatiori( 2 1966; 11978; y 1982;

n1990). Thus it has been suggested that, under certain circumstances, recombina-
tion can act as a kind of error repair mechanism. It is, therefore, of great interest to examine
the effects of recombination on the dynamics of a quasi-species and on error thresholds in par-
ticular. In attempting to extend the “classical” quasi-species formalism to include recombination
we immediately come up against three problems. The first is that in the asexual case analysis of
the quasi-species dynamics is greatly abetted by the (lieeayity of the system; recombination
introduces a quadratic non-linearity. Secondly, in the asexual case (and particularly if sequence
lengths are long) we are generally entitled to ignore “back-mutation” of less fit sequences to the
fittest sequence type. This simplifies the analysis considerably, enabling us to separate out the
dynamics of the concentration of the fittest sequence variety. When recombination is present we
may still neglect back-mutation, but weannotignore “back-recombination” (this is in a sense
the essence of the error-correction potential of recombination) so that the dynamics of the fittest
sequence type are inextricably linked to the concentrations of types nearby in sequence space.
Thirdly, the equations are complicated by the presendiakdge disequilibriurn( ;
1998; , 1970), where the particular alleles to be found on a sequence at “linked”
loci cannot be assumed independent. Our approach then is to develop approximations that reflect,
at least qualitatively, the dynamics of the sexual quasi-species.

The basic quasi-species model employed in this Section is as follows: we consider a large
(effectively infinite) population of binary sequences of fixed lengtévolving under selection,
mutation and recombination. There is a single “optimal” sequeand the fitness of any sequence
depends only on the number of errors; i.e. the Hamming distance of that sequence from the optimal
sequence. We shall be interested mainly inltrey sequence length limit & oo; all analytical
results are strictly valid only in this limit. Numerical simulations are of necessity performed with
finite sequence length, although care was taken to use the longest sequence lengths compatible
with clarity and feasible within the constraints of computational resources. In what follows (unless
otherwise stated) all Latin indicesj, ..., Greek indicest, 3, ... and summations run from 0 tg
whereL may beco.

Let w; denote the fitness of a sequence wigtrrors. We now specialise to a “spike” fithess

landscape defined by:
140 ifi=0
W = 149,00 = 7.2
! 0 { 1 ifi>0 (7.2)
whereo > 0 is theselection coefficiefitof the optimum sequence. As previously noted, while
this fitness landscape arguably lacks relevance to any realistic artificial evolutionary landscape -

although it might be argued that fitness spikes surrounded by selectively neutral “plateaux” may

3Also known in the literature as the “wild-type” or “master sequence”.

4Itis commonplace in the population genetics literature to take the optimum fitness as 1 and that of other sequences
as 1-s. Since we shall only consider fitness-proportional selection, there is no essential differamcksare related
by 1+0 = 1.
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belocal features of more complex landscapes (and we already know that evolving populations are
generally localised in sequence space) - it has the advantage of simplicity and allows for direct
comparison with known results from asexual quasi-species theory.

The set of all sequences in the landscape with exaetiyors is known as thieth error class
note that it defines a (non-maximal) neutral partitioning of the landscape. We(tis® denote
the proportion (orconcentration of sequences witherrors at generation t, so thgifx(t) = 1.
(Xi)i=1,....L represents thguasi-species distributioof the populatior. We will use the generating

functionsg (z) for thex;(t) defined by:
() = Zxk(t)(l—Z)" (7.3)
Note thatg;(0) = 1 and (by conventiond; (1) = xo. We also define:
8(t) = kak(t) (7.4)
themean number of errors per sequentreterms of the generating functioggz) we have:

B(t) = —g(0) (7.5)

where the prime denotes differentiation with respect.tdf the concentrations;(t) are time-
independent we drop the argumeént

The remainder of this Section is organised as follows:. 2reviews the pertinent features of
the model in the absence of recombinatioh3.3introduces recombination to the model while
7.3.4presents the approximations used to analyse the sexual quasi-sfetieaddresses stabil-
ity issues while7.3.6discusses some implications of results to optimisation.

7.3.2 The Asexual quasi-species

We suppose that evolution of the quasi-species operates as follows: generations are non-overlapping.
At each generation sequences are selected for reproduction proportional to their fitness. Each al-
lele of a selected sequence then mutates (i.e. the binary allele flips) independently with probability
O<u< % We also sety = Lu = mean number of mutations per sequence; we thus have multino-

mial fitness-proportional selectidSection3.2.) with Poisson mutation at per-sequence tate

Note that the maximum entropy approximation E&1@ with respect to our mutation operator
holdsexactlyfor the error class partitioning. We then have

1
Xi(t+1) = —=Y mjwx(t) (7.6)
W(t) 2 TV
wherem is the mutation matrix:

m;; = P(a sequence witl errors mutates to a sequence witrrors (7.7)

5Note that notation in this Section differs slightly from that in previous Chapters; in particular, the Ratan *
denotegyenerationgather than fitness evaluations and per-sequence mutation rate is writlerater tharu.,”

6Selection is thus not elitist (Sectich2.1). While we might expect the results of this Section to be qualitatively
similar for other selection schemes, our results will patemtiyapply for selection with elitism.

"We have, essentially, a choice between examining concentrdiefogeor after mutation; for convenience, we
choose the latter.
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andW(t) is simply thepopulation mean fitness
W(t) = ZWka(U =0X%(t) +1=0g(1)+1 (7.8)

Equation {.6) may be viewed as defining a (discretedimensional dynamical system. A straight-
forward calculation gives, for the mutation probabilitiag:

mj = ZB&.,J'—HB(;) (Lg j>UG+B(1— u)-~ (P (7.9)

)

In terms of the generating functiapn(z) we note the following: if(x) is the quasi-species distri-
bution at a given generation aggz) its generating function?(3) then selection transforntgz)

according to:
_o9(1)+9(2)

0(2) = g [ov0-+ (2] = “0 2

In the long sequence length limit— o the action of mutation on the generating function is (see
AppendixB.1):

(7.10)

9(2) — e Y%y(2) (7.11)

Note that it follows that in the long sequence length limif = 0 fori < j; i.e. back-mutation
becomes negligible. We may writé.©) in terms of the generating function as:

~uz0% (D) + % (2
= 7.12
If the population is in dynamic equilibriunx;(t) = x; for all i andt, then (.12 becomes:
o(2) = e 2 29B T02) (7.13)

og(l)+1

which may be solved directly fog(z). We find in particular, setting = 1, that the optimum
sequence concentration is given by eithes g(1) = 0 or:

o=g(1)= = [e¥(0+1) - 1) (714)

Now Xp must be non-negative. From examination of Eg.L{) we see that, given a selection
coefficienta, there can only be an equilibrium solution with a non-vanishing concentration of the
optimum sequence i is less than a certain critical vallg given by:

Ua =l0g.(1+0) (7.15)

This critical mutation rate has been termed #mor threshold The behaviour of the model is
illustrated in Figs.7.2and7.3. In Fig. 7.2the optimum sequence concentratigft) as calculated

from (7.6) is plotted against time fd < U,. We see that there is a single stable equilibrium.

As the mutation rate is increased to the critical tdtethe equilibrium approaches zero discon-
tinuously. BeyondJ, the ~ 0 equilibrium corresponds to a “delocalised” population that “sees”
only a selectively neutral landscape. In Fig3equilibrium optimum sequence concentrations are
plotted against per-sequence mutation rate for a few selection coefficients. The transition in the
equilibrium behaviour of the quasi-species as the pararbeteosses the error threshdly is of

a form that would be recognised by physicists ageond order (discontinuous) phase transition
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Figure 7.2: Sequence concentratiogé) for ~ Figure 7.3: Equilibria of {.6) plotted against
the asexual quasi-species ) plotted against per-sequence mutation rate.

time. Sequence length = 20, selection co-

efficient o = 0.1, per-sequence mutation rate

U = 0.05. We note that for this value af,

Ua ~ 0.0953.

7.3.3 The Sexual quasi-species

We now introduce recombination to our quasi-species model as follows: at each generation se-
quences are selected for reproduction proportional to their fithess. Selected sequences pair off
at random; each pair produces an offspring wittiform crossove( 21989) - i.e. each
allele in the offspring sequence is chosen independently from one of its two parents with proba-
bility 1. Each allele of the offspring then mutates as before. This model is similar to the model of
retro-virus replication with super-infection presentedtin ¢ , 1996).

To calculate the evolution of the quasi-species distribution we need the probability that recom-
bination of a sequence from, say, error classith one from error clas$ produce a sequence
in error classj. In contrast to mutation we cannot strictly do this from the quasi-species distri-
bution alone; recombination probabilities will depend on plagticular sequences chosen from
the respective error classes. We thus make a maximum entropy-like assumption: namely, that the
frequency distribution of sequenceghin each error class is (approximately) uniform. Under this
approximation, Eq.1.6) becomes:

x(t+1) = vv(lt)2 ,—% N 1 jht WiW; X (£) X (1) (7.16)

where:

the offspring of a sequence wikherrors recombine
fi = ( pring q d) (7.17)

with a sequence witherrors hag errors
(the tensor = (rj« ) represent the analogue for recombination of the mutation matrix). Our ap-
proximation then gives:

wsOUOEIETT o

(note that this is actually symmetric kgl). How well, then, is our maximum entropy assumption
likely to hold? Firstly, it is clear thalinkage disequilibriumwill violate uniformity. Now it is
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well-known ( , 1970; 11998) [Maynard Smith] that we can expect
to find linkage disequilibrium where there is strong selection with epistasis, and in small finite pop-
ulations. Linkage disequilibrium idestroyedon the other hand, by mutation and recombination.
Some thought indicates that the same factors ought to affect uniformity of sequence distribution
within error classes. In our scenario there is no selective differential between sequences within an
error class, so the only factor mitigating against our assumption is likely to be finite population
drift. We might thus expect our approximation to hold up as long as population size and muta-
tion rate are not too small. Experiment bears this out: we performed Monte Carlo simulations
of the full (finite population, stochastic) quasi-species dynamics for populations in the range of
100— 10,000 sequences. Results (not shown) indicated that even at quite low mutation rates (and
particularly for long sequence lengths) the uniform distribution assumption holds up reasonably
well and that in particular, the infinite-population model (as specified by Eqs6 and7.18
provides a good approximation to the full dynamics (but see also Settiohbelow). We also
remark that (again, particularly for long sequence lengths) experiments with one- and multi-point
crossover indicate that the recombinationdeappears not to be very significant to the qualitative
(and indeed guantitative) dynamics.

Analogous to Eq.1.11), in the long sequence length linkit— oo the action of recombination
on the generating functior? (3) is given by (see Appendi.2):

9(2) — g(32)° (7.19)
Note that in deriving this limit we assume that the number of errotg ihe sequence length
We may then write{.16) in terms of the generating function as:
1N 2
G1(2) =e V2 <w> (7.20)
At equilibrium (7.20 becomes:
Uz (99D +9(:2))
o= (g i) .
Unlike (7.13 we cannot solve this equation explicitly fgfz) or indeed forxg = g(1). We can,
however, simulate?.16 numerically; some results are illustrated in Figd. Here the optimum
sequence concentratigg(t) as calculated from/(16) is plotted against time. For the initial condi-
tions binomial quasi-species distributions were chosen (see Sé&ctigtbelow for justification).
We see that at the lower mutation rate the dynamical sysieht)(apparently has a stable equilib-
rium (atxg ~ 0.6) and an unstable equilibrium (& ~ 0.1). There is also a stable equilibrium at
Xo ~ 0 which again corresponds to a delocalised neutrally drifting population. At the higher mu-
tation rate only the delocalised equilibrium remains. At a critical per-sequence mutatidgy rate
between these values the system bifurcatesal =1997), the unstable and stable equi-
libria coalescing and vanishing. We identify this critical mutation rate as an error threshold, since
beyond this value the population inevitably delocalises; a physicist would describe the transition
as dfirst order (continuous) phase transition

7.3.4 Approximations for the Sexual quasi-species

Simulation of the sexual quasi-species model indicates that, due to the “shuffling” effect of recom-
bination, the quasi-species distribution rapidly attains (from any initial conditions) a distribution
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Figure 7.4: Sequence concentrationd) for the sexual quasi-species {6 plotted against time.
Sequence length= 20, selection coefficiert = 0.4 and (a) per-sequence mutation tdte- 0.11,
(b)U =0.15.

close to abinomial distribution which, in the long sequence length limit approachdé®sson
distribution. We thus proceed as follows: taking at generatitve Poisson distribution:

()
X (t) = e9<t>fd) (7.22)
with generating function:
o (z) = e 002 (7.23)

the evolutionary equatiory (16 yields for the next generation a distribution which will be “nearly
Poisson”. We approximate this distribution by another Poisson distribution, cho@&irgl)
judiciously. This we shall do in two ways, according as the selection coefficisrgmall or large;

in either case we effectively reduce the evolution of the quasi-species frandanensional to a
1-dimensional dynamical system.

Smallo Approximation

If ois small, the evolution of the quasi-species from one generation to the next was found empir-
ically to be dominated by the mean number of er@(ty. For the long sequence length limit we
thus choos®(t + 1) to be the mean number of errors one generation on, starting with a Poisson
distribution (7.22) at generation t. Substituting(z) from (7.23 in the right hand side of7(20

then using the relatiorv(5) we find immediately:

6(t)

The equilibrium conditio®(t) = 8(t + 1) = ... = B yields, after re-arranging terms:
u 1
-6__ Y
==5-0 (7.25)

which may be solved numerically fog = €. Equation 7.25 is observed to have two solutions
for U smaller than a threshold vall& which approximates the error threshalg of the exact
model (7.16) for smallo.

We can calculate the approximate error threstdidas follows: the two solutions fob of
(7.25 correspond to the points where the curié8) = ® andg() = S(G—U) intersect. Atthe
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approximate error thresholdl = Us these curves are tangential; if€8) = g(6) and f'(8) = ¢(8).
Solving these equations we find tiatis the (unique) solution of:

ue'tl=o (7.26)

which may be solved numerically foks in terms ofo. We note that for smats, Us is of the same
order aso and we have:

~ O

Us=+0 (0?) (7.27)

This may be compared wil, = o+ O (02) for the asexual cas@ (19. It is also not difficult to
show that at the error threshold: 1
X =2 +0(0) (7.28)

Large-c Approximation

If ois large, the evolution of the quasi-species was found to be dominated by the optimum se-
qguence concentratiory(t). We proceed as for the smatl-case, except that we now choose

B(t + 1) such thatxo(t + 1) = e 81 is the optimum sequence concentration in the next gener-
ation, again starting with the Poisson distributioh2Q) at generation t. Substituting(z) from

(7.23 in the right hand side of7(20), settingz= 1 and noting thaxy(t) = e 8" we find:

2
_u [ o%(t) +/%o(t)
t+1)=eV 7.29
Xo(t+1) ( oXo(t) +1 (7.29)
At equilibrium, xo(t) = xo(t +1) = ... = Xo, we find (assumingo > 0 and taking square roots of
both sides):
oxo+1=e2Y(0/X+1) (7.30)

This is a quadratic equation fQrxg which may be solved explicitly, yielding two values fay so
long asU is less than a critical valuds which approximates the error threshald of the exact
model (7.16) for largea. Us is easily found to be:

~ 2
Us= —2log, (0(\/1+01)) (7.31)
For largec we see thats scales as:
~ (0) 1
Us = loge +O(0 z) (7.32)

so thatJ, — Us = log.4+0O (o—%> ~ 1.3863 for larges. We also find that at the error threshold:

1
Xo = ?(0—2\/1+0) (7.33)
which, for largeo, scales as:
X0 = 1Jro(cx—%) (7.34)
o]

In Fig. 7.5we plot optimum sequences concentratigrior the equilibria of .16 with L = 60,

against per-sequence mutation rdtéor several values of the selection coefficientThe small-

and largee approximations{.25, (7.30 for xo are plotted on the same graph. In this figure the
upper branches of the curves represent the stable and the lower branches the unstable equilibria. It
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Figure 7.5: Equilibria of .16 and approximations7(25, (7.30 plotted against per-sequence
mutation rate.

smaller with recombination than without.

was also found that for any,U the optimum sequence concentratigrat equilibrium is always

Fig. 7.6 plots the error thresholds computed from numerical simulation of.(L6) with se-

quence length = 80 as well as the small- and largeapproximationdJs andUs againsto. The

asexual error threshold, is also plotted for comparison.

7.3.5 Stability of Equilibria

We wish to investigate thstability of the equilibrium solutions to7(16. This is of particular
importance to analysis of finite-population models for whiGtiL§) may be an approximation,

since stochastic fluctuations will occur in the concentratigft$ which might destabilise a deter-
ministic equilibrium. Furthermore, we note that, particularly for snaalthe system may persist

in a state apparently close to the unstable equilibrium for a considerable time before destabilising
(Fig. 7.7); we should like to elucidate the mechanism by which these “nearly stable” quasi-species
destabilise.

Consider a discrete dynamical system:

X(t+1)=F(x(t))

(7.35)

wherex is a real vectofx;) andF (x) a (smooth) vector-valued function with component functions

Fi(x). Suppose further thatis afixed-pointof (7.39); i.e.:

& =F(¢)

(7.36)
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Suppose now that at timex(t) is close to; i.e. = |x(t) — &| is small. We find then from7.35
and (7.36) that:

X(t+1)—&=0F(&) - (x(t)—&)+0(d) (7.37)
wherelJF (&) is the matrix with component%; and (7.37) is thelinearisationof the dynam-
i Ix=¢

ical system (.35 about the fixed-poing. It represents the linear transformation mapping points
in the vicinity of a fixed-point to their positions in the next generation. Nowptthecipal eigen-
value of a linear transformation indicates the degree of “stretching” in the direction of greatest
stretching; a fixed-point of a dynamical system3Q) will be stable iff|Ao| < 1 wherelq is the
principal eigenvalue ofIF at that fixed-point. Our evolutionary equations1(6) are of the form

(7.35 with F given by:
1
FX)=— My Ik WKW XX (7.38)
I( ) W(X)Z J%I InN!

with the added constraint; x; = 1. We find that at a fixed-poirgt

2w;

[OF©)];; = W) {—Ei + W%E) gml rukwkﬁk} (7.39)

To analyse the linear transformatidif (§) given by (7.39 we calculated its eigenvalugg > A1 >
A2 > ... > AL = O for the stable and unstable equiliBridig. 7.8 plots the principal eigenvalues
Ao for a range of mutation rates and a fewalues, for the stable (lower branches) and unstable
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Figure 7.8: Principal eigenvalues ofF (&) for the stable (lower branches) and unstable (upper
branches) equilibria of7/(16). Sequence length = 60.

(upper branches) equilibria. It was also found empirically that the remaining eigenvalues fall off
roughly exponentially; i.e. for fixed andU there is a constart ~ % such that fok = 1,2,...
we havel, ~ c\o. It was certainly the case that for the stable equilibridgi < 1 (confirming
stability) while for the unstable equilibriufip| > 1 (confirming instability) and that in both cases
|Ak| < 1 for k > 0. This latter implies in particular that the unstable equilibrium#1.§) is only
unstable along a single dimension - we might think of it as a narrow steep-walled saddle-shaped
gully with a shallow curvature in the direction of the principal eigenvectdiefg). For smallo
(see Fig.7.8 and analysis below) we see thatis only slightly larger than 1. This explains the
comparative stability of the unstable equilibrium (Fig7). It is also interesting to note that for a
given selection coefficiertd there is a critical mutation rate at which the instability of the unstable
equilibrium is greatest. For higher mutation rates the unstable equilibrium becomes less unstable
as the error threshold is approached.

To approximate the principal eigenvalues, we proceed as follows: in Sécahwe approx-
imated thd_-dimensional systen¥(16) by the 1-dimensional systems.24) and (7.29. Consider
the general situation where there is a vector funafion = (¢ (y)) of a new variabley and a scalar
function f (y) satisfying the relatiop( f (y)) = F(¢(y)) V' y or, in functional notation:

@of=Fog (7.40)

8]t was found (although not proven analytically) that all eigenvalues were non-negative. We noyexhat 1
implies thatdF (&) is aprojection so that there must exist at least one zero eigenvalue.
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This equatiofi formalises the notion of “reducing the dimension” of the dynamical syste&y
to the new 1-dimensional dynamical systg(h+ 1) = f(y(t)). We then have:

d(FTY) = Fi(@y)gy) Yy (7.41)
J

where primes denote differentiation, so thaifs a fixed-point off then f’(n) is an eigenvalue
of OF (&) for & = @(n), with eigenvectory (n).

The smalle approximation of7.3.4is an approximation to just such a reduction of dimension
(in the sense that the relatior.40 is “almost” satisfied) if we identifyy with 8. @(0) is then
specified by .22 and f(0) by (7.24). The eigenvalué\o = f/(0) at the stable (resp. unstable)
fixed-point8 is found to be:

Ao=(1+U) (1— lé) (7.42)

where0 represents the stable (resp. unstable) solution of the equilibrium equatiih (

For the larges approximation of7.3.4we identifyy with Xo; @(xo) is then specified by7(22)
and f(xp) by (7.29. The eigenvaluéo = f/(xo) at the stable (resp. unstable) fixed-poiptis
found to be: .

5\0 _ 2—e2
oxo+1
wherexg represents the stable (resp. unstable) solution of the equilibrium equatiih (

Numerical computation 03\0 and 7\0 showed them to be reasonable approximations to the
principal eigenvalue\o of OF(§) (for both stable and unstable equilibria) for small and large
values ofo respectively. We may also conclude that for snaathe unstable equilibrium is most
sensitive to perturbations & the mean number of errors per sequence, while for largds
more sensitive to perturbations x.

Finally, we return to our remark in Section3.3that the infinite-population mode¥ (16and
7.18 is generally a good approximation to the corresponding finite-population (stochastic) model.
This is not entirely true near the unstable equilibrium; unsurprisingly stochastic fluctuations will
tend to dislodge the population from the vicinity of the unstable equilibrium, whence the pop-
ulation will either converge to the stable (upper) equilibrium, or errors will accumulate and the
population delocalise (Fig..9).

(7.43)

7.3.6 Discussion

Comparing the behaviour of the sexual with the asexual quasi-species there are several striking
differences. In particular it seems clear that on the spike fithess landscape recombination is a
distinct disadvantage for the following principal reasons:

e For the same sequence length and mutation rate, the error threshold is lower with recombi-
nation than without.

e Suppose that in dinite population our optimum sequence has been recently discovered
by mutation/recombination. Even if any copies of the new optimum sequence survived
elimination by random drift, the concentration of the new sequence would haseftto

9In mathematical “Category Theory” Equation.{0 would defineg as anendomorphisnwithin the category of
(discrete) dynamical systems.
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Figure 7.9: optimum sequence concentration plotted against time for two typical simulations of a
finite population (stochastic) sexual quasi-species initialised near the unstable equilibrium, along-
side the corresponding infinite-population modéll@). Sequence length is = 80, selection
coefficiento = 0.4, per-sequence mutation rédde= 0.1 and population size for the finite popula-

tion runs is 10,000.
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above the level of the unstable equilibrium before selection could begin to “pull” it towards
fixation - and in the meantime mutation and recombination actually conspieglteits
concentration.

We term the latter effect thigi-stability barrier. For large populations in particular, it is difficult

to see how a new, selectively advantageous sequence could ever fixate; far from acting as an
“error repair” mechanism, recombination appears to act as a “selective advantage obliteration”
mechanism!

Another striking difference is the following: in the asexual case, if the quasi-species is in equi-
librium just within the error threshold we would expect to see a low concentrggiofthe optimal
sequence (E¢..14and Fig.7.3). With recombination, at the stable equilibrium, we would expect
to see a substantial concentration of the optimal sequence {Fg.particularly if the selection
coefficiento is small - in which case (Eq..28 we havexp ~ 1/e~ 0.3679. Thus if we observed
a sexual population in equilibrium to have a reasonably high concentration of the optimum se-
guence we could not infer, as we might in the asexual case, that the mutation rate was well within
the error threshold; in effect, a small change in mutation rate or selection pressure could push a
seemingly stable sexual population catastrophically over the error threshold. Furthermore, near
the error threshold the stable and unstable equilibria are close together; a stochastic fluctuation
could easily bump the optimum concentration below the unstable equilibrium.

Finally, it was remarked in Section3.3that our model is similar to that ir3( ,

1996). The principal difference is that in their model recombination occurs only with a given
probability < 1. They also consider fitness landscapes with a “plateau” of higher fithess around
the optimum sequence as well as an isolated fithess spike. We conjecture that the picture pre-
sented in this Section holds in general for (local) non-synergistic fithess optima. We do note that
an optimum representing a fitness plateau (rather than, as in our case, a spike) might alter our con-
clusions somewhat; in particular back-recombination might be expected to reduce the bi-stability
barrier. Simulations by y 1999) suggest that this might be the case; analysis
would, however, be more difficult under this scenario. By contrast, a locally optimal neutral net-
work representing a “ridge”-like rather than a “plateau’-like optimum should be easier to analyse

( ,2001) and we would expect similar conclusions to those presented here. We
should also like to analyse finite population effects, although this is difficult even for the asexual
case [ :r1989).
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Conclusion

The thesis presented in this work is rooted in the following philosopig:more we know of the
statistical properties of a class of fithess landscapes, the better equipped will we be for the design
of effective search algorithms for such landscap@s the basis of some defining assumptions
regarding the class of fitness landscape which we explicitly address, we have characterised evolu-
tionary processes for such landscapes and attempted to develop statistics that could yield insights
into and assist us in the design of evolutionary search techniques that might exploit the generic
evolutionary dynamics which we have identified. To aid us in this endeavour, we introcheocksd
landscapedn several capacities: to sharpen our intuition, test our analysis and (hopefully) as use-
ful models for real-world artificial fitness landscapes - “useful” in the sense that theoretical results
for our models might apply, at least to some degree, to real landscapes - that we might, in other
words, “fit” our models to real-world landscapes. This thesis, then, has been devoted to the dis-
covery of statistics, models and techniques relevant to the design of effective evolutionary search
in order to exploit the assumed landscape structure and concomitant evolutionary dynamics.

In a nutshell, the class of fithess landscapes we have addressed ourselvatigorare cor-
relatedlandscapes withkarge-scale neutralityand the characteristic evolutionary dynamics iden-
tified for such landscapes involveeutral drift on neutral networkspunctuated by the sporadic
discovery ofportals to higher-fithess networks. Exploiting these features has involved identifi-
cation of a balancing act between maximising neutral drift whilst retaining fitness correlation.
Some casualties along the way have been recombination and an unquestioning assumption of the
effectiveness of population-based search. In their place have appeared neutral drift, stochastic
hill-climbing and (adaptive) optimisation of mutation rates.

8.1 Review of Results

In the introductory Chaptet we present some general discussion on optimisation and evolution-
ary search and attempt to lay out the rather specific type of evolutionary optimisation scenario
addressed by this thesis. It is stressed that we are concerned with a particular class of (discretely
encoded) fitness landscapes: those featuring some correlation and substantial neutrality. We ex-
amine why we might want to study optimisation on such landscapes and in particular why they



Chapter 8. Conclusion 163

might arise in complex “real world” optimisation problems. We also present some discussion on
the Ble(s) and usefulness of statistics and model landscapes.

Chapter2 introduces fithess landscapes, in particular their structure with respeuitidgion
andneutral networks While largely concerned with formalities, it also presents some novel sta-
tistical measures, the utility of which will be examined in later Chapters. These are divided into
fitness-independemstatistics, which depend only on the partitioning of a landscape into neutral
networks anditness-dependesstatistics, which depend in addition on actual fithess values. The
former include:

e Themutation matrixm(U ) with respect to a mutation operatdrfor a neutral partitioning of
a fitness landscape (Sectidr?.2, which encapsulates the “coarse-grained” structure of the
landscape with respect to mutation, and which emerges as the basim&iraum entropy
approximationof an evolutionary process in the next Chapter. The algebraic structure of
mutation matrices is examined and several approximations are presented for expressing a
general mutation matrix in terms of the matrix for 1-point mutation (Sedia@rv). These
approximations are put into practice in Chagier

It is also proved (Sectiof.2.5 Prop.2.2.2 that the mutation mode/rate which maximises
the probability of mutating from one neutral network to anotheoisstant(n-bit) mutation
at a rate that may be calculated from the mutation matrix.

e Theentropy HU) of a neutral network (Sectioh.2.3 Def. 2.2.4, which re-appears later
in the Chapter as the basis for thercolation index?(U) (Eq. 2.49 of a neutral network
- a measure of the “innovation rate” or “accessibility” of other networks via mutation (Sec-
tion 2.2.9. It is also demonstrated how the neutral contribution may be “factored out” of
these statistics.

e TheMarkov indexM (U) of a neutral network (Section.2.3 Def. 2.2.5, a measure of the
homogeneitpf a neutral network, or the degree of “localisation” of mutational information
on a network. This mutual information-based statistic is proposed as a measure of how well
the maximum entropy approximation of the following Chapter is likely to work. It also
emerges later in Chaptéras the basis for theercolation drift factorDP¢¢(U) (Eq.2.59),

a measure of how importameutral drift is likely to be as regards network accessibility
(Section2.2.9.

The necessity of fithess-dependent statistics is stressed as a consequence of the inadequacies of
more traditional landscape statistics (such as fitness auto-correlation) which are based essentially
on uniform samplingof the landscape. Statistics introduced, based on therfutant fithess
distribution, include:

e The mean mutant fithes$ (U |w); i.e. the expected fithess of a mutant of a sequence of
given fitness. It is demonstrated that the auto-correlgiith) depends (at least for uniform
mutation operators) on mutation probabilities only through this function; implications for
the usefulness of auto-correlation are discussed.

e Linear correlation(Section2.3.3 - where the mean mutant fitness depends linearly on ac-
tual fitness. We show that for landscapes with this property mutation decreases fitness “on
average” by a factor equal to the auto-correlation. In Ché&pserd Chapte6 we verify this
property for our model landscapes and conjecture that it may be a ubiquitous and important
statistical feature of artificial fitness landscapes in general.
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e The evolvability statisticZ (U |w) (Section2.3.9 - the (fithess-conditional) probability of
finding fitness increasingnutations. It is argued that, while evolvability - or perhaps more
properly thedecayof evolvability with increasing fitness - may be a more meaningful metric
than auto-correlation as regards the behaviour of evolutionary processes, we might nonethe-
less expect to find some degree of evolvability on correlated landscapes.

Analogous to Pro®.2.2we show (Prop2.3.1) that, for a given fitness, theptimal mutation
mode/rate- in the sense of that which maximisegolvability- is alsoconstant(n-bit) mu-

tation, now at a fithess-dependent rate. It is noted that this contradicts the common practice
among GA practitioners of mutating orpar locusbasis.

e The evolvability drift factor D¢°(U) (Eq. 2.72 - a measure of the extent to which the
probability of discovering fitness-increasing mutations depends on the particular sequence
of a neutral network. This mutual information-based statistic is proposed as a measure of
the importance of drift to evolvability, a theme to be revisited in more detail in Chépter

In the final Sectior2.4 we extend our statistical techniques to familiesrafidom fitness land-
scapes In particular, we draw the distinction betweensemblestatistics and “averaged” per-
landscape statistics; it is noted in particular that, since there will in general be no neutral parti-
tioning valid across a family of random landscapes, neutral network statistics must necessarily be
fithess-conditional.

The first couple of Sections of Chapteare also concerned with formalities, aimed at captur-
ing in quite precise terms what we mean byesolutionary procesghat is, encapsulating mathe-
matically the notion of @opulationevolving on a fithess landscape YVitness-based selectiamd
heritable random variationEvolutionary processes are thus defined as Markov processes on the
state space of populations on a sequence space, with transitions from one population to the next
“generation” defined by aavolutionary operatarAn evolutionary operator, in turn, is defined by
a fitness-based, stochast&lection operatoin combination with a mutation operator (as encoun-
tered in the previous Chapter) to supply the (heritable, random) variation. Capturing the notion of
fitness-based selection in a suitably general sense turns out to be non-trivial and is thus relegated to
the technical AppendiR; several practical examples are presented to substantiate the formalism.
Our construction is designed to correspond to the intuitive notion that to form a new generation
we create mutants of sequences from the current population and select for the next generation -
stochastically, but solely on the basis of fitness - from mutants and un-mutated original sequences.
The approach is general enough to cover most mutation-based search processes that would likely
be accepted as constituting Genetic Algorithms, as well as including such (less manifestly “evolu-
tionary”) processes agochastic hill-climbingandsimulated annealingObvious non-contenders
for our definitions areecombinatiorand algorithms (such as “spatial” GA'S) incorporating state
information besides sequence/fitness; we note that our definitions might, if desired, be extended to
incorporate both of these aspects without major conceptual complications. We remark too that if
the formalism in the opening Sections to this Chapter appears unnecessarily pedantic, some degree
of semantic (if not mathematical) precision will be required at least in Ch&ptdren we argue
(Section5.3) the optimality of thenetcrawlerprocess within the class of evolutionary processes
- for search on a particular family of fithess landscapes.

Section3.3outlines thestatistical dynamicapproach to the analysis of evolutionary processes,
as propounded by\( [.1997). Thus we review theparse-grainingf a landscape via
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a neutral partitioning and theaximum entropy approximatida an evolutionary process, by way

of which the state space of evolutionary search is “collapsed” to a (hopefully) more manageable
form. The approximation is relatgubst hocto some statistical constructions already introduced

in Chapter2, in particular the Markov index of a neutral network. Sectiohreviews the typical
epochal dynamicsf evolutionary processes on fitness landscapes with neutral networks. The
characteristic dynamics of evolution with neutral networks is contrasted with the more traditional
GA picture of evolution (with recombination) on rugged landscapes. Sestibfidiscusses the
dynamics behind the “punctuated” aspect of epochal dynamics with neutral networks, identifying
the crossing oéntropy barriers- the discovery oportalsto higher fithess networks - rather than
fithess barriersas the crucial factor in search effectiveness and the consequent importance (and
implications) ofneutral drift The Chapter closes with a Sectidh) on the measurement and
comparison of search efficiency: it is emphasised that efficiency comparisons should be on a
per-fithess-evaluatiobasis and introduces the notion tirhe- versusfitness-criticalevaluation
standards.

In Chapter3 neutral drift was identified as an important feature of evolution with neutral
networks. In Chaptet we investigate how we migleixploitneutral drift - specifically, to maximise
the efficiency of search for portals to higher neutral networks. We work towards the conclusion
that - in lieu of specific structural information on the accessibility of portalsiaddpendently
of neutral network structure (with regard to mutationpur evolutionary process should always
attempt to maximise drift in the sense that, when faced with a cheatection should generally
choose a neutral mutant at the expense of its paréinis demonstrated (via counter-example)
that if we do have further structural information on portal accessibility - if, for instance, we make
a (not unreasonable) assumption that portal sequences are likely to suffer a higher than average
probability of fitness-decreasingutation (Examplet.1.1) - then maximising drift may not, in
general, be the best strategy.

The argument in favour of maximising drift works roughly on the basis that the more “inde-
pendent” are two sequences on a neutral network, the greater the probability that at least one of
them find a portal (Propt.0.1). Theevolvability drift factor®e¥°! (Eq. 2.59 of Chapter2 appears
as a measure of this effect. A more sophisticated argument - taking into agEnedlogieof
sequences - uses a novel variety of neutral walk with tunable drift, which we debvaus ant
walk (Example3.2.5and Sectiont.1), to investigate the dependency of the distribution of time to
portal discovery on drift rate. A neutral ant walk moves to neutral mutants with a fixed probability
that controls the drift (or diffusion) rate of the process on a neutral network. We prove the (Weak)
Neutral Drift Theorem (Theorem.1.1), which states roughly that, in the absence of specific in-
formation regarding portal distribution, increasing the drift rate (at least slightly) from zero always
improves the chances of portal discovery in the sense that the probability of discovery of a portal
within any given time is increased. This result is quite general - it holds true regardless of network
topology or distribution of portals on the network. We conjecture (Conjeetuir€) that, on any
given time scale, the portal discovery probability in fact increases monotonically with increasing
drift rate, up to maximum drift. We also examine the behaviour of the nervous ant in the long time
limit (Section4.1.]) and calculate itgliffusion coefficienin terms of network neutrality, mutation
rate and drift parameter (E4.48 4.49. Finally (Sectiom.2), we discuss briefly how our conclu-
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sions might apply tgpopulations particularly with regard to known results on the phenomenon of
mutational bufferingwhereby a population diffusing on a neutral network preferentially samples
network sequences of higher neutrality.

Chapters introduces the first of our families of statistical models for correlated fitness land-
scapes with neutral networkscorrelatedlandscapes. These are characterised by a “ladder-like”
structure, where fitness-increasing mutation probability - evolvability - is controlled by a small or-
der parameter (thee”) such that, to first order i, the only fitness-increasing mutations that may
occur with better-than-negligible probability are to the “next network up”. Working in general to
leading order irg, it is shown (Eq5.2) that (maximal) neutral network size decays (at least) expo-
nentially with increasing fitness. Using theultiplicative mutation approximatior{(Section2.2.4)
of Chapter2 we are able to calculate explicitly threpoint mutation matrix (Eg5.3, 5.4), which
we use to calculate (Prop.2.]) the optimal (constant) mutation rater e-correlated landscapes
as predicted by Proj2.3.10of Chapter2. We also calculate the optimal Poisson mutation rate.

In Section5.3 we deploy the evolutionary process formalism of Chaptand results from
Chapter4 regarding the utility of neutral drift to argue that the optimal search process on an
e-correlated landscape - within the class of mutation-based evolutionary processes as we have de-
fined them - is thenetcrawlerprocess of Exampl8.2.5 a stochastic hill-climber which always
accepts neutral moves. In SectiorB.1we derive the le Neutral Mutation Rul¢Prop.5.3.1) for
optimising (constant or Poisson) mutation rates which says that, to a first approximation, if our
mutation rate is optimal then the observed fraction of neutral mutations shoulteb&He rule
is proposed as a general heuristic for setting mutation rates on correlated fitness landscapes with
neutral networks and we describe taptive netcrawleevolutionary process, which uses online
monitoring of observed neutrality to self-tune its mutation rate. The remainder of the Section ex-
amines the random search and netcrawler processes in detadayrelated landscapes, deriving
analytic expressions for mean first passage times to achieve a given fitness and expected fitness
within a given number of fithess evaluations.

Section5.4 introduces Royal Road landscapes within the contextadrrelated landscapes.

Many of the statistics introduced in Secti@r? and Sectior2.3 are calculated analytically and
implications of results discussed. In particular, we find that:

e Evolvability decaydinearly with fitness (Eq5.32), so that Royal Road landscapes are com-
paratively “easy” to optimise.

e Percolation of neutral networks is low.

e The Markov index scales @3(eloge) (Eq.5.46) so that the maximum entropy approxima-
tion should work well.

e The evolvability drift factor is high, particularly for large block size - i.e. sneqEq.5.49
- so that neutral drift should be a significant factor in locating portals.

¢ Royal Road landscapes direarly correlated(Eq. 5.51) and approximatelyelementary
(Eq.5.52.

Experiments were also performed to test the (analytic) Pichlon optimum mutation rates
for Royal Road landscapes. Results confirm the theoretically predicted optimum mutation rates
for constant §-bit) and Poisson mutation (for small and also confirm Prog2.3.10f Chapter2
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insofar as constant mutation out-performs Poisson mutation. A practical implementation of an
adaptive netcrawlers described and it is confirmed experimentally that it is able to track the op-
timum mutation rate quite accurately, corroborating the effectiveness of éldeutral Mutation

Rule.

Section5.4.2examines evolutionary search performance on Royal Road landscapes. Firstly,
performance comparison criteria are discussed (including a statistical methodology for estimating
fitness-critical performance) and experimental performance results for the netcrawler are found
to be in good agreement with theoretical predictions of Sedi@r® The remainder of the Sec-
tion describes and trials a wide range of GAs (with and without recombination) on Royal Road
landscapes. Results are analysed in detail and are found, in particular, to support our arguments
(Prop.5.2.1, Conjecture5.3.1) proposing the netcrawler with constant optimal mutation, as the
optimal evolutionary search process #scorrelated landscapes. Results also support known re-
sults [ 1993; , 1992) on problems withecombinationon Royal
Road landscapes, a topic to which we return in Chapter

Chapter6 presents our second model for landscapes with neutrality, the NKp family of ran-
dom landscapes originally described by the authorBiar(etf 1997). NKp landscapes feature
“independently tunable” correlation and neutrality. The Chapter opens with a Section on the
historical background and some (physical and philosophical) motivations for the model, places
the NKp model within the context ajeneralised NK landscapesd proceeds to details of the
actual construction. The following Section examines the “global” statistics of the model. The
auto-correlation function is calculated for generalised NK landscapes and its independence of the
underlying fitness distribution - and hence in particular the independence of correlation and neu-
trality - is proved (Prop6.2.7). The independence of auto-correlation from ivenber of features
also follows directly from the result. Generalised NK landscapes are also shown to be (at least ap-
proximately)elementary Specialising to NKp landscapes, we introduce the notiaroafributing
featureqSection6.2.2 as an analytic tool and calculate several statistics conditional on the distri-
bution of contributing features (and thence their global counterparts), includéag fithessand
fitness varianceneutrality, lethality and the distribution oheutral degree The dependence of
these statistics on the model parameters is discussed.

Section6.3 addresses thfitness-dependemstatistics of generalised NK landscapes. We cal-
culated themean mutant fithneg$Section6.3.1) and prove that generalised NK landscapes have
the linear correlation property (Prop6.3.1). As a corollary, we obtain another proof of the in-
dependence of correlation from the underlying distribution, although (as we stress) the result is
in fact a more stringent statistical requirement. Specialising once more to NKp landscapes, we
proceed to calculate fitness-conditional neutrality, lethality and neutral degree variance in terms of
the underlying fitness distribution (Sectiér.2. We also detail how to calculate the futiutant
fitness distributior(Section6.3.3 via its moment generating function and proceed to an explicit
calculation for the case of @aussianunderlying distribution. This is used to calculate {lea-
semble) evolvabilitgtatistic. It is (correctly) predicted, on the basis of the scaling of evolvability
that NKp landscapes are in general “hard” to optimise, at least in comparison with, say, the Royal
Road landscapes of the previous Chapter. The evolvability is also deployed to calculate an (en-
semble, fithess-dependent) optimal mutation rate. This rate is found to compare favourably with a
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mutation rate predicted as optimal by theeNeutral Mutation Rule as applied to the (ensemble,
fitness-dependent) neutrality calculated previously. We supply an alternative derivation péthe 1
Rule based on some simple assumptions regarding local neutral network structure.

In section SectioB.4we discuss the modelling of real-world artificial fithess landscapes by the
NKp scheme. We propose a “baseline” set of parameters, intended to capture some aspects of real
landscapes (neutrality, lethality, correlati@etc), for experimentation. We address the problem of
(uniform/fitness-dependent) sampling of large NKp landscapes - specifically the rarity of higher
fithess sequences - and present a sampling approach sisintated annealingwhich proved
satisfactory in practice. Sectidh4.linvestigates how, given a real-world correlated fithess land-
scape with neutrality, we might (using statistical features of the model derived in earlier Sections)
attempt to fit parameters to an NKp model. Sectiof2raises some issues regarding computer
implementation of NKp landscapes. Secti®d.3investigates some (fitness-dependent) statisti-
cal properties of actual neutral networks on NKp landscapes; since analysis proved intractable (to
the author!) for many of the properties examined, much of the Section is of an empirical nature.
Properties examined include neutral network size, number of networks, network connectivity and
network percolation/innovation. Results are sometimes counter-intuitive: eg. it is found that as we
ascend an NKp landscape, while neutral networks shrink rapidly in size, they also percolate more
(in the sense of having more accessible neighbouring networks). It is found that this effect cannot
be ascribed simply to a reduction of percolation by neutrality.

Finally, Section6.4.4presents some preliminary results on optimisation on NKp landscapes
via stochastic hill-climbing. Results corroborate previous analysis regarding evolvability, optimal
mutation rates and the/& Neutral Mutation Rule; they also suggest that, despite previous caveats,
ensemblestatistics (eg. for neutrality and evolvability) may indeed be useful. The picture presented
in Chapter3 of evolution with neutral networks - i.e. of neutral drift punctuated by the crossing
of entropy barriers - is confirmed, although there is a suggestion that fithess barriers exist on a
“global” scale, much in the manner of the original NK landscapes( 1 1993). Preliminary
research also indicates that the most effective evolutionary search process on NKp landscapes is
likely to be simulated annealing, rather than any population-based algorithm.

In Chapter7 we finally address the issue fcombinationwhich we have hitherto rejected as
a useful search mechanism for the class of optimisation problems with which this thesis concerns
itself. In Section7.1 we review some known (and some novel) problematic issues with the so-
called Building Block Hypothesijsin particular, we question the likelihood of suitable building
blocks existing in the first place and also the ability of recombination to assemble building blocks
effectively. Sectior.2 reviews the well-known (related) phenomenagehetic driff premature
convergencandhitch-hikingas regards their impact on the effectiveness of recombination.

Section7.3 presents new research by the author (inspired by a model for retrovirus infection
from population genetics), identifyingha-stability barrier to the fixation of beneficial mutations
- as well as a lowering of the mutationedror threshold- as a result of the interaction of recom-
bination with certain local features of a fitness landscape. This work represents in some sense the
obverse to the well-known benevolent effect (the lowering ofrtheational load of recombi-
nation in the presence sf/nergistic epistasig v 1982). More specifically, it is found
(Section7.3.3 that if there imon-synergistic epistasis in the neighbourhood of a fitness peak, then
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the error threshold takes the form otantinuousphase transition (as opposed to the discontinu-
ous transition found with mutation alone). Within the error threshold, the long-term behaviour of
the population distribution around the fitness peak - the (equilibrigmalsi-specieslistribution

- splits into a stable solution representing a population converged around the peak and a solution
representing aelocalisationof the quasi-species - i.e. loss of the fithess peak. These two stable
equilibria are separated by an unstable equilibrium which, we argue, repredsantsea to the

fixation of a sequence discovering the fitness peak, in the sense that, below the barrier concentra-
tion, recombination (and mutation) will tend to destroy peak sequences faster than selection can
replicate them. Although the analysis is based on the (infinite population limit) quasi-species for-
malism, it is indicated how finite-population sampling effects might exacerbate the problem. The
guasi-species distribution, error thresholds and barrier height are calculated explicitly in the limits
of strong and weak selection (Sectidr8.4). In the limit of weak selection the barrier height is
found to approach /e and error thresholds are found always to be (substantialiygr than the
comparable scenario without recombination. Stability of the equilibria is also analysed in some
detail (Sectiorv.3.5.

8.2 Directions for Further Research

This thesis has been concerned explicitly with correlated fithess landscapes in artificial evolution
with neutral networks; yet, it might be said that remarkably little is actually known about the
structure of fithess landscapes that arise in complex real-world optimisation problems such as
robot control, hardware evolutioptc. There is indeed accumulating evidence that such problems
do not necessarily (or in general) give rise to landscapes that fit the more traditional rugged, multi-
modal, non-neutral conceptiof }1989; } 1993; 7 1996) but more
research is required. At the very least, it is hoped that GA practitioners might be persuaded
to investigate more thoroughly the structure of their fitness landscapes rather than assuming a
traditional rugged structure.

Areas concerning neutrality that this thel@sn’'taddressed include:

e “Near neutrality”: It seems reasonable that if, for example, there are extensive regions of
sequence space for which fitness varies but slightly, then the behaviour of evolving popula-
tions might be as if those regions were truly equi-fit. But some thought turns up problems
with such an assumption:

— Might not even a small fithess differential - a gentle “shelving” of the landscape, per-
haps - be enough to cause a population to “ratchet up” a slight gradient?

— Does the neutral network concept carry over at all? If we were, for instance, to decide
on an arbitrary “quantisation” of a landscape into equi-fit “bands” ((
111998)), why should evolutionary dynamics respect this banding?

It is known from population genetic©(tg 1992; , 1983; , 1969)

that there is a relationship between the smallest fithess differential - the smallest selective
advantage - that evolution “sees” (as non-neutral), population size and mutation rate. A more
comprehensive “nearly-neutral network theory” might take this relationship as a starting
point.
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¢ Neutral dynamicsThe dynamics and structure of populations evolving even on a perfectly
flat landscape are surprisingly complex and difficult to analyse. What is known reveals a rich
“clustered” structure deriving from the formation and extinction of genealogies of sequences
( , 1991), in the manner afoalescenstatistics. More detailed knowledge of
this structure - perhaps usingd#fusion approximatior( , 1964) - would be useful
for more accurate analysis of eg. portal discovery times in a drifting population/{
, 1997). Other questions begging clarification include:

— How does network topology affect evolutionary dynamics? That it is significant is
not in doubt, as the phenomenonmiitational bufferingdemonstrates’(
; 1999; [.1999; , 2001); but it also seems likely that the
relationship between network topology and population structure/dynamics ¢k,
2002) is likely to be a complex one.

— May we prove our Strong Neutral Drift conjecture (Conjectdrg.)? How might
such results on the “benefit” of drift be extended to eg. more complex population
structures and more relaxed assumptions gniori knowledge of landscape/network
structure?

— Why do we (in the absence of recombination) npedulationsat all? Given a scenario
where we are dealing with entropy rather than fitness barriers, does the plausible justi-
fication for population-based search (on correlated landscapes) - that a population may
search the neighbourhood of a peak without losing the current (local) optimum - still
apply? Or, as our results with simulated annealing on NKp landscapes (Sgeetign
seem to suggest, might we be better off with some variety of population-of-one hill-
climber?

e Fitness noise Fitness evaluation in many (if not most) complex, real-world optimisation
scenarios is essentialgtochastic( 1. 1995) - fitness evaluation of the same se-
guence will not yield the same value twice. As for near neutrality this poses problems for
neutral network theory: when do two sequences belong to the same network? Again, arbi-
trary banding of fitness may be un-elucidating and it may, furthermore, be difficult to spot
gradients up which populations might “ratchet”.

The situation, it might be remarked, is far from clear. As an example, some rather counter-
intuitive results by the author (in preparation) analyse a situation where (fithess-proportional)
selection is “blind” to noise with aarbitrary degree of varianceso long as the noise is the
right “shape” and scales appropriately with fitness.

e Linear correlation We have noted the apparent ubiquity of linear correlation (Seeti®/}
5.4.], 6.3.1), where the relationship between parent and mutant fitness is (perhaps approxi-
mately) linear. Can we use this property directly to help predict evolutionary dynamics?

e Coding Several issues arise regarding the relationship betweerottingof an optimisa-
tion problem - the sequence fithess mapping - and landscape statistical properties such
as neutrality, correlation and evolvability. For example:

— To what extent might landscape structure - eg. correlation, neutral network topology,
scaling of evolvabilityetc.- be “inherent” in a problem as opposed to being “coding-
dependent”? How for example, is linear correlation affected by a re-coding of the
fithess function? What classes of fitness landscape are re-codable into a linearly cor-
related landscape?

— May we “exploit” neutrality/neutral drift by deliberately coding for neutral networks
- perhaps with a view to replacing fithess barriers with the “easier” entropy barriers
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( ;2000)? Or is this a vain pursui (llock,
2001) - are there, perhaps, “No Free Lunch” theorems for neutrality?

e We have, it might seem, pretty much written off recombination for optimisation on our
correlated, neutral landscapes. Yet, as remarked, GA researchers do frequently report better
results with recombination. Is this because of the types of evolutionary algorithm they
use (and might they not be better off with one of our mutation-based processes...?) or is
there indeed a usefuble for recombination? If so, how might the problems identified in
Chapter7 be addressed? Do, eg. the bi-stability barriers of SectiBrarise in realistic
artificial optimisation scenarios?

¢ We have been at pains to point out that results should not be extrapolated beydisd e
sequence spaces addressed in this thesis to the optimisatontofuougparameters (such
as frequently arise eg. in the encoding of neural networks). Might any of our research in fact
have application to continuous parameter optimisation - or will we be again run into awk-
ward problems with gradients and definitions of neutral networks? Does discrete encoding
(eg. Gray coding) of continuous parameters give rise to (discrete) landscapes with correla-
tion and/or neutral networks? Are there, indeed, any good reasons for discrete encoding of
continuous parameters?

8.3 Closing Remarks

It may appear from the somewhat lengthy list above that we have, ultimately, succeeded in asking
more questions than we have answered. This we view as to the good: it is the hallmark of an area
rich and fertile for new research and one that we hope may, in the best scientific tradition, continue
to challenge orthodoxies and reveal fresh insights into old problems.
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Appendix A

Evolutionary Operators

Throughout this Appendix we use the following notation and conventionA: isf any set then
A” denotes the set of countable sequenegsay, as,...) of elements ofA. For any symboh,
alV = &, a?@ = a” and in generaa™ denotesa with n primes; we also adopt the convention that
a9 stands for just (no prime).

A.1 Definitions

Definition A.1.1. A selection operator for population sizl is a mappings from (R°°)'V' to the
set of jointly distributed random variables 6N*); i.e. for:

W, Wz, ..., Wy
W, W, .., Wy Y
o=| w w oW | R (A1)
with wi” € R, we have:
S(w), S(w), ..., Su(w)
w), W), ..., 0
S(w) = S|(w), Sy(w) Su(w) (A.2)

S(w), S(w), ..., F(w

where theSE,”) (w) arejointly distributed (non-negative) integer-valued random variahles is
invariant under re-ordering, in the sense that for any permutatioh{1,2,...,M} and anyw €
(R*M, se (N=)M:

P(S(0-w)=0-5)=P(S(w) =5) (A.3)

where permutations act on the left (8*)™ and(N*)M in the natural way.

15 may be defined only onsubsebf (R°°)M; see e.g. fitness proportional selection below.
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The intuitive justification for this definition is as follows: ¥ = (x1,%z,...,Xu) € (JZIL)'VI is a
sequence oM sequences on a fitness landscdpe (4,L, f) andU a mutation operator ofi“
we can form the random varialg taking values ir((ﬂl'-)”)M by:

X1, X2, ..., Xwm
XXX
w=| v 2 X (A.4)

1 1 1
XUOXy X

where for eacho = 1,2,...,M the 4“-valued random variablexo((”) are iid asU(xq) for n=
1,2,...; thusxy consists, for eaclr, of the sequencg, plus countably many (independently
generated) mutand§;, X/, ... of X4. We then define:

f(Xl), f(Xz), R f(XM)
fxy) = f(X)), f(X5), ..., f(Xy) (A5)

FOX), F0%), - FOS)

so thatf (xy ) is a random variable with values {R®)M. If 5 (f (xy)) = se (N*)™ and (for each
a,n) we havexo((”) =x e a-, thens&”) represents the number of copies of sequecé'@eto be
selected for a new population:

Definition A.1.2. Theevolutionary operatorG = G($,U) associated with the selection operator
S and the mutation operatat is the mapping that takes a populatiere PM(4%) to the new
(random) populationG(x) formed as follows: conditional o (f (xy)) = s (N*)™, for each
a=12...,M we select:
Sy copies of Xq
s, copies of X/
sy copies of X[
etc

(A.6)

The invariance ofS under re-ordering as according to E4.%) guarantees thag (x) is well-
defined. G($,U) thus maps populations of siad on 4" to the set of random variables taking
values in the seP(4") of populations o,

We have, however, disregarded two important points: firstly, we have not guaranteed taskEq. (
will select only afinite number of sequences for the new population. Secondly (and somewhat less
obviously), we would like to ensure that only a finite numbefitfess evaluationare required
to generate a new population. We address these issues in the following manner: let us say that a
(real-valued) functionp(w) defined on(R*)™ depends or(a, n) iff there existwy, w, € (R*)M
with (wl)ém) = (wz)ém) for all 3, m excepf = a andm = n, and such thap(w; ) # @(wy). Stated
more simply,@(w) depends offa, n) iff w&m appears in the expression fgfw) - it is necessary to
know the value of théa, n)-th entry ofw in order to calculatey(w).
Now givens e (N*)™ we have the real-valued functiond — P (S(w) =s). Suppose we
have a populatio and a mutation operatdt. Intuitively, if the functionP (S5(w) = s) depends
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on (a,n) then we need to knovf (XO(,”)> in order to establish whether the number of copies of
sequences and mutants required according to/A&@§) (s given bys, that is,we need to evaluate
the fitness of the n-th mutant qf.x

Furthermore, walwaysevaluate fithess of a new mutant if it is selected for inclusion in a
population, regardless of whether we actualgedto know its fithess in order to select it. Thus
Forse (N®)M we define the Boolean:

sé”) () = ( " > 0or P(S(w) =s) depends oma,n)) (A7)

fora=1,2,...,M, n=1,2,... (note that ther on the RHS above isiclusive. Intuitively, sé”) ()
istrueiff the fithess of then-th mutant ofx, needs to be evaluated when selecting a new population

by s- either because that mutant is itself to be selected for the new population, or because its fitness
needs to be evaluated to decide which sequences to select - or both. Note that we do not define
s&m(s) for n=0; it is assumed that the fithesses of sequences ioutrentpopulation are always
known. We also impose the restriction grthat for anysand fora = 1,2,...,M:

el (s)=ei™(s) fori<m<n (A.8)

That is, if a mutant needs to be evaluated for fithess, then it is implicit that all “prior” mutants of
the same sequence also needed to be evaluated - mutants don’t have to be “generated” unless they
are actually needed! We may thus think of mutants as being generated sequentially “as required”
by the selection operator.

Now forw e (R”)M we define thétarget) population sizef $(w) to be the random variable:

M o in)
S(w)| = () (A.9)
C(Zl n;)
and thenumber of fitness evaluationsf §(w) to be the random variable:
M ©
IS@l=Y Y e (S(w) (A.10)
a=1 n=1

We wish to ensure that these random variables are finite. We thus impose the requirement on any
selection operataf that:

Vs 3n(s) such thanh > n(s) = Va, el (s) = false (A.11)

This condition says that for any givest i.e. whichever combination of copies of original se-
guences and new mutants are actually selected to form the new population - only a finite number
of mutants need to be evaluated for fithess. Then, since mutants are only added to a new popula-
tion if they have been evaluated for fitness, this implies in turn that the new population is finite.
We have (a.s.) for ang; i.e. for any sequence/mutant fitnesses:

IS(w)] < oo (A.12)
[S(@)| < e (A.13)
We shall say that the selection operasofof population sizéM) is of fixed population sizeM iff

P(|$(w)| =M) = 1 for anyw. We shall say that it hasfaed number of fithess evaluationsiff
P(||S(w)|| =r) =1 for anyow.
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A further subtlety is the following: in order to measure the performance of evolutionary pro-
cesses, we will want to know tHitestsequence in a population, in particular so as to maintain a
record of “fittest-sequence-so-far-discovered” during an optimisationafuSéction3.5). How-
ever, it is conceivable that in creating a new population via some evolutionary operator, a mutant
of higher fitness than any sequence in the current population is evaluated - but then not selected for
the new population! We consider that in this (unlikely) scenario the “transient” fit mutant should
be recorded as a candidate for fittest-so-far; it has, after all, been created and evaluated for fitness.
Therefore, to maintain a best-so-far record we cannot simply note the fittest mutant in a new pop-
ulation; we should also include (possibly fitter) transient mutants. This motivates the following:
for w e (R®) let define thebest fitnesof §(w) to be the r.v.:

* _ Q)
S(w)* = rggx{wa

() >0 (A.14)

i.e. the best fithess of the new population. We then definbelseevaluated fittnessf .§(w) to be
the random variable:

[S(w)] = max{j(m)*, rQ%X{W((]n)

el (S(w) = true}} (A.15)

That is,[S(w)] is the fitness of the fittest out of the new populataéord any mutant evaluated in
creating the new populatiorin general there would not seem to be much reasaino select the
fittest mutant discovered during creation of a new population, so that (certainly for all selection
operators we shall consider) we have simgly(w)] = S(w)*.

We extend our definitions also to evolutionary operators: for an evolutionary opejator
G(S5,U) based on the selection operatorof population sizeM and anyx € PM(4-) we de-
fine the random variablés; (x)| = |5 (f(xu))1, [|G () = S (F(xu))[l, [G(X)] = [$ ((x))] and
[G(X)] =[S (f(xu))] where the random variablgxy ) is given by Eq. £.5). Note thats (f (xy))*
isjustf*(G(x)).

The formalism is perhaps clarified by a simple example:

Example A.1.1. Consider the following procedure for forming a new population from an existing
population of sizeM = 1. suppose the current population comprises a single sequewié
fitnessf(x) = w, say. We generate a mutaxit= U (x) with fitnessf(X) =w. If w > w we
replacex by X' so that our new population - the “next generation” - comprises the single sequence
X. If w < w, we repeat the procedure: ¥t = U (x) be anothermutant ofx (not of X' !) with
fitnessf(xX”) =w’. If now w’ > w we replacex by X" so that the new population comprises just
the sequencg’. If, however,w’ < w we give up and retair; the new population is the same as
the old, comprising just the original sequence

The selection operat@f(w,w',w") is evidently of fixed population size 1 and there are three
possible outcomes of selection, which we lages,, s3:

s1: s=1 §=0 =0
$: s=0 §=1 g=0 (A.16)
R s=0 §=0 =1

2Note that this is not the same as saying that selectietitist (see below).
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We then find:
P(S(ww,w')=s) = hw—w)hw-—w")
PS(ww,wW)=s) = hWw-—w) (A.17)
P(SWW.W)=55) = hw—w)hW —w)

whereh(z) is the step function:

h(z) _{ (1) izg (A.18)

ThusP (S(w,w,w") = ;) depends on just,w while the other selection probabilities depend on
w,w,w’. We thus have from EqA(7):

g (s1) =€"(s1) =true
¢ (s) =true, €'’(s) = false (A.19)
¢'(s3) =€’(s3) =true

Thus either 1 or 2 fitness evaluations need be performed and fromAHE@) (1sing Eqg. A.17) and
Eqg. (A.19) we may calculate the distribution of the number of fithess evaluations to be:

P(HS(W’V\/’V\//)H:].) = h(\I\/—W)
P(|Sww,w)||=2) = hw-w)

which states (the obvious) that we only need evaluate one mutant if the first mutant is fitter than
the original sequence, otherwise we need to evaluate a second mutant. Similarly, we can calculate
the probability thafs(w,w',w")] is equal tow, w or w”.

We remark that the only reason for demanding that a selection operator comfcizenéable)
infinity of selections is to allow for the possibility of an arbitrary (albeit finite) number of fithess
evaluations or target population size. In practice, almost all selection operators we shall encounter
will have a fixed number of fithess evaluations and be of fixed population size, so that a derived
evolutionary operator maps from" (4") into the set of random variables @ (4%) for some
population sizevl > 0. Of course for biological selection we might not get away with this restric-
tion.

We now relate our definition of selection to some familiar properties of evolutionary operators.
S is fitness-proportionalf for any realc > 0 andw € (R*)™ we haves(c- w) = 5(w) wherec- w
denotes the element ()IR“)M specified by multiplying each componen&”) of w by c. Fitness-
proportional selection operators are only defined for non-negative fithess. The selection operator
S is said to beranked if rank(w) = rank(w') = S(w) = S(w); i.e. if selection probabilities
depend only on the rank ordering of fitness componmé'& S hasdiscrete generationgor is
generationa) iff Sy (w) = Séo) (w) =0Vw, Va (a.s.); i.e. no current sequences survive into the new
population, which is made up entirely of new mutants - otherwi$@soverlapping generations
(or issteady-state Finally, S is elitistiff S(w)" > max{wy }; that is, best fitness never decreases

3Elitism is sometimes defined by the property that some existing sequence of current best fitness is always selected.
By our definition, if a mutant of fithesgreater than or equal toéhe current best fitness is selected, then we need not
select an existing sequence of current best fithess.
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A.2 Examples

For completeness we demonstrate how the example selection operators of Ghrapiebe ex-

pressed by the above formalism. In the following= (W&”)) andw denotes the current popula-

tion fitnessegwi, wo, ..., Wy).

Example A.2.1. Birth-and-death selectionfor eachw € RM there are jointly distributed random
variablesB(w) andD(w) taking values in 12,...,M such that foox =1,2,... M:

[ 0 a=D(w)
L S(w) _{ 1 otherwise

1 a=B(w)
2. (o) :{ 0 otherwise

3. (W) =F(w)=...=0

Intuitively, the sequenceg, replicates, while the sequenggy, dies and is replaced by the
new mutant) (xgw)). Note that we might havB(w) = B(w); i.e. the same sequence is chosen to
replicate and die. To ensure invariance under re-ordering we also require tltag fmrmutation

of 1,2,...,M, we haveB(o-w) = o(B(w)) andD (o0 - w) = o(D(w)).

Example A.2.2. Moran selection: Without regard to waiting times between events, a selection
operatorS describing the process may be constructed as followsQ(®) be a Boolean random
variable withP (Q(w)) = q(w) and letB(w) andD(w) be random variables oft,2,...,M} with
P(B(w) =0a) = Aq(w)/A(w) andP (D(w) = a) = P (W) /i(W). Thens is given by:

1 S(w) =1

[ 1 a=B(w)
2 (o) _{ 0 otherwise

3. F(w=8(w)=...=0
fora=1,2....,Mif Q(w) =trueand by:

[ 0 a=D(w)
L S(0) _{ 1 otherwise

2. (W) =F(w)=...=0

fora=1,2,...,Mif Q(w) = false As noted, Moran selection is not of fixed population size or
fixed number of fithess evaluations - we have:

P(S(w|=M+1) = Qw)
P(S(w)|=M) = 1-Qw)

for population sizevl and:

P(IS(@[=1) = Qw)
Ps()][=0) = 1-Qw)
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Example A.2.3. Multinomial selection: We define$(w) by:
S0 =W =...= V(W) =1 (A.20)

fora =12,...,M, with all others(]”)(w) = 0, where theR,(w) are given by Eqg.3.9). We
note that re-ordering invariance requires that the selection probabpiie® satisfyp(o-w) =
(-p)(w) Yw,o.

Example A.2.4. Stochastic hill-climber:Let w= (w,w/,w”...). S is then given by:

S(w) = {1 Ya(ww) = true (A21)
0 otherwise
Sw = ~S(w) (A.22)

whereY (w,w) is the Bernoulli random variable of Exam@e2.5 All other selections are 0.

Example A.2.5. Multiple independent stochastic hill-climbers:

B 1 Yu(Wq,Wy) =true
S(@) = {0 otherwise (A-23)
S(w) = "F(w) (A.24)

fora=1,2,...,M, all other selections being 0.

A.3 “Lifting” the Selection Operator

Suppose we are given a neutral partitionilg= UiN:1 I; of £ and a (compatible) mutation oper-
atorU. We proceed as follows: for each network inddgt the (independent) r.%; be uniform
randomon neutral network;. Leti =< iy, i»,... iy > PV (:qv'-) be a population of neutral net-
work indices. We then define the random varialblevith values in((ﬂl'—)w)M (cf. Eq. A.4)) to

be:
I, 12, ..., Im

_ P O [
lu ||(§| (A.25)

I// I//
1, 27 ceey

where for eact = 1,2,...,M the r.v.’s1$" (which take values irat) are iid asJ (X, ). Since by
definition fitness is the same for all sequences in a neutral network we may, as i Bgfdrm
the r.v. f (iy) which takes values itR®)".

Again, if S (f (iy)) = s (N*)M and (for eactu,n) I =i € 4L thens” represents the
number of copies of indebé,”) to be selected for a new population of network indices. Thus, as
in Def. A.1.2, the “lifted” evolutionary operato@ associated with selection operagrmutation
operatotJ and the given neutral partitioning is the mapping that takes a populiatic! (:‘ZLVL) to
the new (random) populatiog (i) € ?(E—) formed (conditional ors (f (iy)) = S) by selecting,
foreacha =1,2,...,M:

Sy copies of ig

s, copies of 1}

s; copies of 1)
etc

(A.26)
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It is clear that the above definition is invariant with respect to re-ordering afthad thus well-
defined on populations. We note that mutation enters our definition solely throughutiagion
matrix for the partitioning, sinc® (U(Xj) = i) =m;j(U) by definition.
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Transformations of the Quasi-species
Generating Functions

B.1 Transformation of g(z) by Mutation

From (7.9) we have, for fixed, for anyz and fixedU = Lu:

ij(l—z)i — Z(é) <Lgj>uﬂ+l3(1_U)L—(G+B)(1_Z)j—a+B
. &

- g(denarena
. Z( )u‘*l 2P(1—u)- P
B

= (1-z+uz/(1-uz‘-’!
L

1-7+1uz)’
- (1—1UZ> %
L 1-7Uz

— eY%1-2) asL—o

. 1 \" . .
where in the last step we have uséiﬂ— EU z) — e Y% asl — . The result follows immedi-
ately.

B.2 Transformation of g(z) by Recombination

= ()

Note thatcjk o is symmetric inj, k. Then from .18 we have:

+k 200\ (1) /%

Let us set:
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Now using Stirling’s formula € ; 1994) it is not difficult to show that, holding k anda
fixed we haveL limcjk o = dqo. Thus, holding, j andk fixed, we have:

. i1k
lerijk = <J Tk> (;)H (B.3)

(cf. ( 211966) - this is equivalent to neglecting the probabilithofnozygous
mutant alleles occurring at any locus during recombination, which is a reasonable approximation
for long sequence lengths). In the limit:

Zm«(l—z)‘ = (11— (B.4)

and the result follows.
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