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tIn this paper we analyse the phenomenon of \bistability" in �nite population evolution-ary dynami
s, espe
ially with regard to re
ombination. Bistability, where the steady-state population distribution depends on the initial state of the population, has re
entlybeen observed in an (in�nite population) quasi-spe
ies model of viral re
ombination(Boerlijst et al., 1996). We analyse a 
omparable �nite population model using a birthand death pro
ess due to (Moran, 1958). Bistability (or its sto
hasti
 analogue) isrevealed in the bimodality of the stationary probability distribution of the birth anddeath pro
ess and long mean transition times between the modes. These e�e
ts aredemonstrated to be exaggerated by re
ombination.1 Introdu
tionIn (Boerlijst et al., 1996) a mathemati
al model for an asexual (haploid) quasi-spe
ies (Eigenet al., 1989) evolving with re
ombination is introdu
ed to study re
ombination in retro-viruspopulations. The model is analyzed on several simple �tness lands
apes. A striking featureof the model is the appearan
e of \bistability" or \hysteresis" in the steady-state populationdistribution for parti
ular 
ombinations of mutation rate and re
ombination rate; i.e. thesteady-state distribution of genotypes depends on the distribution of genotypes in the initialpopulation. This phenomenon has also been observed in various diploid models, both withand without re
ombination. In (Boerlijst et al., 1996) bistability in their (in�nite-population,hen
e deterministi
) model is explained in terms of bifur
ation of the di�erential equationsdes
ribing the time-evolution of the quasi-spe
ies. A re
ent empiri
al study (O
hoa and Har-vey, 1999) suggests strongly that many qualitative features of the in�nite-population modelare preserved in the 
orresponding �nite-population dynami
s. In this paper we investigatebistability in �nite-population sto
hasti
 population dynami
s. The model we use is basedon a birth and death pro
ess originally devised by (Moran, 1958) and previously deployed ina situation analogous to ours (but without re
ombination) by (Nowak and S
huster, 1989).1



2 The Moran ModelIn (Moran, 1958) a model for the evolution of a �xed-size �nite population of genotypes wasintrodu
ed, based on the idea of �tness as the expe
ted (reprodu
tive) lifetime of a genotype.Here we extend the model to arbitrary �tness lands
apes and to in
lude re
ombination.Let Q� represent the �-dimensional binary hyper
ube; i.e. an element of Q� is a bi-nary sequen
e of length �, whi
h we identify with a haploid genotype. We spe
ify a �tnesslands
ape on Q� by assigning to ea
h g 2 Q� a (real-valued) �tness f(g) > 0. Considera population 
omprising N su
h genotypes. We may identify su
h a population with aninteger ve
tor n = (ng j g 2 Q�), where ng represents the number of 
opies of genotype gin the population, ng � 0 8g and Pg2Q� ng = N . We now de�ne a birth-death event onthe population n to be a transformation of n into a new population n0 as follows: a 
opy ofsome genotype g1 \dies" and a 
opy of another (possibly the same) genotype g2 is \born".In terms of the population ve
tors we have n0g1 = ng1 � 1 and n0g2 = ng2 + 1; the populationsize thus remains 
onstant.Suppose now that we have a sto
hasti
 pro
ess fn(t) j t � 0g of populations (t representsa 
ontinuous time parameter) that evolves a

ording to the following s
heme: in any timeinterval [t; t+ h℄ the probability that a 
opy of genotype g dies is given by (Moran, 1958):P (a 
opy of g dies in the interval [t; t+ h℄) = �f(g) ng(t)N h+ o (h) (1)where � is a �xed times
ale parameter. It is straightforward to verify that the \lifetime"of a genotype g is exponentially distributed with expe
tation N� f(g). A death triggers animmediate birth, thus de�ning a birth-death event. Candidates for a birth are sele
ted asfollows: with probability 1 � � the birth is asexual and with probability � sexual, where0 � � � 1 is the re
ombination rate. For asexual reprodu
tion a parent is sele
ted uniformlyat random and with repla
ement from the population. The o�spring is taken to be a 
opy ofthe parent mutated with per-allele probability � where 0 � � � 12 is the (per-allele) mutationrate. In the sexual 
ase two parents are independently sele
ted uniformly at random andwith repla
ement from the population. The parents are mated by uniform re
ombination;i.e. independently for ea
h lo
us on the genotype, one of the parents is 
hosen at randomand its allele (0 or 1) be
omes the allele of the o�spring at that lo
us. After re
ombinationthe o�spring is mutated with mutation rate � as in the asexual 
ase. It may also be veri�edthat the expe
ted number of o�spring of a given genotype during its lifetime is proportionalto its �tness. To see this, note that for a given genotype the times between its su

essivesele
tions as a parent are (identi
ally and independently) exponentially distributed. Thusthe number of o�spring of a genotype from its birth up to a given time t 
onstitutes a Poissonpro
ess (Stirzaker, 1994). From this and the exponential distribution of lifetimes the resultfollows by a straightforward 
al
ulation. In this sense, sele
tion in the Moran model is �tnessproportional.It is 
lear that fn(t) j t � 0g thus de�ned is a Markovian birth and death pro
ess withstate spa
e the (vast!) set of all possible populations of size N . Be
ause of the huge sizeand awkward stru
ture of the state spa
e it is diÆ
ult to say anything useful about su
h apro
ess. In the next se
tion we spe
ialise to a spe
i�
 simple �tness lands
ape and, with thehelp of some judi
ious approximations, redu
e the state spa
e to a tra
table form.
2



3 The Single-peak Fitness Lands
apeWe spe
ify a single-peak �tness lands
ape as follows: all genotypes have �tness 1 ex
ept fora single genotype, the \peak" or optimal genotype1. whi
h has �tness � where � > 1 isthe sele
tion 
oeÆ
ient. Without loss of generality we take the optimal genotype to be thesequen
e of � zeroes. For � = 0; 1; 2; : : : ; � let us de�ne (Eigen et al., 1989) the error 
lassE� � Q� to be the set of all genotypes Hamming distan
e � from the optimum; i.e. withexa
tly � bits set. The E� with � > 0 are said to 
onstitute the error tail.Given a Moran birth and death pro
ess as des
ribed above on su
h a lands
ape, we willbe interested in the number X(t) of 
opies of the optimal genotype present in the populationat time t. It would be 
onvenient if the pro
ess fX(t) j t � 0g were also a Markov pro-
ess - unfortunately it is 
lear that the Markov property does not hold. This is be
ause theprobability that a non-optimal genotype (i.e. a genotype in the error tail) mutates to theoptimal genotype depends on the distribution of genotypes over the error 
lasses; withoutknowing this distribution we 
annot know the probability that a birth will be optimal. In(Nowak and S
huster, 1989) this issue is addressed by making a \maximum entropy" approx-imation; spe
i�
ally, it is assumed that a genotype in the error tail is as likely to be any one(non-optimal) genotype as another; i.e. that the distribution of genotypes in the error tail isalways uniform random. This implies that at any time, � = 0; 1; 2; : : : ; �:P (g 2 E� j g 2 error tail) = ����� (2)and P (an arbitrary bit of g is set j g 2 E�) = �� (3)where, following (Nowak and S
huster, 1989), we have set � � 12� � 1. Note that (3) impliesthe abs
en
e of linkage disequilibrium between lo
i.Under the assumptions (2) and (3) fX(t) j t � 0g is indeed a Markovian 
ontinuous-time birth and death pro
ess with state spa
e the set of integers from 0 to N and retainingbarriers at 0 and N . If the mutation rate � is non-zero then the pro
ess is also irredu
ible(Stirzaker, 1994) and thus has a unique stationary distribution (Karlin and Taylor, 1975).Su
h pro
esses are quite well-understood and tra
table to analysis; the question remains asto how well our approximation agrees with the original Moran birth and death pro
ess. Itis, in fa
t, well-known that (2) does not hold in general (Nowak and S
huster, 1989; Boerlijstet al., 1996; O
hoa and Harvey, 1999). In parti
ular, at low mutation rates the distribution ofgenotypes over the error tail is skewed towards the optimum - this is more or less the de�ning
hara
teristi
 of a quasi-spe
ies! Furthermore, (3) will not in general hold due to neutral driftof the population (Kimura, 1983; Crow and Kimura, 1970; Derrida and Peliti, 1991) withinthe individual error 
lasses. These issues will be addressed in a future paper. SuÆ
e at thisstage to note that preliminary resear
h suggests that the behaviour of the model using themaximum entropy approximation agrees surprisingly well with the full model over a widerange of parameter values and that, in parti
ular, it appears to preserve at least qualitativelythe features addressed in this paper 2.1Generally known as the master sequen
e in the quasi-spe
ies literature.2It is also worth pointing out that near the error threshold (Eigen et al., 1989) the approximation (2)be
omes more a

urate. This is re
e
ted in the a

ura
y of the error threshold approximation 
al
ulated in(Nowak and S
huster, 1989).
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4 Analysis of the Birth and Death Pro
essWe are now in a position to 
al
ulate the in�nitesimal generators (Karlin and Taylor, 1975)of the simpli�ed birth and death pro
ess fX(t) j t � 0g. To this end it suÆ
es to know theprobabilities:m1 = P (optimum mutates to optimum)m2 = P (non� optimum mutates to optimum)r11 = P (optimum re
ombined with optimum is optimum) (4)r12 = P (optimum re
ombined with non� optimum is optimum)r22 = P (non� optimum re
ombined with non� optimum is optimum)Using (2), (3) and the de�nition of uniform re
ombination a straightforward if tedious 
om-putation yields:m1 = Qm2 = �(1�Q)r11 = 1 (5)r12 = �r22 = �(1� 2�)where we have set Q � (1��)� and � � ( 32 )� � 12� � 1 . The in�nitesimal generators �i; �i of thebirth and death pro
ess are de�ned by (Karlin and Taylor, 1975):P (X(t+ h) = i+ 1 j X(t) = i) = �i + o (h) i = 0; 1; : : : ; N � 1 (6)P (X(t+ h) = i� 1 j X(t) = i) = �i + o (h) i = 1; 2; : : : ; N (7)By 
onvention we de�ne �N � �0 � 0. For 
ompa
tness of notation let us also de�ne, fora; b = 1; 2: �ma � 1 �ma, �rab � 1 � rab, uab � m1rab +m2�rab and �uab � 1 � uab. Then,using (1) and the de�nition of the Moran pro
ess, we 
al
ulate:�i = �N � iN �(1� �) �m1 iN +m2N � iN � ++ �"u11� iN �2 + 2u12 iN N � iN + u22�N � iN �2#) (8)�i = �� iN �(1� �) � �m1 iN + �m2N � iN � ++ �"�u11� iN �2 + 2�u12 iN N � iN + �u22�N � iN �2#) (9)These equations 
orrespond to equations (17) and (18) in (Nowak and S
huster, 1989)3.We 
an also now 
al
ulate the (unique) stationary probability distribution pi, i = 0; 1; 2; : : : ; Nof the pro
ess (Karlin and Taylor, 1975; Stirzaker, 1994) as follows. Set:�0 = 1�i = �i�1�i �i�1 i = 1; 2; : : : ; N (10)3(Nowak and S
huster, 1989) use a slightly di�erent version of the Moran birth and death pro
ess, perhapsto mat
h the quasi-spe
ies formalism more 
losely. The resulting models are qualitatively similar.4



Then we have, for i = 0; 1; : : : ; N :pi = �iPNj=0 �j (11)We will be interested in the mean �rst passage time (mfpt) (Karlin and Taylor, 1975) of thepro
ess from state i to state j. This may be 
al
ulated as follows: let Ui denote the mfptfrom state i to state i + 1 (i = 0; 1; : : : ; N � 1) and Vi the mfpt from state i to state i � 1(i = 1; 2; : : : ; N). We then have the re
urren
e relations:U0 = 1�0Ui = 1�i (1 + �iUi�1) i = 1; 2; : : : ; N (12)and VN = 1�NVi = 1�i (1 + �iVi+1) i = 0; 1 : : : ; N � 1 (13)The mfpt from state i to state j for i < j is then given by Ui + Ui+1 + : : : + Uj�1 and fori > j by Vi + Vi�1 + : : :+ Vj+1. Note that the mfpt's 
annot be expressed solely in terms ofthe stationary probabilities; knowledge of the a
tual in�nitesimal generators is required.Finally, to simulate the birth and death pro
ess we make use of the following (Karlin andTaylor, 1975): the pro
ess waits in the state i for a period of time distributed exponentiallywith parameter �i +�i. It then makes a transition to state i+1 (if i < N ) with probability�i�i + �i , or to state i� 1 (if i > 0) with probability �i�i + �i .5 Behaviour of the ModelIn the results that follow we have used a short seqeun
e length (� = 10) and population size(N = 100) to make the pertinent features of the model 
learer. All results extend to highersequn
e lengths and larger populations. Fig. 1 below plots the stationary distribution of thebirth and death pro
ess for a few values of the mutation rate, all other parameters remaining�xed. We see that at low mutation rates the optimum genotype frequen
y is generally high;the pro
ess spends most of its time with a high proportion of the population \on the spike".It appears unimodal, but there is a
tually another mode at 0, not visible at this s
ale. Ata slightly higher mutation rate the bimodality be
omes more pronoun
ed and the positionof the righmost mode shifts to a lower optimum genotype frequen
y. At a 
riti
al mutationrate above this an in
exion point appears and the distribution be
omes unimodal. Following(Nowak and S
huster, 1989) we identify this 
riti
al mutation rate with the error threshold4.Beyond the error threshold the distribution is unimodal and the pro
ess spends most of thetime with optimum genotype frequen
y 
lose to zero. Figs. 2, 3 and 4 illustrate the e�e
tsof in
reasing re
ombination rate on the dynami
s of the pro
ess in the sub-error thresholdregime. In ea
h 
ase the left-hand �gure shows the stationary probability distributionwhile the right-hand �gure plots the results of a simulation of the pro
ess with the sameparameter values. In all �gures the (arbitrary) times
ale � = 100, � = 2, � = 10 andN = 100. A subtlety in 
omparing the dynami
s for di�erent values of � is that 
hanging the4Note that this is not the only possible de�nition of the error threshold for �nite populations. See e.g.(Forst et al., 1995). 5
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Figure 1: Stationary distribution of the birth and death pro
ess for a few values of mutationrate �. Other parameters are: � = 10, N = 100, � = 4 and � = 0:3:re
ombination rate alters the shape of the stationary distribution. Indeed in (Boerlijst et al.,1996) and (O
hoa and Harvey, 1999) it is demonstrated that in
reasing the re
ombinationrate lowers the error threshold. Thus to establish a baseline for 
omparison we followed thefollowing pro
edure: for ea
h value of � the mutation rate � was adjusted so that the medianof the stationary distribution 
oin
ides with the optimum genotype frequen
y at whi
h thestationary distribution takes on its minimum value between the modes; thus the pro
essspends equal amounts of time in states above and below the optimum genotype frequen
ydividing the modes.Figs. 5 and 6 plot the between-mode minimum probability and right-hand mode optimumgenotype frequen
y respe
tively against re
ombination rate. Fig. 7 plots the mfpt of thepro
ess from the right-hand mode down to the zero state. Again in all �gures the mutationrate is adjusted so that the stationary median 
oin
ides with the between-modes minimum.In all plots � = 1, � = 4, � = 10 and N = 100.5The e�e
ts of in
reasing the re
ombination rate now be
ome 
lear:1. The time spent by the pro
ess in states between the modes de
reases2. The optimum genotype frequen
y of the right-hand mode in
reases; the modes are\pulled apart"5The "wobbliness" of these plots is due to the fa
t that there is, for a given re
ombination rate, a (small)range of mutation rates for whi
h the median equals the between-modes minimum. There was thus someleeway in the pre
ise 
hoi
e of mutation rate. 6
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3. The expe
ted waiting time for transitions between the modes \blows up" rapidlyConsider now, for example, the right-hand plot in Fig. 4 and suppose we were to wat
h thepro
ess over a period of time very small 
ompared with the mean between-mode transitiontime. If we happened to observe the state at a given time to be near one mode it is likelythat we should never see it make a transition to the other mode; as far as we 
ould tell thepro
ess would be settled in a unimodal steady state. If, however, as is equally likely (re
allthat by 
onstru
tion the pro
ess spends more or less equal amounts of time near ea
h mode),we happened to observe the pro
ess near the other mode, we would 
onsider the pro
ess tobe settled in a di�erent steady-state. In short, on a times
ale small 
ompared to the meanbetween-modes transition time the pro
ess appears bistable. We term this phenomenonsto
hasti
 bistability.We see from points 1 and 2 above that at low re
ombination rates it is more diÆ
ultto \separate" the modes - it is thus more diÆ
ult to dis
ern a bistable situation (
f. theright-hand plots in Figs. 2 and 3). From point 3 we see that for any given observationaltimes
ale we are less and less likely to see a transition between modes as the re
ombinationrate is in
reased.6 Con
lusionsWe have demonstrated that sto
hasti
 bistability arises in a �nite population as the result oftwo fa
tors: bimodality of the steady-state distribution and between-mode transition timeslong 
ompared to the observer's times
ale. We have seen that in
reasing the re
ombinationrate a

entuates both of these fa
tors (in the sense of points 1-3 of the previous se
tion).It is of interest to note that, stri
tly speaking, this form of bistability is present in ourmodel even with no re
ombination present, albeit not readily dis
ernible even at very shorttimes
ales due to the poor separation of the modes. We note that for any (Markovian)sto
hasti
 evolutionary pro
ess whi
h is irredu
ible (and this would seem to in
lude most�nite-population models in population biology) there is a unique stationary distribution. Forsu
h pro
esses, therefore, it seems likely that bi- (or multi-) stability must always arise ina similar fashion to our model. Of 
ourse there are many sto
hasti
 evolutionary s
enariosthat 
annot be modelled by an irredu
ible Markov pro
ess or, indeed, by a Markov pro
ess.Nonetheless the phenomenon would appear to be very general.It would be of great interest to 
onne
t the sto
hasti
 bistability observed in our modelwith the bistability observed in in�nite-population deterministi
 models. We spe
ulate thatthere is a limiting pro
edure whereby the dynami
al equations des
ribing the time evolutionof our birth and death model (the forward or ba
kward Chapman-Kolmogorov equations(Karlin and Taylor, 1975)) 
onverge to quasispe
ies-like di�erential equations whi
h bifur
ateas in the simpli�ed model presented in (Boerlijst et al., 1996).We also note that, in prin
iple at least, our model allows us to 
al
ulate approximationsfor the error threshold in a �nite population where re
ombination is present, along the linesof (Nowak and S
huster, 1989). In that paper the optima of the stationary distribution areapproximated by treating the frequen
y of optimal genotypes i=N as a 
ontinuous variable x.The positions of the optima are then revealed as the solutions of a quadrati
 equation for x,the dis
riminant of whi
h (a quadrati
 in the quantity Q) yields the mutation rate at whi
hthe optima 
oales
e and the distribution be
omes unimodal; i.e. the error threshold. In our
ase re
ombination introdu
es a 
ubi
 term to the equations, making (analyti
al) solutionmore diÆ
ult. We hope to 
arry out a mathemati
al analysis in a future paper.9
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