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Abstract

In this paper we analyse the phenomenon of “bistability” in finite population evolution-
ary dynamics, especially with regard to recombination. Bistability, where the steady-
state population distribution depends on the initial state of the population, has recently
been observed in an (infinite population) quasi-species model of viral recombination
(Boerlijst et al., 1996). We analyse a comparable finite population model using a birth
and death process due to (Moran, 1958). Bistability (or its stochastic analogue) is
revealed in the bimodality of the stationary probability distribution of the birth and
death process and long mean transition times between the modes. These effects are
demonstrated to be exaggerated by recombination.

1 Introduction

In (Boerlijst et al., 1996) a mathematical model for an asexual (haploid) quasi-species (Eigen
et al., 1989) evolving with recombination is introduced to study recombination in retro-virus
populations. The model is analyzed on several simple fitness landscapes. A striking feature
of the model is the appearance of “bistability” or “hysteresis” in the steady-state population
distribution for particular combinations of mutation rate and recombination rate; i.e. the
steady-state distribution of genotypes depends on the distribution of genotypes in the initial
population. This phenomenon has also been observed in various diploid models, both with
and without recombination. In (Boerlijst et al., 1996) bistability in their (infinite-population,
hence deterministic) model is explained in terms of bifurcation of the differential equations
describing the time-evolution of the quasi-species. A recent empirical study (Ochoa and Har-
vey, 1999) suggests strongly that many qualitative features of the infinite-population model
are preserved in the corresponding finite-population dynamics. In this paper we investigate
bistability in finite-population stochastic population dynamics. The model we use is based
on a birth and death process originally devised by (Moran, 1958) and previously deployed in
a situation analogous to ours (but without recombination) by (Nowak and Schuster, 1989).



2 The Moran Model

In (Moran, 1958) a model for the evolution of a fixed-size finite population of genotypes was
introduced, based on the idea of fitness as the expected (reproductive) lifetime of a genotype.
Here we extend the model to arbitrary fitness landscapes and to include recombination.

Let Q" represent the v-dimensional binary hypercube; i.e. an element of Q" is a bi-
nary sequence of length v, which we identify with a haploid genotype. We specify a fitness
landscape on Q" by assigning to each g € Q" a (real-valued) fitness f(g) > 0. Consider
a population comprising N such genotypes. We may identify such a population with an
integer vector n = (n, | g € Q”), where n, represents the number of copies of genotype g
in the population, n, > 0 Vg and deQ" ng = N. We now define a birth-death event on
the population n to be a transformation of n into a new population n' as follows: a copy of
some genotype g1 “dies” and a copy of another (possibly the same) genotype g2 is “born”.
In terms of the population vectors we have n",h =mn, — 1 and n_ﬁp = ng, + 1; the population
size thus remains constant.

Suppose now that we have a stochastic process {n(t) | ¢ > 0} of populations (¢ represents
a continuous time parameter) that evolves according to the following scheme: in any time
interval [t,¢ + h] the probability that a copy of genotype ¢ dies is given by (Moran, 1958):

6 ny(t)

P (a copy of g dies in the interval [t,t + h]) = m N
Jg

where 6 is a fixed timescale parameter. It is straightforward to verify that the “lifetime”

h+ o(h) (1)

N
of a genotype ¢ is exponentially distributed with expectation yf(q) A death triggers an

immediate birth, thus defining a birth-death event. Candidates for a birth are selected as
follows: with probability 1 — p the birth is asezual and with probability p sexual, where
0 < p <1 is the recombination rate. For asexual reproduction a parent is selected uniformly
at random and with replacement from the population. The offspring is taken to be a copy of
the parent mutated with per-allele probability u where 0 < p < 1 is the (per-allele) mutation
rate. In the sexual case two parents are independently selected uniformly at random and
with replacement from the population. The parents are mated by uniform recombination;
i.e. independently for each locus on the genotype, one of the parents is chosen at random
and its allele (0 or 1) becomes the allele of the offspring at that locus. After recombination
the offspring is mutated with mutation rate p as in the asexual case. It may also be verified
that the expected number of offspring of a given genotype during its lifetime is proportional
to its fitness. To see this, note that for a given genotype the times between its successive
selections as a parent are (identically and independently) exponentially distributed. Thus
the number of offspring of a genotype from its birth up to a given time ¢ constitutes a Poisson
process (Stirzaker, 1994). From this and the exponential distribution of lifetimes the result
follows by a straightforward calculation. In this sense, selection in the Moran model is fitness
proportional.

It is clear that {n(t) | ¢ > 0} thus defined is a Markovian birth and death process with
state space the (vast!) set of all possible populations of size N. Because of the huge size
and awkward structure of the state space it is difficult to say anything useful about such a
process. In the next section we specialise to a specific simple fitness landscape and, with the
help of some judicious approximations, reduce the state space to a tractable form.



3 The Single-peak Fitness Landscape

We specify a single-peak fitness landscape as follows: all genotypes have fitness 1 except for
a single genotype, the “peak” or optimal genotype'. which has fitness ¢ where o > 1 is
the selection coefficient. Without loss of generality we take the optimal genotype to be the
sequence of v zeroes. For « = 0,1,2,...,v let us define (Eigen et al., 1989) the error class
E, C Q" to be the set of all genotypes Hamming distance a from the optimum; i.e. with
exactly a bits set. The E, with a > 0 are said to constitute the error tail.

Given a Moran birth and death process as described above on such a landscape, we will
be interested in the number X (¢) of copies of the optimal genotype present in the population
at time ¢. It would be convenient if the process {X(t) | ¢ > 0} were also a Markov pro-
cess - unfortunately it is clear that the Markov property does not hold. This is because the
probability that a non-optimal genotype (i.e. a genotype in the error tail) mutates to the
optimal genotype depends on the distribution of genotypes over the error classes; without
knowing this distribution we cannot know the probability that a birth will be optimal. In
(Nowak and Schuster, 1989) this issue is addressed by making a “maximum entropy” approx-
imation; specifically, it is assumed that a genotype in the error tail is as likely to be any one
(non-optimal) genotype as another; i.e. that the distribution of genotypes in the error tail is

always uniform random. This implies that at any time, a =0,1,2,...,v:

P(g€ E, | g € error tail) = m(Z) (2)
and

P (an arbitrary bit of g is set | g € E,) = % (3)
where, following (Nowak and Schuster, 1989), we have set k = ﬁ Note that (3) implies

the abscence of linkage disequilibrium between loci.

Under the assumptions (2) and (3) {X(¢) | ¢ > 0} is indeed a Markovian continuous-
time birth and death process with state space the set of integers from 0 to N and retaining
barriers at 0 and N. If the mutation rate p is non-zero then the process is also irreducible
(Stirzaker, 1994) and thus has a unique stationary distribution (Karlin and Taylor, 1975).
Such processes are quite well-understood and tractable to analysis; the question remains as
to how well our approximation agrees with the original Moran birth and death process. It
is, in fact, well-known that (2) does not hold in general (Nowak and Schuster, 1989; Boerlijst
et al., 1996; Ochoa and Harvey, 1999). In particular, at low mutation rates the distribution of
genotypes over the error tail is skewed towards the optimum - this is more or less the defining
characteristic of a quasi-species! Furthermore, (3) will not in general hold due to neutral drift
of the population (Kimura, 1983; Crow and Kimura, 1970; Derrida and Peliti, 1991) within
the individual error classes. These issues will be addressed in a future paper. Suffice at this
stage to note that preliminary research suggests that the behaviour of the model using the
maximum entropy approximation agrees surprisingly well with the full model over a wide
range of parameter values and that, in particular, it appears to preserve at least qualitatively
the features addressed in this paper 2.

! Generally known as the master sequence in the quasi-species literature.

2Tt is also worth pointing out that near the error threshold (Eigen et al., 1989) the approximation (2)
becomes more accurate. This is reflected in the accuracy of the error threshold approximation calculated in
(Nowak and Schuster, 1989).



4 Analysis of the Birth and Death Process

We are now in a position to calculate the infinitesimal generators (Karlin and Taylor, 1975)
of the simplified birth and death process {X(¢) | ¢+ > 0}. To this end it suffices to know the
probabilities:

my = P (optimum mutates to optimum,)
my = P (non — optimum mutates to optimum)
ri1 = P (optimum recombined with optimum is optimum) (4)
ri2 = P (optimum recombined with non — optimum is optimum)
roo = P (non — optimum recombined with non — optirnum is optimum,)
Using (2), (3) and the definition of uniform recombination a straightforward if tedious com-
putation yields:
mi = @
my = K(1-Q)
rin o= 1 5)
ri2 = 17
roo = k(1 —2n)
_ v _ (-1 e
where we have set Q = (1 —pu)” and n = ETE The infinitesimal generators A;, p; of the

birth and death process are defined by (Karlin and Taylor, 1975):
P(X(t+h)=i+1|X®#) =i) = XN+o(h) i=01,...,N—1 (6)
P(X(t+h)=i—1|X(®#)=4i) = pi+o(h) i=12,... N (7)

By convention we define Ay = pug = 0. For compactness of notation let us also define, for

a, b=1,2: Mg =1—myg, Tap = 1 — Tap, Ugp = M1Tap + MaTap and Ugy = 1 — ugp. Then,
using (1) and the definition of the Moran process, we calculate:

N i i N —i
)\,; = 40 N {(1/)) {mlﬁ-i—mg—N :| +
r |2 ) . .\ 27
i i N—1 N —1
+ p v <N> + 2“12NT + u22 (T) } (8)
D (TR N R i
i =GN PRy Ty
r |2 . . .\ 27
i i N —1 N —1
+ p |11 <N) +2ﬂ12ﬁ N +U22< N > } 9)
These equations correspond to equations (17) and (18) in (Nowak and Schuster, 1989)3.
We can also now calculate the (unique) stationary probability distribution p;,i =0,1,2,..., N

of the process (Karlin and Taylor, 1975; Stirzaker, 1994) as follows. Set:

) =1
Aic1 .
o= i i=1,2,...,N (10)
Hi
3(Nowak and Schuster, 1989) use a slightly different version of the Moran birth and death process, perhaps
to match the quasi-species formalism more closely. The resulting models are qualitatively similar.




Then we have, for i =0,1,..., N:
TG
2_7‘:0 Tj
We will be interested in the mean first passage time (mfpt) (Karlin and Taylor, 1975) of the
process from state i to state j. This may be calculated as follows: let U; denote the mfpt
from state i to state i +1 (i = 0,1,..., N — 1) and V; the mfpt from state i to state i — 1

(i=1,2,...,N). We then have the recurrence relations:
1
Up = —
0 "
1
Ui = (+wmlina)  i=12...N (12)
i
and
1
Vv = —
N
1
Vi = —(1+AVig)  i=01...,N-1 (13)
i

The mfpt from state ¢ to state j for ¢ < j is then given by U; + Uj41 + ...+ U;_1 and for

i>jby Vi+Vi_1+...4 Vj;1. Note that the mfpt’s cannot be expressed solely in terms of

the stationary probabilities; knowledge of the actual infinitesimal generators is required.
Finally, to simulate the birth and death process we make use of the following (Karlin and

Taylor, 1975): the process waits in the state i for a period of time distributed exponentially

with parameter A; + u;. It then makes a transition to state i + 1 (if i < N ) with probability

Hi
i+

i

Ai + 1

, or to state ¢ — 1 (if ¢ > 0) with probability

5 Behaviour of the Model

In the results that follow we have used a short seqeunce length (v = 10) and population size
(N =100) to make the pertinent features of the model clearer. All results extend to higher
sequnce lengths and larger populations. Fig. 1 below plots the stationary distribution of the
birth and death process for a few values of the mutation rate, all other parameters remaining
fixed. We see that at low mutation rates the optimum genotype frequency is generally high;
the process spends most of its time with a high proportion of the population “on the spike”.
It appears unimodal, but there is actually another mode at 0, not visible at this scale. At
a slightly higher mutation rate the bimodality becomes more pronounced and the position
of the righmost mode shifts to a lower optimum genotype frequency. At a critical mutation
rate above this an inflexion point appears and the distribution becomes unimodal. Following
(Nowak and Schuster, 1989) we identify this critical mutation rate with the error threshold?.
Beyond the error threshold the distribution is unimodal and the process spends most of the
time with optimum genotype frequency close to zero. Figs. 2, 3 and 4 illustrate the effects
of increasing recombination rate on the dynamics of the process in the sub-error threshold
regime. In each case the left-hand figure shows the stationary probability distribution
while the right-hand figure plots the results of a simulation of the process with the same
parameter values. In all figures the (arbitrary) timescale § = 100, ¢ = 2, v = 10 and
N =100. A subtlety in comparing the dynamics for different values of p is that changing the

4Note that this is not the only possible definition of the error threshold for finite populations. See e.g.
(Forst et al., 1995).
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Figure 1: Stationary distribution of the birth and death process for a few values of mutation
rate p. Other parameters are: v =10, N =100, 0 =4 and p = 0.3.

recombination rate alters the shape of the stationary distribution. Indeed in (Boerlijst et al.,
1996) and (Ochoa and Harvey, 1999) it is demonstrated that increasing the recombination
rate lowers the error threshold. Thus to establish a baseline for comparison we followed the
following procedure: for each value of p the mutation rate u was adjusted so that the median
of the stationary distribution coincides with the optimum genotype frequency at which the
stationary distribution takes on its minimum value between the modes; thus the process
spends equal amounts of time in states above and below the optimum genotype frequency
dividing the modes.

Figs. 5 and 6 plot the between-mode minimum probability and right-hand mode optimum
genotype frequency respectively against recombination rate. Fig. 7 plots the mfpt of the
process from the right-hand mode down to the zero state. Again in all figures the mutation
rate is adjusted so that the stationary median coincides with the between-modes minimum.
Inall plots # =1, 0 =4, v = 10 and N = 100.°

The effects of increasing the recombination rate now become clear:

1. The time spent by the process in states between the modes decreases

2. The optimum genotype frequency of the right-hand mode increases; the modes are
“pulled apart”

5The ”wobbliness” of these plots is due to the fact that there is, for a given recombination rate, a (small)

range of mutation rates for which the median equals the between-modes minimum. There was thus some
leeway in the precise choice of mutation rate.
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Figure 4: Parameters are: u = 0.005174, p = 0.6.
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Figure 6: Right-hand mode optimum genotype frequency.
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3. The expected waiting time for transitions between the modes “blows up” rapidly

Consider now, for example, the right-hand plot in Fig. 4 and suppose we were to watch the
process over a period of time very small compared with the mean between-mode transition
time. If we happened to observe the state at a given time to be near one mode it is likely
that we should never see it make a transition to the other mode; as far as we could tell the
process would be settled in a unimodal steady state. If, however, as is equally likely (recall
that by construction the process spends more or less equal amounts of time near each mode),
we happened to observe the process near the other mode, we would consider the process to
be settled in a different steady-state. In short, on a timescale small compared to the mean
between-modes transition time the process appears bistable. We term this phenomenon
stochastic bistability.

We see from points 1 and 2 above that at low recombination rates it is more difficult
to “separate” the modes - it is thus more difficult to discern a bistable situation (cf. the
right-hand plots in Figs. 2 and 3). From point 3 we see that for any given observational
timescale we are less and less likely to see a transition between modes as the recombination
rate is increased.

6 Conclusions

We have demonstrated that stochastic bistability arises in a finite population as the result of
two factors: bimodality of the steady-state distribution and between-mode transition times
long compared to the observer’s timescale. We have seen that increasing the recombination
rate accentuates both of these factors (in the sense of points 1-3 of the previous section).
It is of interest to note that, strictly speaking, this form of bistability is present in our
model even with no recombination present, albeit not readily discernible even at very short
timescales due to the poor separation of the modes. We note that for any (Markovian)
stochastic evolutionary process which is irreducible (and this would seem to include most
finite-population models in population biology) there is a unique stationary distribution. For
such processes, therefore, it seems likely that bi- (or multi-) stability must always arise in
a similar fashion to our model. Of course there are many stochastic evolutionary scenarios
that cannot be modelled by an irreducible Markov process or, indeed, by a Markov process.
Nonetheless the phenomenon would appear to be very general.

It would be of great interest to connect the stochastic bistability observed in our model
with the bistability observed in infinite-population deterministic models. We speculate that
there is a limiting procedure whereby the dynamical equations describing the time evolution
of our birth and death model (the forward or backward Chapman-Kolmogorov equations
(Karlin and Taylor, 1975)) converge to quasispecies-like differential equations which bifurcate
as in the simplified model presented in (Boerlijst et al., 1996).

We also note that, in principle at least, our model allows us to calculate approximations
for the error threshold in a finite population where recombination is present, along the lines
of (Nowak and Schuster, 1989). In that paper the optima of the stationary distribution are
approximated by treating the frequency of optimal genotypes i/N as a continuous variable x.
The positions of the optima are then revealed as the solutions of a quadratic equation for =z,
the discriminant of which (a quadratic in the quantity @) yields the mutation rate at which
the optima coalesce and the distribution becomes unimodal; i.e. the error threshold. In our
case recombination introduces a cubic term to the equations, making (analytical) solution
more difficult. We hope to carry out a mathematical analysis in a future paper.
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