Ruggedness and Evolvability - An Evolution's-eye View

Lionel Barnett

Informatics Department & CCNR University of Sussex

lionelb@sussex.ac.uk

August 2008

University of Sussex

Fitness landscapes What are they?

Fitness landscapes What are they?

Correlation

Correlation on fitness fandscapes The autocorrelation function Ruggedness and evolvability

Fitness landscapes What are they?

Correlation

Correlation on fitness fandscapes The autocorrelation function Ruggedness and evolvability

Some problems with autocorrelation - and some solutions

Uniform sampling An evolution's-eye view The mutant fitness distribution

Fitness landscapes What are they?

Correlation

Correlation on fitness fandscapes The autocorrelation function Ruggedness and evolvability

Some problems with autocorrelation - and some solutions

Uniform sampling An evolution's-eye view The mutant fitness distribution

QNKp Landscapes

Fitness landscapes What are they?

Correlation

Correlation on fitness fandscapes The autocorrelation function Ruggedness and evolvability

Some problems with autocorrelation - and some solutions

Uniform sampling An evolution's-eye view The mutant fitness distribution

QNKp Landscapes

Take home message

Fitness landscapes What are they?

Correlation

Correlation on fitness fandscapes The autocorrelation function Ruggedness and evolvability

Some problems with autocorrelation - and some solutions Uniform sampling An evolution's-eye view The mutant fitness distribution

QNKp Landscapes

Take home message

Fitness landscapes

• A fitness landscape is a mapping:

 $genotype \rightarrow phenotype \rightarrow fitness$

- Genotypes reside in genotype space
- Phenotypes reside in *phenotype space*
- Fitness is a real number
 - · Biology: fitness is the expected number of offspring of a phenotype
 - Artificial evolution: fitness is a measure of the "goodness" of the phenotype something to be maximised
- Frequently the phenotype is skipped: i.e. a fitness landscape is just a mapping: genotype → fitness

 $g \mapsto f(g)$

where f(g) is the **fitness function**

• "Fitness Landscape" is a visual/spatial metaphor...

Fitness landscapes What are they?

Correlation

Correlation on fitness fandscapes The autocorrelation function Ruggedness and evolvability

Some problems with autocorrelation - and some solutions Uniform sampling An evolution's-eye view The mutant fitness distribution

QNKp Landscapes

Take home message

Landscape correlation: what is it and why might it be useful?

- Commonly viewed as a measure of fitness landscape ruggedness
- Relates to ease of evolving high fitness phenotypes = evolvability
 - Warning: "evolvability" is used in several specific technical senses
- What does ruggedness have to say about evolvability?
- There are certainly other, interrelated factors which affect evolvability
 - E.g. scale, neutrality, local sub-optima, deceptiveness, ...
 - Ruggedness is not the whole story

Correlation

- Intuitively, correlation describes how two random measurements relate to each other
- E.g. pick people at random from a population:
 - Height and weight tend to go together: they are *positively* correlated
 - Height and the ability to pass under low doorways without bumping one's head are *negatively* correlated
 - Height and eye colour don't seem to be related: they are uncorrelated
- Mathematical definition

$$\operatorname{corr}(X, Y) \equiv \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)\operatorname{var}(Y)}}$$

where X, Y are random variables

Correlated landscapes: the autocorrelation function

• The *autocorrelation function* - correlation between the fitness of two randomly selected genotypes a given distance apart:

 $\rho(d) \equiv \operatorname{corr}(f(g_1), f(g_2))$

with g_1, g_2 selected uniformly from all genotypes distance d apart

- A function of distance d need some notion of "distance"!
- Answers the question: how do the fitnesses of two genotypes at a given distance relate to each other?
- Tends to be > 0: small ho(d) = rugged, large ho(d) = smooth
- Generally, decays with increasing distance d. It is common to find a relation of the approximate form:

$$\rho(d) = \exp\left(-d/\ell\right)$$

The characteristic distance ℓ is called *correlation length*

Ruggedness and evolvability

- *Mutation* takes small steps in genotype space; i.e. evolution samples genotypes a small distance apart
- ${\sf Rugged} \quad \Rightarrow \quad {\sf no \ fitness \ correlation \ at \ small \ distance}$
 - \Rightarrow mutation is a "leap in the dark"
 - \Rightarrow mutant probably has rubbish fitness
- Smooth \Rightarrow some (positive) fitness correlation at small distance
 - \Rightarrow $\;$ mutant fitness is "in same ball-park" as parent fitness
 - \Rightarrow mutant has a fighting chance of being *fitter* than the parent

Ruggedness and evolvability

A smooth landscape

A rugged landscape

• Note: there is no place for *recombination* in this argument. Recombinant genotypes are *not* generally a small distance from the parent genotypes

• There have been attempts to define "ruggedness for recombination", but...basically, autocorrelation has nothing to say about recombination

Genotype distance = mutation (rate)

• The autocorrelation function naturally measures correlation between the fitness of a genotype and its *mutants*:

 $\rho(\mathcal{M}) \equiv \operatorname{corr}(f(g), f(\mathcal{M}(g)))$

where $\mathcal M$ is a mutation operator and genotype g is selected uniformly at random from genotype space

- Answers the question: how do the fitnesses of a genotype and its mutant relate to each other? [This is precisely what evolution needs to know...]
- If mutation operator is uniform random over genotypes a fixed distance d from parent, we recover the original definition $\rho(d)$
- May be considered a function of *mutation rate m*:

Fitness landscapes What are they?

Correlation

Correlation on fitness fandscapes The autocorrelation function Ruggedness and evolvability

Some problems with autocorrelation - and some solutions

Uniform sampling An evolution's-eye view The mutant fitness distribution

QNKp Landscapes

Take home message

The problem with uniform sampling

Real fitness landscapes look like this

The problem with uniform sampling

- Uniform sampling is "biased" towards low fitness (lethal?) genotypes
- Evolution most decidely does *not* sample genotype space uniformly!
 It spends (hopefully) as little as time possible sampling low-fitness regions
- So an autocorrelation statistic based on uniform sampling tells us mostly about an uninteresting (to evolution) region of the landscape
- It's worse than that to estimate ρ by *finite* uniform sampling, we might well end up sampling *only* lethals...

The problem with uniform sampling

- Uniform sampling is "biased" towards low fitness (lethal?) genotypes
- Evolution most decidely does *not* sample genotype space uniformly!
 It spends (hopefully) as little as time possible sampling low-fitness regions
- So an autocorrelation statistic based on uniform sampling tells us mostly about an uninteresting (to evolution) region of the landscape
- It's worse than that to estimate ρ by *finite* uniform sampling, we might well end up sampling *only* lethals...

• Solution: Let evolution do the sampling

An evolution's-eye view

- Let evolution do the sampling: first pick your evolutionary algorithm (and mutation operator)
- The algorithm proceeds by creating parent-mutant pairs: so use them to calculate autocorrelation:

$$\rho(\mathcal{M}) \equiv \operatorname{corr}(f(g), f(\mathcal{M}(g)))$$

where $g, \mathcal{M}(g)$ are sampled from all parent-mutant pairs encountered over the *statistical ensemble* of evolutionary runs

- Finite sampling-friendly: just perform multiple runs of your GA and collate all parent-mutant fitness pairs created during the course of the runs
 - If you like, repeat with varying mutation rate for correlation length
- This autocorrelation-as-evolution-sees-it is no longer "algorithm-agnostic"
 - Is this a good or a bad thing? (discuss)
 - Your landscape may appear more or less rugged depending on the algorithm. Perhaps this could aid in choice of algorithm?

The mutant fitness distribution

- Taking a step back: we are interested in correlation because we are interested in the distribution of fitness of mutants
 - cf. the transmission function (Altenberg, Smith & Husbands, ...)
- The Mutant Fitness Distribution:

$$\mathcal{F}(x) \equiv f(\mathcal{M}(g)) | f(g) = x$$

• For given x, $\mathcal{F}(x)$ is a random variable (distribution) - read:

the fitness of a mutant given that the parent has fitness x

The mutant fitness distribution

• We can calculate the moments of $\mathcal{F}(x)$:

$$\mu(x) \equiv \mathbf{E}(\mathcal{F}(x)) \qquad mean mutant fitness \\ \sigma^{2}(x) \equiv \operatorname{var}(\mathcal{F}(x)) \qquad mutant fitness variance$$

• In fact, knowing just the mean mutant fitness function $\mu(x)$, we can calculate correlation:

$$\rho(\mathcal{M}) = \frac{\operatorname{cov}(f(g), \mu(f(g)))}{\operatorname{var}(f(g))}$$

where genotypes g are sampled from...whatever^{*} distribution

- So $\mathcal{F}(x)$ is a *finer-grained* statistic than autocorrelation
- Since $\mathcal{F}(x)$ is conditioned on parent fitness, it doesn't suffer from uniform sampling bias
 - Although it is still obviously problematic to estimate in finite sample
 - But, as for autocorrelation, we can use evolution to do the sampling

CA density classification

CTRNN XOR logic

parent fitness

GasNet pattern generation

mutant fitness

parent fitness

Fitness landscapes What are they?

Correlation

Correlation on fitness fandscapes The autocorrelation function Ruggedness and evolvability

Some problems with autocorrelation - and some solutions Uniform sampling An evolution's-eye view The mutant fitness distribution

QNKp Landscapes

Take home message

QNKp landscapes

QNKp landscapes

- Parameters:
 - Q quantitative traits
 - Genotype length N
 - Mean epistasis K
 - Fitness distribution Z
 - Neutrality p
- $\bullet\,$ Each trait links independently to each locus with probability K/N
- Fitness tables filled independently: 0 with probability p, else from Z
- Properties:
 - Tunably rugged, tunably neutral
 - $\bullet\,$ Correlation length $\ell=N/K$ does not depend on $\,Q,Z,p$
 - So in particular, ruggedness may be varied independently of neutrality
 - $\mu(x)$ is *linear* in fitness x
 - $\sigma^2(x)$ is **quadratic** in fitness x

$$Q=16, N=64, K=12, p=0.999, Z \sim N(3, 1)$$

 $Q=8, N=64, K=12, p=0.999, Z \sim \Gamma(2,1)$

parent fitness

Why QNKp landscapes might be a useful model

- $\bullet \ Q$ parametrises (actual or notional) quantitative traits in the phenotype
 - Q may well be $\ll N$
 - Conventional NK models associate one trait per locus...why?
- Linearity of $\mu(x)$ is a consequence of independence of epistasis per trait
- $\bullet\,$ Large neutrality parameter p implies high proportion of lethals and decreasing neutrality with increasing fitness
 - Horizontal and diagonal "banding" reflects (near-)neutral networks

Why QNKp landscapes might be a useful model

- $\bullet \ Q$ parametrises (actual or notional) quantitative traits in the phenotype
 - Q may well be $\ll N$
 - Conventional NK models associate one trait per locus...why?
- Linearity of $\mu(x)$ is a consequence of independence of epistasis per trait
- $\bullet\,$ Large neutrality parameter p implies high proportion of lethals and decreasing neutrality with increasing fitness
 - Horizontal and diagonal "banding" reflects (near-)neutral networks
- *Remark*: conventional GAs perform rather poorly on QNKp landscapes. Random mutation hill-climbers and in particular *simulated annealing* fare rather better

Fitness landscapes What are they?

Correlation

Correlation on fitness fandscapes The autocorrelation function Ruggedness and evolvability

Some problems with autocorrelation - and some solutions Uniform sampling An evolution's-eye view The mutant fitness distribution

QNKp Landscapes

Take home message

• Standard autocorrelation is useless for realistic fitness landscapes

- Standard autocorrelation is useless for realistic fitness landscapes
- All realistic fitness landscapes are like QNKp landscapes

- Standard autocorrelation is useless for realistic fitness landscapes
- All realistic fitness landscapes are like QNKp landscapes
- Forget the GA, use simulated annealing

