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Abstract
It has come to be almost an article of faith amongst
population biologists and GA researchers alike that the
principal feature of a fitness landscape as regards
evolutionary dynamics is “ruggedness”, particularly as
measured by the auto-correlation function. In this paper
we demonstrate that auto-correlation alone may be
inadequate as a mediator of evolutionary dynamics,
specifically in the presence of large scale neutrality. We
introduce the NKp family of landscapes (a variant on NK
landscapes) which possess the remarkable property that
varying the degree of neutrality has minimal effect on the
correlation structure. It is demonstrated that NKp
landscapes feature neutral networks which have a
"constant innovation" property comparable with the
neutral networks observed in models of RNA secondary
structure folding landscapes. We show that evolutionary
dynamics on NKp landscapes vary dramatically with the
degree of neutrality - at high neutrality the dynamics are
characterised by population drift along neutral networks
punctuated by transitions between networks. The relevance
of these models to natural and artificial evolution is
discussed.

Introduction

In attempting to address the dynamics of populations of
genotypes evolving on fitness landscapes it appears that a
specific scenario has become somewhat ingrained in the
collective consciousness of researchers - that of a fitness
landscape as a rugged, hilly terrain on which populations
perform “hill-climbing”. Selective pressure drags a
population towards local peaks of relatively high fitness
while mutation and recombination search the surrounding
landscape by generating new genotypes. But this poses a
problem which affects both the biologist and the GA
specialist: if selective pressure is strong enough (relative
to the disruptive effects of mutation and recombination) to
drag a population up a hill, it is also likely to be strong
enough to hold it there! How, then, is an evolving

population to avoid becoming trapped on a local hilltop?
For the GA worker seeking to optimise a multi-peaked
function this is a practical issue and the literature abounds
with schemes to avoid the dilemma (Goldberg 1989). For
the biologist it is a serious theoretical conundrum, as
populations in nature do not seem (at least on macro-
evolutionary time-scales) to suffer this fate. It might be
claimed that entrapment can be explained away by co-
evolution and environmental change but another
possibility must be considered - our picture of a fitness
landscape as a rugged hilly terrain is misleading and in
need of an overhaul.

In both natural and artificial systems a picture is
emerging of populations engaged not in hill-climbing but
rather drifting along connected networks of genotypes of
equal fitness, with sporadic jumps between networks.
These “neutral networks” are of particular significance if
they have the “constant innovation” property (see below) -
for this raises the possibility that (given enough time)
almost any possible fitness value can ultimately be
attained by the population. The scenario of a population
trapped on a local hilltop vanishes. It is this new paradigm
of evolutionary dynamics which we examine here. It has
yet to make a significant impact on the scientific
community.

It is, of course, reasonable to ask (both for natural and
artificial evolutionary systems) whether such neutral
networks actually occur. Comparatively recent
developments in evolutionary theory and molecular
biology all point to the importance of selective neutrality
as a significant factor. This work includes Kimura's
neutral theory of molecular evolution (Kimura 1983),
Eigen's analysis of the molecular quasispecies (Eigen,
McCaskill and Schuster 1989; Nowak and Schuster 1989)
and recent developments in the understanding of RNA
evolution both in vitro, in simulation and analytically
(Reidys, Stadler and Schuster 1997; Schuster et al. 1994;
Baskaran, Stadler and Schuster 1996; Grüner et al. 1996).



Neutrality has also been detected in various protein
models. In molecular biology it is clear that there is often
a high degree of redundancy in the coding from genotype
to phenotype - there may indeed be redundancy on several
levels; e.g. many nucleotide sequences may code for the
same amino acid, while many amino acid sequences may
code for functionally equivalent proteins. Such coding
redundancy will certainly imply the existence of
selectively neutral mutation at the molecular level (Crow
and Kimura 1970, Kimura 1983). Whether this takes the
form of neutral networks with constant innovation is a
(highly non-trivial) empirical question. Research into the
structure of RNA folding landscapes suggests strongly
that such networks may well be a feature of fitness
landscapes in molecular biology.

There is also evidence that neutral networks can appear
in the fitness landscapes of “difficult” artificial evolution
problems; e.g. in the evolution of neural network robot
control systems, on-chip hardware evolution (Thompson
1996; Harvey and Thompson 1996) and CA-based
landscapes. Ironically it is customary among GA
practitioners deliberately to avoid redundancy in the
genetic coding of artificial evolution problems.

The NKp landscapes introduced in this paper have the
property that altering the degree of neutrality has minimal
effect on the ruggedness of the landscape (as measured by
the auto-correlation function). They thus provide a useful
test-bed for a comparative study of the effects of
ruggedness and neutrality on evolutionary dynamics. We
begin with some formal definitions.

Neutrality and Ruggedness

All fitness landscapes in this paper are based on fixed-
length binary bit-string genotypes. We thus identify a
fitness landscape of sequence length N with a fitness
function f: QN → R+  where QN denotes the binary N-
hypercube and R+ is the set of real numbers ≥ 0. The
fitness of a genotype g ∈ QN is then given by f(g). There
is a natural metric, Hamming distance, on QN defined by:
h(g,g') ≡ number of loci (bit-positions) at which g and g'
differ. Hamming distance is often referred to in terms of
mutation. If g, g' are hamming distance d apart we call g'
a (d-bit) mutation of g (and vice-versa).

Neutrality
We call a (1-bit) mutation g' of g neutral iff f(g') = f(g).
This relationship induces a partitioning of QN whereby g
and g' are in the same equivalence class iff there is a
sequence of neutral mutations connecting g and g'; i.e.
there are genotypes  g ≡ g(0),  g(1), g(2), ... , g(n) ≡ g'  such that
g(α) is a 1-bit mutation of g(α - 1)  for α = 1, 2, ... , n and  f(g)
≡ f(g(0)) = f(g(1)) = f(g(2)) = ... = f(g(n)) ≡ f(g').  The neutral

networks of the fitness landscape are defined to be the
equivalence classes of this partitioning. We can define a
coarser partitioning of QN by specifying g and g' to be in
the same equivalence class iff f(g) = f(g'). We refer to the
equivalence classes of this partitioning as neutral sets; the
neutral networks are the connected components of the
neutral sets. Although it is the neutral networks which are
of direct relevance to evolutionary dynamics the neutral
sets are generally easier to handle analytically;
furthermore in many cases of interest the neutral sets
consist of few connected components. A word of caution:
the “network” terminology may well be misleading. If the
frequency of neutral mutation is low there are likely to be
very many neutral networks comprising a few, or even
single genotypes. Even if there is high neutrality the
neutral networks may not resemble networks as much as
“clusters”. The neutral degree of a genotype g, denoted
by ν(g) is defined to be the number of neutral mutations
of g.

We shall be interested in some notion of percolation for
neutral networks. It is by no means obvious in what sense
percolation may hold relevance for evolutionary
dynamics. While it is feasible to transfer the graph-
theoretical definition directly to neutral networks, it seems
to this author that the related (but distinct) property of
“constant innovation rate” introduced by (Huynen 1996)
in the context of RNA folding landscapes is likely to be
more pertinent; the reasons will hopefully become clear
from the discussion of evolutionary dynamics in a later
section. Random walks are performed on neutral networks
(“neutral walks”) and previously unseen phenotypes
(“innovations”) accumulated. The rate of discovery of
innovations is then compared to the discovery rate for
random walks on the landscape not constrained to a
neutral network. Since we are not dealing with phenotypes
(in the sense of an intermediate mapping between
genotype and fitness) we identify phenotype directly with
fitness and consider an innovation to be the discovery of a
genotype of previously un-encountered fitness.

We thus say that a neutral network has the constant
innovation property if: (I) the rate of discovery of
innovations remains approximately constant for a
reasonably large number of steps - what Huynen terms
“perpetual innovation” - and (II) the rate of discovery is
comparable with that of an unconstrained random walk.
Below we investigate this property rather than
conventional percolation. It should be noted that constant
innovation is indeed distinct from percolation - it is not
difficult to construct fitness landscapes with neutral
networks that percolate in the graph-theoretical sense, but
fail one or both of the above criteria (Jakobi 1996).



Ruggedness
The most frequently encountered measure of ruggedness
of a fitness landscape is the auto-correlation function. It
is often defined in terms of fitness values at successive
steps along random walks (Weinberger 1990; Kauffman
1993) but, as remarked in (Stadler 1996) “...it seems to be
rather contrived to invoke a stochastic process in order to
characterise a given function [i.e. the fitness function]
defined on a finite set”. We thus use the definition below,
apparently first proposed in (Eigen, McCaskill and
Schuster 1989).

Let f: QN → R+ be a fitness landscape. We first define
the mean fitness of the landscape:
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function to be:
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for d = 1, 2, ... , N. For consistency we also set ρ(0) ≡ 1.
Note: We stress that the quantities f , σf

2 and ρ(d) are
not statistics but simply real numbers associated with a
fitness landscape. There appears to be some confusion in
the literature on this issue; auto-correlation is sometimes
defined by averaging fitness, etc. over ensembles of
landscapes, e.g. the family of all NKp landscapes with
fixed N, K and p (Fontana et. al. 1993, Weinberger 1990).
In this paper shall we use angle brackets exclusively to
indicate that a mean (expectation) is to be taken of a
quantity considered as a random variable defined on the
sample space of all possible NKp landscapes with fixed N,
K and p.

The NKp Family of Fitness Landscapes

We begin by reviewing the construction of an NK
landscape (Kauffman 1993). Let N > 0 be the genotype
length and let 0 ≤ K < N. N and K are fixed during the
construction. To each locus on the genotype (i.e. a
position 1 ≤ i ≤ N on the bit-string) we assign

independently and at random K distinct loci (excluding
the locus under consideration). These loci, plus the locus i
itself, are said to be epistatically linked to locus i. The
idea is that a locus i makes a contribution to the total
fitness of a genotype which depends on the value of the
allele (0 or 1) at each of the K+1 loci epistatically linked
to locus i. To each such combination of alleles (there are
2K+1 in all) a fitness contribution is assigned as a real
number drawn independently and uniformly at random
from the interval [0,1]. We can think of this as the
association of a fitness table Fi with each locus i; for a
genotype g ∈ QN, given the sequence of alleles
εi(g) = a1a2... aK+1, say, at the loci epistatically linked to
locus i the fitness contribution of locus i is given by
Fi(εi(g)), which we also denote by fi(g).

Finally, to calculate the fitness of an entire genotype
the fitness contributions of all loci are summed and the
result divided by N to normalise the fitness to the range
[0,1]. In the above notation:
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In summary, an NK landscape is fully specified by N, K,
the particular assignment of epistatic links and the
contents of the N fitness tables.

It is clear from the construction that there is (almost
surely) no neutral mutation on an NK landscape - for if
two genotypes differ at some locus the respective fitness
contributions for that locus will be drawn from different
fitness table entries which will (almost surely) be
different. There is, however, a “natural” way to introduce
neutrality into the model, via the following biologically-
inspired argument: the NK model assumes that every
possible combination of alleles at the loci epistatically
linked to a given locus gives rise to a positive contribution
to fitness. In nature, however, it seems plausible that
many (if not most) combinations of alleles will make no
contribution to fitness. We could reflect this in the NK
model by specifying that the fitness table entry
corresponding to such an allelic combination be equal to
zero. Thus motivated we proceed as follows: a new
parameter            0 ≤ p ≤ 1 is introduced to represent the
probability that an arbitrarily allelic combination makes
no contribution to fitness. Explicitly, when assigning
values to the fitness tables we set each entry to 0
independently with probability p. If an entry is not set to
zero it is assigned uniformly randomly from the range
[0,1] as before. We refer to the resulting landscape as an
NKp landscape. The case p = 0 corresponds to a normal
NK landscape, while   p = 1 corresponds to a completely
flat landscape (all fitness table entries are zero).

Please note that due to space constraints most results in
the following sub-sections are quoted without proof.



Neutral structure of NKp landscapes
Many of the results quoted below depend on the following
observation (which holds almost surely):

(6) if g, g' ∈ QN then f(g) = f(g') ⇔ for all i such 
that fi(g) ≠ 0 we have εi(g) = εi(g')

It is evident that the possibility of neutral mutation arises
on an NKp landscape. A calculation yields for the
probability that an arbitrary mutation on an arbitrary NKp
landscape be neutral:
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For large sequence length N this is well approximated by:
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Thus for long genotypes the probability that a mutation is
neutral is roughly independent of the genotype length and
drops off exponentially with increasing epistasis K. A
problem with pneutral however, is that neutrality is not
spread uniformly over the landscape - in fact an NKp
landscape is by no means uniform in its structure, but may
be decomposed naturally into subsets corresponding to
genotypes with a particular number of zeroes in their
fitness tables. Thus for an NKp landscape f: QN → R+ and
g ∈ QN we define:

(9) ζ(g) ≡ number of loci i for which fi(g) = 0

and for n = 0, 1, ... N we define:

(10) Zn(f) ≡ {g ∈ QN | ζ(g) = n}

Next we note that for g ∈ Zn(f) the fitness of g is the sum
of N-n independent random variables uniformly
distributed on [0,1]. Thus the expected fitness for a
g ∈ Zn(f) for some NKp landscape is:

(11) <f(g)> g ∈ Zn(f)  = N n
N
−

2
.

A calculation gives for the expected neutral degree of a
g ∈ Zn(f) with 1 ≤ n ≤ N:
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. Comparing (11) and (12)

we find that for large N the neutral degree of genotypes in
an NKp landscape drops off roughly exponentially with
increasing fitness - the “higher up” the landscape we go
the less neutrality we can expect to encounter. This can
also be seen from the observation that for all g ∈ QN we
must have ν(g) ≤ ζ(g) ≤ N(1 - f(g)).

We also estimate the sizes of the sets Zn(f). A

calculation yields:
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It is easy to show that the subsets Zn(f) have the following
useful property: if Γ ⊆ QN is a neutral set (or indeed a
neutral network) then Γ ⊆ Zn(f) for some n. We calculated
the expected size of neutral sets contained in Zn(f) in the
following sense: define the random variable Sn (for fixed
N, K and p) to be the size of the (unique) neutral set
containing a genotype uniformly randomly selected from
Zn(f) for a randomly selected NKp landscape f: QN → R+.
[Note that Sn does not represent the size of a neutral set
randomly selected from some Zn(f) - it will differ due to
the variance of neutral set size within the Zn(f)'s]. We
have:

(14) <Sn> =
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if j - m ≤ N - 1 - K and zero otherwise. If K is small
compared to N it was found empirically that:
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This indicates that <Sn> scales roughly as O ee n





for

small K. Fig 1a and 1b below plot the formula (14) for N
= 30. In Fig 1a K = 4 and p is varied; in Fig 1b p = 0.9
and K is varied. The formula (14) may also be used to
estimate the mean number of neutral sets in Zn(f).

It would appear to be difficult to derive analytically an
estimate for the size, number and distribution of the
neutral networks in NKp landscapes; in lieu the results on
neutral sets are helpful - the author suspects that the
neutral sets comprise, on the whole, few connected
components. The reader is referred to (Barnett 1997) for
an empirical analysis of neutral networks on “small” NKp
landscapes. See also (Grüner et al. 1996) for a detailed
analysis of neutral networks on RNA secondary structure
folding landscapes.



Fig 1a

Estimated mean sizes of neutral sets in Zn(f) as computed from
(14) for N = 30, K = 4 and several values of p.

Correlation structure of NKp landscapes
The most surprising result regarding the correlation
structure of NKp landscapes is the minimal effect of the
neutrality parameter p on the auto-correlation function.
The quantity <ρ(d)> (the auto-correlation ensemble mean)
was estimated by sampling for a variety of N, K and p
values. The results consistently indicated seemingly
negligible dependence on p. Indeed, so small is the
variation with p, that it was initially thought by the author
that <ρ(d)> is invariant with respect to p. However more
stringent statistical testing, in particular the Student's t-test
(Press et al. 1992) which measures the significance of a
difference of means, indicated a small but significant
departure from invariance. The significance is smaller for
large N and it may be the case that <ρ(d)> is invariant
with respect to p in some sense “in the limit” of large N.
The ensemble definition of auto-correlation, (as distinct
from the ensemble mean - see note above), was also tested
for p-invariance. The results suggest that it is a true
invariant. The derivation of an analytical expression for
the ensemble auto-correlation function in (Fontana et. al.
1993) suggests that this is indeed the case.

There is one particular class of NKp landscapes for
which it is possible to calculate ρ(d) explicitly: this is the
case where, out of all the N fitness tables there is only a
single entry of non-zero fitness. ρ(d) for these
“degenerate” NKp landscapes  is given by:

Fig 1b

Estimated mean sizes of neutral sets in Zn(f) as computed from
(14) for N = 30, p = 0.9 and several values of K.
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and we have set P = 2K+1 and L = N-K-1. See Appendix
A.2 of (Barnett 1997) for details. Surprisingly, this turns
out to be a remarkably good estimate for <ρ(d)>. Fig 2
plots ρdeg(d) for N=60 and a few K values.

It is also worth remarking that the variance of ρ(d)
(considered, for each d, as a random variable over the
sample space of NKp landscapes with fixed N, K and p) is
fairly small, particularly for small d. This implies in
particular that ρdeg(d) as defined by (16) is a useful
estimate of the auto-correlation for a specific NKp
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The function ρdeg(d) for N=60

landscape (and indeed for a specific NK landscape). These
results appear at first sight to be paradoxical; we might
expect that the high proportion of pairs of genotypes with
equal fitness would tend to produce higher correlation
with increasing p. However, in a certain sense, NKp
landscapes actually become more rugged with increasing
p. Genotypes of high fitness are comparatively rare; hence
a near neighbour of a high fitness genotype is likely to be
a genotype with more zeros in its fitness tables
(particularly when epistasis is high), and hence of far
smaller fitness. On average these effects seem to cancel
each other out; it was found that the covariance of the
fitness of pairs of genotypes Hamming distance d apart
scales approximately the same as the fitness variance.
More precisely, it was found empirically that for some
function φ(d) which depends on N and K but not on p, the
mean fitness “auto-covariance” of an NKp landscape is
given to a high approximation by:

(20) <cov(d)> ≈ φ(d)(1-p)(1+3p)

The fitness variance is just cov(0).

Constant innovation on NKp landscapes
Neutral walks were performed on NKp landscapes as
previously described. One such test is plotted in Fig 3,
which  may  be  compared  with  the  corresponding  plot
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Fig 3
Cumulative innovations on an NKp landscape (N=60, K=14,
p=0.99) for 1000-step random and neutral walks. f-values
indicate the fitness of the corresponding neutral network.

for an RNA folding landscape in (Huynen 1996). The
approximate linearity and slope of the graphs indicate that
the constant innovation property does indeed hold on NKp
fitness landscapes, at least for neutral networks of modest
fitness. As we climb higher up the landscape, however,
the innovation rate falls and innovations “peter out”
sooner; this is consistent with our earlier findings that the
degree of neutrality and expected size of neutral networks
fall as fitness increases.

This concludes our analysis of the structure of NKp
landscapes. In the next Section we examine their
evolutionary dynamics.

Evolutionary Dynamics on NKp Landscapes

Firstly note that in this paper we only consider fixed-size
populations evolving under mutation and selection;
recombination is not considered. The evolutionary
algorithm employed is conventional “fitness-proportional
with roulette-wheel selection”, as follows: let population
size be M. To construct the population at the next
generation from the current population we perform M
selections (with replacement) from the current population,
such that the probability of a genotype being selected is
proportional to its fitness. Every genotype in the new
population is then mutated with a per-locus probability m,
where m is the (fixed) mutation rate. Typically we take



M = 200 and m = 0.001.
A previous study (Barnett 1997) investigated in some

detail the dynamics of adaptive evolution on several
abstract fitness landscapes featuring neutral networks,
including NKp landscapes. The picture that emerges is
strikingly similar to that described in (Huynen, Stadler
and Fontana 1996) for RNA secondary structure folding
landscapes and we conjecture that such dynamics are
generic for landscapes with neutral networks which have
the constant innovation property. A brief summary is as
follows: most of the time the population (at reasonably
low mutation rates) is largely confined to a specific
neutral network, (corresponding to Huynen et al.’s
“dominant phenotype”) on which it drifts at a
characteristic rate which is related to the population size,
mutation rate and degree of neutrality of the network (see
below). During such “metastable” episodes (van
Nimwegen, Crutchfield and Mitchell 1997) diffusion is
qualitatively similar to diffusion on a flat (i.e. completely
neutral) landscape; the latter situation is analysed
mathematically in (Derrida and Peliti 1991), where it is
found that stochastic effects of selection and mutation
typically cause the population to fragment into clusters or
sub-populations of genotypes, each cluster sharing a
recent common ancestor. Such clustering is also a feature
of populations diffusing on neutral networks in non-flat
landscapes. Mutation generates new genotypes that
explore neighbouring networks. If a genotype of higher
fitness (i.e. on a higher-fitness neutral network) is
discovered then, if selection pressure is strong enough
relative to mutation, the population may, with a certain
probability, transfer en masse to the higher neutral
network. There is also the possibility that a population
may, through stochastic effects,  “fall off” its current
network to a lower-fitness network. The probabilities of
attaining or maintaining a given network are related to
what has been termed the “phenotypic error threshold”
(Forst, Reidys and Weber 1995) by analogy with the
classical “genotypic” error threshold for single-peak
fitness landscapes (Eigen, McCaskill and Schuster 1989).

NKp landscapes afford a unique opportunity to
investigate the form of adaptive evolution  with tuneable
neutrality. Differences in dynamical behaviour observed
for fixed N and K values, but different values of p, cannot
be ascribed to the correlation structure as we know this to
be virtually invariant under change of p. In this paper we
concentrate on one particular aspect of the dynamics, that
of population diffusion.

To this end we measured the diffusion coefficient of the
population centroid at successive generations of an
evolutionary run. The centroid of a population P of
genotypes on an N-dimensional hypercube is a real-valued

N-dimensional vector c ∈ RN defined by c
N

gi i
g P

≡
∈
∑1

where gi = 0 or 1 is the allele of g at locus i. c may be
thought of as the centre of mass of the population,
considered as a set of points (weighted by their
multiplicity in the population) on the hypercube
embedded in the vector space RN. The diffusion
coefficient is defined as the square of the Euclidean
distance (in RN) travelled by the population centroid per
generation. It measures the rate at which the population
drifts through the landscape. In practice this quantity
tends to fluctuate rapidly from generation to generation;
in the graphs below we plot a rolling average over the
previous 100 generations to smooth it out. It is possible to
estimate the diffusion coefficient by assuming that the
diffusion rate will be similar to that on a flat landscape of
dimension equal to the (mean) neutral degree of the
current neutral network (Huynen, Stadler and Fontana
1996). For population size M, mutation rate m and neutral
degree ν the estimated value is given by1:

(21) D m
Mm

=
+

ν
1 2

In (Barnett 1997) this was found to be a good estimate for
small values of m and a further refinement was suggested.

While the diffusion coefficient tells us about how “fast”
the population is wandering about the landscape it does
not tell us very much about how “far” it is wandering; e.g.
on a single peaked landscape the centroid may move quite
rapidly but remain in the locality of the peak. We will be
especially interested in the actual distances travelled by
the centroid when comparing population dynamics on low
and high neutrality landscapes and thus have need for a
measure of actual distances travelled by the centroid. To
this end we also computed a “time-lagged” diffusion
coefficient, which we define to be the square of the
distance between the centroid “now” and its position tlag

generations previously. In all experiments tlag = 100 was
used and the time-lagged coefficient smoothed over 100
generations prior to plotting.

Figs 4 and 5 illustrate typical evolutionary runs over
3000 generations on NKp landscapes for N=60, K=12 and
p=0.99 and 0 respectively. In both cases the population
size was M = 200 and the mutation rate m=0.001. Apart
from the population mean fitness we also plot the mean
neutral degree (for the p=0.99 case), diffusion coefficient
and time-lagged diffusion. In the p=0.99 case the graphs
                                               
1 The formula given in (Huynen, Stadler and Fontana 1996) is for RNA
sequences which have four allelic values (it also contains an error - the 5
should be replaced by a 6) and must be adjusted for the binary case.
Furthermore, their definition of the centroid works out at twice the
magnitude of ours so we must divide their diffusion coefficient by 2.



bears out the picture of evolutionary dynamics outlined
above, with periods of metastability punctuated by
transitions to higher fitness neutral networks clearly
visible. In (Barnett 1997) it is demonstrated that during
these periods the population is indeed largely confined to
a specific neutral network and that the population drifts
and clusters as described above. As we would expect the
degree of neutrality falls as fitness increases. The
apparently random fluctuations in the diffusion rate reflect
the stochasticity of drift and clustering in the population,
although overall there is a correlation between diffusion
rate and neutral degree as suggested by (21).

During the transitions between neutral networks the
time-lagged diffusion increases sharply. This may be
ascribed to a “bottleneck effect” as the steep increase in
selection pressure occasioned by the discovery of a fitter
genotype strongly converges the population around the
new genotype. This phenomenon, also known as
“hitchhiking”, has been studied in other fitness
landscapes, particularly the so-called “Royal Road”
landscapes (van Nimwegen, Crutchfield and Mitchell
1997). Mutation then reasserts itself and the population
resumes neutral diffusion on the new network. Since
(most) neutral networks have the constant innovation
property it is unlikely that the drifting population will
exhaust the supply of previously unseen (and thus
potentially higher fitness) neighbouring genotypes.
Evolutionary search may potentially continue unabated;
the question is how long it is likely to take before neutral
drift discovers a gateway to a higher network (van
Nimwegen, Crutchfield and Mitchell 1997).

Fig 5 tells a different story. The landscape is now
rugged and multi-peaked with many local optima
(Kauffman 1993). The population climbs rapidly up the
landscape until it reaches a local optimum at which still
higher optima are too rare in the locality to be easily
discovered by mutation. At this point the population is
effectively trapped - the search for fitter genotypes
becomes worse than random search, as the population is
confined to the locality of a local optimum. This is
indicated by the lagged diffusion, which is significantly
lower than for the neutral case.

Conclusions

We have seen that the dynamics of adaptive evolution on
fitness landscapes in the presence of neutral networks with
the constant innovation property have a distinctly
different flavour from the case of ruggedness without
neutrality. The scenario of entrapment by local optima is
evaded; adaptation is characterised by neutral drift
punctuated by transitions between networks rather than
local hill-climbing. Furthermore, the formation of sub-
populations allows a population to search diverse areas of

a fitness landscape in parallel.
Regarding natural evolution, as argued in the

Introduction the issue of selective neutrality is becoming
difficult to ignore. Even though the concerns of
population geneticists and molecular biologists may often
seem far removed from our abstract fitness landscapes it is
pointed out in (Huynen, Stadler and Fontana 1996), for
example, that one issue of prime interest to evolutionary
biology, that of the fixation rate of nucleotide
substitutions, is closely related to the population diffusion
rate. One general approach that suggests itself is to
“reverse engineer” theoretical results; thus a theoretical
estimate of the diffusion rate might be deployed to
determine the degree of neutrality in a natural evolving
system.

There are also pungent implications for artificial
evolution. The GA community has long been fixated on
correlation structure as the primary factor in the efficacy
of evolutionary search. It may be of benefit to GA
practitioners to exploit the open-endedness and
parallelism implicit in adaptation on neutral networks.
One could, for example, envisage schemes whereby the
mutation rate is optimised on-line for maximal rates of
drift whilst staying below the (local) phenotypic error
threshold. Perhaps, also, a change of attitude to the issue
of coding of an optimisation problem may be fruitful.
Whereas the instinct of many workers is to minimise
coding redundancy as an extra burden on a search
procedure, they may be thus dooming their search to the
fate of entrapment by local optima. Of course it is not to
be supposed that there is a “free lunch” involved -
redundancy alone certainly does not imply neutral
networks with constant innovation. However, it seems that
some hard optimisation problems feature neutral networks
in a natural way (Thompson 1996). A fascinating area for
research would be to investigate in what sense neutral
networks might be “intrinsic” to a search problem.

The NKp family of landscapes, aside from the
intriguing near-invariance of the auto-correlation function,
may hopefully prove to be a useful test-bed for the study
of neutral evolution, given the combination of tuneable
ruggedness and neutrality. Areas that suggest themselves
for further research include the extension of results on
neutral networks to include recombination, the issue of
“nearly neutral” mutation and the effects of  “noisy”
fitness. It would also be of great interest to ascertain to
what extent the pattern of evolutionary dynamics that
emerges from RNA folding landscapes and NKp
landscapes is in any sense “generic”. A promising
approach may be to employ techniques from statistical
mechanics, as applied with some success by (van
Nimwegen, Crutchfield and Mitchell 1997) to the Royal
Road fitness landscapes, which feature neutrality, albeit
without the constant innovation property.
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An evolutionary run on an NKp landscape (N=60, K=12, p=0.99) population size 200, mutation rate 0.001
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