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1: CALCULATION OF PAIRWISE MUTUAL INFORMATION

It is clear from homogeneity that S; has the same distribution for any site ¢ and, similarly, that S;, S; have the
same joint distribution for any pair of neighbouring sites 4,j. Thus we have I,,,, = I(S; : S;) = 2H(S;) — H(S;, S;)
for any fixed choice of lattice neighbours 4,j (we note, though, that in sample the lattice-averaged form will yield a

more efficient estimator). Firstly, H(S;) = —>__ po logp, where p, = P(S; = ) and the sum is over spins o = +£1.
Firstly, we show that p, is as given in [1], eq. 6. In the calculations that follow, we make frequent use of the identity
§(o,0") =21 +00") (1)

for spins o,0’ = +£1. We have

P(S;=0)= ZP(S =s)P(S;,=0|S=5s) conditioning on S

=3(1+0(S)) = 5(1+oM) as N — oo

as required. Next we show that p,, is also as in [1], eq. 6. We have H(S;,S;) = =), / Poo’ l0gDser Where
Poor = P(S; =0,5; =0'), and

P(S;=0,8=0)=Y P(S=s)P(S;=0,5=0|8=s)
=) TI(s)d(si,0)8(s;,0”)
- i Z (s)(1+0s; + 0'sj + 00'sis;)
=114+ 0(S)+ ' (S;)+ 00" (S:S;)) = 11+ (0 + 0" )M — Lo0'U] as N — oo
as required. In the last step, we use (S;S;) — —%U as N — oo, which follows from I/ = % (H(S)). Ipy is thus as in

[1], eq. 5. Note that for T < T, the sign of M does not affect the result; i.e. I, is invariant to the direction in which
symmetry breaks (this applies to the other information measures too).

2: CALCULATION OF PAIRWISE TRANSFER ENTROPY

We start by proving the following lemma: for arbitrary lattice neighbours i, j,

(SiP;(S)) =0 (2)
(5:5;Pi(8)) =0 3)
(S;Pi(S)) =0 for T > T, only. (4)



Let A = {s|s; = +1} and A = {s|s; = —1}. Then

<SZP1(S)> = ZH Si z
_ 1 Z e FHE) P (g Z e FHE) P (g

seA+ sGA_

Now we note that as s runs through A}, s’ runs through A;
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proving (2). A similar argument works for (3). If T > T, then since symmetry is unbroken, for each equilibrium state
there is a corresponding equilibrium state with all spins reversed. For spin-reversed states, AH,;(s), and hence P;(s),
is unchanged, so that s;P;(s) has the opposite sign; (4) thus follows.

By homogeneity, the joint distribution of S;(t), S;(t — 1),S;(¢ — 1) is the same for any fixed pair of neighbour-
ing sites 4,5 and we have T, = H(S;(¢)| S;(t — 1)) — H(S;(¢)| Si(t — 1), 5;(t —1)). Firstly, H(S;(¢)| Si(t — 1)) =
=D 0 Po D g Por|o 108 Dor|o, Where we define p,/|, = P(Si(t) = 0’| Si(t — 1) = o). In the calculations that follow, we
make use of the following explicit expression for the Markov transition probabilities in the Glauber kinetic model:

1— %>, Pu(s) s =s
P(s'|s) =4 +P;(s) s=s . (5)
0 otherwise

We have

P(S;(t) = o', Si(t — 1) = 0)
=3 P(Si(t) =0, St —1) =0 | S(t) =, S(t —1) =) P(S(t) = 8/, S(t — 1) = 5)

8,8’

:ZH(S Siy O 2(5 "Is)
= N300 § oo |1 SR | +D200E o Bls) b b )

= ZH (si,0) < 6(ss,0") -~ Z [ 8,0 sf,o')} P;(s)

Note that the term in square brackets vanishes unless j =4

/ 1 / A
= ZH(S)(S(SZ',O') {(5(si,o ) — i [6(si,0") — 8(st,0")] Pi(s)}

s

= S (s00) { o) = o'si(e) | since st = s

S

:ZH(S)(S(SiyU)é(SiJ *UU ZH (si,0)Pi(s)

s



=4(0,0) ZH(S)é(sZ, - —00 ZH )3 (1 +0s;)Pi(s)

= 5(0,0')ps ~ 100'5 (P(S)) + 0 (S:PAS))
=6(0,0")ps — %oa’q since by (2) (S;P;(S)) vanishes,
with ¢ as in [1], eq. 11. So
_lae o
e R o (©
N po
Next, H(S;(t)] Si(t—1),S;(t—1)) = =3, 5 Poo’' D gnPo|oo' 108 Ps1|5or, Where we define porjgor =

P(S;(t)=0"| S;(t—1) =0,5;(t —1) = 0’), and we may calculate along the same lines as above (we omit details)
that

L4
N poo
Po''|oo! = (7)
i 4o’ o = o
Npocr’

with ¢, again as in [1], eq. 11. Now, working to 0(%),
= - Zpo' Zpa/\a' Ingo'\a + Zpaa’ Zpa”\a'd’ logpa'”|cra"
o o’ o0’ ol
= Zpa (pa\o 10gpo’|o +pfo|a 10gp70|0')

+ Zpoa’ (p0'|ao" logpa\oo’ +pfo'|(ro" logpfo'\ao")

o0’

1 gq 1 ¢ 1 g 1 g
= — o 1——— )1 1——— ——1 —
Zo:p [( Npg> Og( Npa>+Npa Og<Npg)]
1 do 1 4o’ 1 4o’ 1 qo!
oo 1-—— I 1—— — I —
+§p |:( Npaa) g< Npmr’>+Np0'o’ Og<Npa(r’
1 q 1 4o’ 1
=N 2 q(logm—logN—1>+NzU;qol <logpw/ —logN—1>—|—O<Nz)
1
N2

as N — oo, where in the penultimate step we use log(1 + 2/N) = /N + O(1/N?) as N — oo and in the last step
we use the identity > _, ¢o» = ¢, which follows directly from [1], eq. 11, so that the (log N 4 1) terms cancel. Thus in

the thermodynamic limit, we obtain [1], eq. 10.

= ;I qlogf+*2qa

o,0’

3: CALCULATION OF GLOBAL TRANSFER ENTROPY

Once again by homogeneity we have T, = H(.S;(t) | S;(t — 1)) — H(.S;(¢) |

S(t — 1)) for any fixed site ¢. The first
term has been calculated above and for the second term H(.S;(t)| S(¢ =

D) = =3 .1(s) X2, pi(0’[s) log pi(o’]s)



where p;(c’|s) = P(S;(t) = 0’| S(t —1) = s). We have

P(S;(t)=0"| S(t—1)=s) = ZP(Si(t) =0 |S(t—1)=35,St)=8)P(S(t)=5|S(t—1)=s)

= Zé(sg,a’)P(sﬂs) again, ' = s or 8/ = s for some j
s/

=3(s4,0") |1 - Jsz:Pj(s) + Zj:é(sg,ol);fpj(s)

1 .
= 8(s,0") = 5 D [8(s0.0") = 8(s, )] Py(s)
J
1 ,
= §(s4,0") — N [(5(si,0’) — 5(82,0’)] Pi(s)
1
= 0(s4,0") — Na'siP,»(s) ,
SO
1——=P(s) o' =s;
pi(els) =1 | Q
NPi(s) o' =—s
By an argument analogous to that for the pairwise case,
T, S log L —logN — 1 +iZH(s)P-(s)[lo Pi(s)—logN —1]+ O 1
gl = N g q g Dy g N - i g L5 g N2

_ 1 ¢ 15 . 1
__N;qlogpa—I—N(PZ(S)logR(S))—&-O(NQ)

as N — 0o, where in the last step we use ) II(s)P;(s) = (P;(s)) = 2q, so that again the (log N + 1) terms cancel.
Thus in the thermodynamic limit we obtain [1], eq. 13.

4: GRADIENT OF MUTUAL INFORMATION MEASURES AT CRITICALITY

In the thermodynamic limit M = 0 for 8 < ., so that —)__ p,logp, is constant with respect to 8 and pyo =

1(1 = o0'U). Thus from [1], egs. 5, 8 we may calculate that up to a constant
Tpw = 5(1+ 5U) log(1 + 5U) + 5(1 — SU) log(1 — 5U) (9)
1
o =B~ F) (10)

For convenience we change to the variable x = 23, and denote partial differentiation with respect to x by a prime.

From U = %(ﬁ}") we find

1+ 35U
I;w:ilog(1_§u> u’' (11)
1
ngl = —ial’ (12)

We want to evaluate these quantities as x — xz. from below, where z. = 25, = log (ﬂ + 1). We thus set =z, — ¢
inh

% we have ([1], TABLE I)

cosh” x

and let ¢ — 0 from above. Setting k = 2

U = —cotha 1+g(/€sinhx—1)K(/{) (13)
T



where

(14)

/2 d9

K(k) = / —_—

0 V1—k2sin®0
is the complete elliptic integral of the first kind [2]. Working to O(e), we may calculate
sinhz = 1 — V2 + O(£?) (15)
coshz = V2 — e+ 0(?) (16)
tanhx:%—%s—&— 0(?) (17)
cothz = V2 +¢+ O(c?) (18)

and to O (e?)
k=1-¢"+0() (19)
First we evaluate U as  — x. from below. From (13) we have

U=-(V2+e) k%ﬂ.d{(k&) + 0(e?) (20)

Now K(l — 52) — oo logarithmically as e — 0 [3], so that EK(l - 52) — 0and U — —/2 as x — z.. from below. Thus
from (11) and (12) we see that both I, and I}, = —5x.U" as x — x. from below. From (13) a straightforward
calculation yields

1 8 1 4 (ksinhz — 1)
I _ -z K - K’ 21
u sinh « cosh xu 7 cosh? z (1) + ™ sinh z (%) (21)
Now
K/ (k) = ——— B(x) - ~K(x) (22)
"= k(1 — K2) AN
[2] where

/2
E(k) = / V1 — k2sin® 0 df (23)
0

is the complete elliptic integral of the second kind [2]. Some algebra yields

1 4 (ksinhz —1)? 2
'=— - E(k) — = coth’z K 24
u sinhxcosha:u + 7 k(1 — Kk2)sinhx (x) T (x) (24)
Using E(1) =1 [2], we find
4 4
U -1+~ --=-K 25
=1+ - - —K(x) (25)
. . , . . . 8Ipw 1 aIql
as e — 0. But K (k) — oo logarithmically as k — 1, so U/ — —oo which implies 95 ,N—a‘ﬁ — 400 as f — B, from
lw 101
below and finally, since % = szaiT, we have 68; , N% — —oo logarithmically as T — T, from above.
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