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Abstract

We examine the role of information-based measures in detecting and analysing phase
transitions. We contend that phase transitions have a general character, visible in
transitions in systems as diverse as classical flocking models, human expertise, and
social networks. Information-based measures such as mutual information and transfer
entropy are particularly suited to detecting the change in scale and range of coupling
in systems that herald a phase transition in progress, but their use is not necessarily
straightforward, possessing difficulties in accurate estimation due to limited sample
sizes and the complexities of analysing non-stationary time series. These difficulties are
surmountable with careful experimental choices. Their effectiveness in revealing
unexpected connections between diverse systems makes them a promising tool for
future research.
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Review

Diamonds are not a good very long term investment! They are steadily turning into
graphite. It will take millions of years, but the most stable form of carbon at room temper-
ature and pressure is graphite. Thus diamonds will undergo a phase transition to graphite,
albeit over a very long timescale.

When we normally think of phase transitions we think of the states of matter, ice melt-
ing to water or water turning to steam. They are order/disorder transitions. In graphite
the carbon atoms are linked together in layers. The layers can slide over one another
giving graphite its excellent lubricant properties. In diamond the carbon atoms are linked
together in a three dimensional structure with each carbon at the centre of a tetrahedron
linked to carbons at all four corners. Thus carbon has to go through a major structural
reorganization to change from diamond to graphite – the way the atoms are connected
together changes dramatically.

We can easily see the outcomes of a phase transition of diamond to graphite or a
solid turning into a liquid. But can we construct measures which go through a min-
imum or maximum at the transition? This turns out to be a surprisingly difficult
question to answer. It gets even more difficult if we look for measures which can
apply to systems in general, not just to the physical systems above. Organizations, soci-
eties, economies, stock markets all go through radical reorganization, but should these
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changes be called phase transitions? This paper explores a metric based on information
theory (Shannon 1948a) which is empirically a quite general indicator of a phase transi-
tion in progress. It then considers a much newer metric which, on examples to date, might
be a predictor of impending transitions: the crashing of stock markets is an example of
such a transition, early warning of which, would be highly desirable.

In this paper we explore two closely related phase transitions which appear in social
economic systems. One is herding behaviour, where individuals behave more and more
in the same way. The second is the connectivity avalanche, in which all of the elements of
a system are becoming connected to one another.

To begin with we explore theoretical issues. Section “Overview of phase transitions
and metrics” discusses the characteristics of phase transitions and the the peak in
mutual information that usually accompanies them. It also introduces the idea of transfer
entropy, a recent extension to mutual information, which in some cases is known to peak
before a transition to synchronous behaviour. With this background, the first example, in
section “Mutual information for phase transitions in a simple flocking model”, considers
a computational example derived from physics. The computation of mutual informa-
tion from continuous data is tricky, involving difficult decisions on bin sizes and other
statistical issues, which are also considered in this section. The next two sections discuss
phase transitions in two areas in the social/humanities domain. Section “Phase transitions
in socio-economic systems” discusses how peaks in mutual information occur around
stock market crashes. Section “Phase transitions in the acquisition of human expertise”
discusses the reorganization of strategy in the human brain during the acquisition of
expertise. Section “Inferring social networks with transfer entropy” discusses how trans-
fer entropy is calculated in practice using the example of inferring social networks from
time series data. Finally we conclude in section “Conclusions” with some opportunities
for further work.

Overview of phase transitions and metrics
The simple physical notion of a phase transition, such as ice melting to water, is surpris-
ingly hard to transfer to non-physical systems, such as society and organisations. This
section will try to first look at the physical intuition behind the transition and then move
on to look at some of the possible metrics.

The essential feature of a phase transition is a structural reordering of some kind, usu-
ally an order-disorder change. This usually involves some sort of long range order –
everything gets connected so that things can be reconnected in a different way. In physical
systems, we can define an order parameter. Transitions occur around particular values of
the order parameter. We can make this idea more intuitive by looking at random graphs,
section “Random graphs and phase transitions”.

A peak in mutual information, (section “Mutual information” is a widespread measure
of a phase transition (Gu et al. 2006; Wilms et al. 2011). Mutual information theory is
a very general indicator of critical transition, which incorporates all correlation effects
and all nonlinear behaviour as well. Demonstrations for specific systems include the Vic-
sek model of section “Vicsek model background” and work by Matsuda et al. (1996), who
obtained the mutual information for Ising systems, demonstrating that it was a good mea-
sure for critical behaviour in such systems that have second order phase transitions. There
are, however, two distinct classes of phase transitions that are relevant to this discussion.
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Second order phase transitions are indicated by peaks in mutual information and whereas
first order phase transitions are indicated by discontinuities in the entropy, rather than
the mutual information, see (Solé et al. 1996) for a brief discussion of the general differ-
ences in such systems. First order phase transitions are caused by discontinuities in the
first derivative of a thermodynamic variable rather than the second derivative as is the
case with second order phase-transitions, hence their names. For a discussion of these
issues in terms of complex systems, and computation at the edge of chaos in particular,
see (Langton 1990a).

There are other metrics. Recently, for example, Fisher Information, has been used in
this context by Prokopenko et al. (2011). Another common indicator is critical slow-
ing down, where the time taken to respond to perturbation increases near a transition
(Dai et al. 2012), often accompanied by logarithmic oscillations. The latter have been
extensively studied in stock markets by Sornette (2001).

Although the transitions referred to so far are of a singular nature, there are other mech-
anisms. In some cases a system may flicker, across the transition (Scheffer et al. 2012),
spending increasing amounts of time in the alternative state. Thus flickering can also be
an indicator of an impending irreversible system change.

The attraction of mutual information for this paper is its intuitive link to large scale
order near the transition and its close relationship to transfer entropy (section “Trans-
fer entropy and granger causality”). Although mutual information and related indicators
co-occur with phase transitions across many systems, they have two shortcomings in
terms of prediction: the precise timing depends on many factors and an exact prediction
of when a transition will occur is fraught with difficulty; and the sign of a transition is not
determined. Work remains to be done on how the peak in mutual information relates to
the ordered and dis-ordered phases.

Random graphs and phase transitions

The idea of a random graph, introduced by Erdős and Rényi (1960), is to start with a set of
N, nodes and add edges at random. At first the edges create small graph fragments. The
total number of possible edges (without duplicates) is of the order of N2 but for quite a
small number of edges, of order N, large components form. Now as adding an edge may
join two components together, the total connectivity rises very rapidly until every node in
the graph becomes connected by some path to every other node. This rapid rise is referred
to as the connectivity avalanche and represents a phase transition.

Before the connectivity avalaanche, very few nodes are connected. Since the connected
components are small the path lengths between nodes are also small. But as the compo-
nents get rapidly bigger during the avalanche, more and more nodes become connected,
but there is often only a single long path between them. As more nodes are added after
the connectivity avalanche, they effectively provide short cuts and the average path length
goes down again. This increase in path length is the analogue of the long range order seen
during a phase transition.

As Green (Green and Newth 2005) showed, random graphs underlie many complex
systems; thus a rigorous mapping to a random graph, demonstrating an isomorphism,
guarantees that the system will have a phase transition. Although Green has done this for
some example systems, the underlying principle is generally useful even where an exact
isomorphism has not been demonstrated.
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Mutual information

Shannon (1948a) defined mutual information in the course of obtaining the maximum
information which could be transmitted across a channel. It is a functional, mapping from
probability distributions of random variables to scalars. In Shannon’s formulation, for a
random variable X defined on a discrete alphabet with probability mass function p(x), the
information, qi, sometimes called the surprisal, obtained from an event xi is given, in bits,
by Eq. 1.

qi = −log2(p(xi)) (1)

If we average the information according to the probablity of each event occurring, we
end up with the Shannon entropy, Eq. 2.

H(X) ≡ −
∑

x
p(x) log2 p(x) (2)

With some caveats, this has the familiar interpretation as the average length of the
shortest description of an observation from that variable, or how ‘uncertain’ a particular
random variable is (Cover and Thomas 2006). Mutual information between two random
variables, X and Y with joint probability mass function p(x, y) is given

I(X; Y ) ≡ H(X) + H(Y ) − H(X, Y ) (3)

= −
∑
x,y

p(x, y)log2
p(x, y)

p(x)p(y)
(4)

Mutual information is thus a functional of the joint distribution of X and Y. It is
symmetric in X and Y, and can be given a natural interpretation as

the reduction in uncertainty in one variable from knowing the other, or the amount of
information about X contained in Y.

Derivations and implications of these properties are given elsewhere (Cover and Thomas
2006)a. It forms a measure of interdependence of two variables. Unlike correlation, how-
ever, it is sensitive to nonlinear interactions, works on general nonparametric inference,
and naturally performs well on discrete data. These qualities have led to an interest in the
use of mutual information-based measures to automatically detect diverse classes of asso-
ciations in data sets with few assumptions as to the functional form of the relationship
(Reshef et al. 2011; Slonim et al. 2005).

Transfer entropy and granger causality

Mutual information (and its conditional variant), applied to stochastic processes, mea-
sure contemporaneous statistical dependencies between stochastic dynamical processes
evolving in time; that is, given joint processes Xt , Yt , the mutual information I(Xt : Yt) at
a given time t might be read as:

The amount of information about the present of X resolved by the present of Y.

However, it would seem desirable to have an information-theoretic measure capable of
capturing time-directed statistical dependencies between processes - information flow,
if you will. To this end, the most obvious extension to contemporaneous mutual infor-
mation is time-delayed (lagged) mutual information between processes. Thus one might
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consider, say, I(Xt : Yt−1, Yt−2, . . .) as a candidate measure for directed information flow
from the pastb of Y to the present of X. This quantity might be read as:

The amount of information about the present of X resolved by the past of Y.

There is, however, a fundamental shortcoming to lagged mutual information as a mea-
sure of directed information flow: it fails to take into account shared history between
processes. In his seminal paper (Schreiber 2000), Schreiber recognised that this could
lead to spurious imputation of directed information flow and introduced a new measure
(Kaiser and Schreiber 2002; Schreiber 2000) which explicitly takes account of a “shared
past” between processes. Formally, the transfer entropy from process Yt to process Xt may
be defined as:

TY→X ≡ I(Xt : Yt−1, Yt−2, . . . |Xt−1, Xt−2, . . .) (5)

Thus in contrast to lagged mutual information, the past of the process X is conditioned
out. Eq. (5) might be read as:

The amount of information about the present of X resolved by the past of Y given the
past of X.

An elegant, minimal example illustrating the necessity of conditioning out the past of
the target process may be found in (Kaiser and Schreiber 2002). Note that the processes
Xt , Yt in (5) may be fully multivariate. Furthermore, given a third (possibly multivariate)
jointly stochastic process Zt , say, any common influence of Zt on Xt and Yt may be taken
into account by conditioning, in addition, on the past of Z:

TY→X|Z ≡ I(Xt : Yt−1, Yt−2, . . . |Xt−1, Xt−2, . . . , Zt−1, Zt−2, . . . (6)

This quantity is known as conditional transfer entropy, and is in particular used to define
pairwise-conditional information flows

TXi→Xj|X[ij] i �= j (7)

between component variables Xi → Xj of the system, conditioned on the remaining
variables X[ij], where the notation denotes omission of the variables Xi, Xj. The set of
pairwise-conditional information flows may be viewed as a weighted, directed graph, the
i, jth entry quantifying information flow between individual elements Xi, Xj of the system.

Clive Granger won the Nobel Prize in economics for a closely related parametric mea-
sure in econometric theory (and, more recently, applied extensively to neural time series
data (Ding et al. 2006)), the Wiener-Granger causality (Geweke 1982; Granger 1969;
Wiener 1956). Here, rather than “information flow”, the measure is designed to reflect
“causal” influence of one process on another, premised on a notion of causality whereby
a causal effect temporally precedes and helps predict its influence. The measure is based
on linear vector autoregressive (VAR) modelling: suppose that the (again, possibly multi-
variate) “predictee” process Xt is modelled as a vector linear regression on its own past,
as well as on the past of the “predictor” process Yt :

Xt = A1Xt−1 + A2Xt−2 + . . . + B1Yt−1 + B2Yt−2 + . . . + εt (8)

We may consider that, given regression coefficients Ak , Bk , (8) furnishes a prediction for
the present of the variable X, based on its own past and that of the variable Y. A suitable
measure for the magnitude of the prediction error is given by the generalised variance
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(Barett et al. 2010), defined as the determinant |cov(εt)| of the covariance matrix of the
residuals εt . Given a realisation of the processes, it may be shown that the generalised
variance is proportional to the likelihood of the model (8); regression coefficients Ak , Bk
may thus be calculated within a maximum likelihood framework so as to minimise the
generalised variancec.

We may now compare the regression (8) with a prediction model for X based only on
its own past:

Xt = A′
1Xt−1 + A′

2Xt−2 + . . . + ε′
t (9)

We then say that Y Granger-causes X iff the full model (8) furnishes a significantly
better prediction than the reduced model (9). By “significantly better”, we mean that the
null hypothesis of zero causality:

H0 : B1 = B2 = . . . = 0 (10)

should be rejected at a given significance level. Now the linear regression model (9) is
nested in (i.e. is a special case of ) the model (8), and standard theory (Hamilton 1994) tells
us that the appropriate statistical test for the null hypothesis H0 of (10) is a likelihood-ratio
test. The Granger causality statistic is then formally the log-likelihood ratio

FY→X ≡ log
|cov(ε′

t)|
|cov(εt)| (11)

This quantity may be read as (cf. transfer entropy):

The degree to which the past of Y helps predict the present of X over and above the
degree to which X is already predicted by its own past.

By another classical result (Wilks 1938) the asymptotic distribution of FY→X under the
null hypothesis is χ2 with number of degrees of freedom equal to the difference in the
number of parameters between the full and reduced models; this enables significance test-
ing of Granger causalityd. Parallel to the transfer entropy case, a third jointly distributed
process Zt may be conditioned out by appending its past to both the full and reduced
regressions, yielding the conditional Granger causality (Geweke 1984) FY→X|Z . As in (7),
pairwise conditional causalities

FXi→Xj|X[ij] i �= j (12)

may be calculatede.
A powerful feature of Granger causality is that it admits a spectral decomposition;

that is, Granger-causal influence may be measured at specific frequencies, or in specific
frequency bands:

FY→X = 1
2π

∫ π

−π

fY→X(ω) dω (13)

where fY→X(ω) is the Granger causality at frequency ω. We refer the reader to (Barnett
and Seth 2011; Geweke 1982, 1984) for definitions and details.

For both transfer entropy and Granger causality, the issue of stationarity arises.
Although formally both quantities are well-defined for nonstationary processes—the
result then depends on the time t—empirically, estimation will generally require sta-
tionarity. The exception is where multiple synchronised realisations of the processes are
available, but this is rarely the case in practice. Otherwise, nonstationarity must be dealt
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with by windowing time series data; that is, dividing it into approximately stationary
segments. Then a trade-off must be made between shorter window length, where estima-
tion suffers through lack of data, and longer window length, where stationarity may be
only approximate; in either case there is a risk of spurious inference. Pre-processing (e.g.
detrending, differencing, filtering,. . . ) may help improve stationarity.

Both measures, it may be noted, are invariant under a rather broad class of transfor-
mations. Barnett et al. (Barnett et al. 2011; Geweke 1982), showed that Granger causality
is invariant under arbitrary stable, invertible digital filtering. Transfer entropy is invari-
ant under a still wider class of nonlinear invertible transformations involving lags of the
respective time series. In practice, though, even theoretically invariant transformations
may impact causal inference (Barnett and Seth 2011).

Regarding the relationship between transfer entropy and Granger causality, it is proven
in (Barnett et al. 2009a) that in the case where all processes have a jointly multivariate
Gaussian distribution, the measures are entirely equivalent (and that, furthermore, a sta-
tionary Gaussian autoregressive process must be linear (Barnett et al. 2010)). Where the
measures differ markedly is in the type of data to which they are naturally applicable,
and the ease with which empirical estimation may be effected. Granger causality, based
as it is on linear regression, is in general not suited to causal inference of discrete-valued
data. On the other hand, for continuous-valued data, estimation of Granger causality
is generally straightforward, as the comprehensive and well-understood machinery of
linear regression analysis applies. There are, furthermore, mature and reliable software
packages available for Granger casual estimation (Cui et al. 2008; Seth 2010). Further
advantages of Granger causality are that (i) insofar as it is model-based with a known
likelihood function, standard techniques of model order estimation (such as the Akaike
or Bayesian Information Criteria (McQuarrie and Tsai 1998)) may be deployed, and (ii)
asymptotic distributions for the sample statistic are known. For transfer entropy it is not
clear how much history should be included in estimates, nor how the statistic may be eas-
ily significance tested, beyond standard non-parametric (but computationally intensive)
methods such as permutation testing (Anderson and Robinson 2001; Edgington 1995).
However, recent work in this area by Barnett and Bossomaier (2012), goes some way to
resolving these issues. If a fairly general parametric model is assumed, then the transfer
entropy again becomes a log-likelihood ratio, as for the Granger Causality. Moreover, its
distribution is χ2, enabling straightforward statistical estimates.

It is also known (Kaiser and Schreiber 2002) that, for continuous variables, in-sample
estimation of transfer entropy is problematic insofar as (in contrast to mutual informa-
tion) the sample statistic in general fails to converge under naïve refining of state-space
partitioning. Thus more sophisticated but less well-understood (and computationally
expensive) techniques such as adaptive partitioning or kernel estimation must be used.
Nonetheless, transfer entropy is attractive due to its non-parametric “model agnostic”
nature, particularly when interactions are likely to be highly nonlinear and hence unsuited
to linear modelling. Table 1 shows a summary comparison of the measures.

A promising application of transfer entropy is in the construction of information-
theoretic complexity measures. In (Tononi et al. 1994) the authors introduce a “neural
complexity” metric CN (X) designed to capture a notion of network complexity based on
integration/segregation balance (Barnett et al. 2009b). The idea is that a multi-element
dynamical system exhibiting “complex” behaviour will tend to lie somewhere between
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Table 1 Comparison between transfer entropy and Granger causality

Feature Transfer entropy Granger causality

Parametric No Yes: linear VAR model

Predictive No Yes

Frequency decomposition No Yes

Transformation-invariance Nonlinear filter Linear filter

Estimation in sample Hard Easy

Model order estimation Unknown AIC, BIC, cross-validation. . .

Statistical distribution Unknown Known (asymptotic)

Software implementation Ad hoc Many available packages

extremes of highly integrated, where every element tends to affect every other, and highly
segregated, where elements behave almost independently. In the former case, a sys-
tem will generally behave chaotically, while in the latter it will tend to decompose into
simple independent processes (cf. “edge-of-chaos” phenomena (Langton 1990b)). These
correspond to the random graph with few edges and the highly connected graph in
section “Random graphs and phase transitions”. The complex behaviour lies at the phase
transition, or connectivity avalanche.

The original Tononi-Sporns-Edelman measure CN (X) averages mutual information
across bipartitions of the system (Figure 1, left-hand figure); it is, however, extremely
unwieldy to calculate in practice and, moreover, fails to capture information flow as
expounded above.

Seth (Seth et al. 2011, 2006) has developed an alternative Granger causality-based
measure, causal density, which is both more computationally manageable and captures
complexity as mediated by time-directed influences; it admits a transfer entropy-based
analogue:

cd(X) ≡ 1
n(n − 1)

∑
i�=j

TXi→Xj|X[ij] (14)

where n is the number of variables; i.e. causal density is the average of the pairwise-
conditional information flows (7) (Figure 1, right-hand figure). Again, cd(X) captures
integration/segregation balance: for a highly integrated system the measure assumes a
low value, since for each pair of variables Xi, Xj much of the information flow Xi → Xj is
already resolved by the remaining variables X[ij], and conditioned out. For a highly seg-
regated system the measure also assumes a low value, since the lack of coupling between
variables results in comparatively few significant pairwise information flows.

X (k)

X~ (n−k)

X

X

i

j

Figure 1 The Tononi-Sporns-Edelman neural complexity measure CN (X) (left figure) and Seth’s
causal density cd(X) (right figure).
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Computational aspects of mutual information
There are numerical problems associated with the computation of mutual information.
Of these there are two very obvious and related issues. The first is a consequence of the
naive, i.e. fixed and equidistant, discretisation: some of the discrete bins (i) may contain
no elements and therefore have a probability pi = 0 while at the same time some pi,j �= 0
and in these cases the mutual information diverges, therefore both pi and pj need to be
absolutely continuous (Lin 1991) with respect to each other to avoid such issues. Next
we discuss how both of these issues can be addressed in practice, the first by defining a
form of mutual information that is naturally continuous and therefore does not require an
ad hoc discretisation step and the other addresses the case where, in a naturally discrete
system numerical artefacts resulting in divergences can be avoided.

The choice of number of bins, bin boundaries and which estimator to use are all the sub-
ject of intensive research. Techniques such as adaptive partitioning (Cellucci et al. 2005;
Darbellay and Vajda 1999) exist to optimise the bin selection. Bias-corrected estimators
from histograms are also numerous, including shrinkage (Hausser and Strimmer 2009),
Panzeri-Treves (1996), the Nemenmen-Shafee-Bialek (Nemenman et al. 2002; Wolpert
and Wolf 1995) estimator, quadratic extrapolation (Strong et al. 1998).

For this experiment, where large data sets are to be handled, the most computation-
ally rapid choices are paramount. To this end, Wicks et al. (2007) selected equal-width
bins, using an intuitive length scale of 2R as the width of the bin (with number of bins
equal to the L2R). Discretising the signal into bins, we calculate MI using an uncorrected
plugin estimator between (presumed scalar) variables X and Y, based on occupancy val-
ues of the joint histogram. The term “plugin estimator” is used in the standard statistical
sense: we simply substitute our estimated values for the distribution into the formula for
mutual information, rather than construct an estimator by other means such as maximum
likelihood.

Cellucci et al. (2005) show that equal bins can give very poor results, particularly when
the datasets are small. They propose an adaptive binning algorithm in which the bins
for X and Y are sized so that each contains the same expected number of values. The
computational overhead of this procedure is at worst n log n, corresponding to sorting
each of the X and Y values.

Explicitly, for the histogram matrix Q of bin occupancy counts, we estimate the joint
probability mass function p by normalising

p̂X,Y (x, y) = Qxy∑
i

∑
j

Qij
(15)

Then marginal probabilities can be estimated

p̂X(x) =
∑

j
p̂X,Y (x, j)p̂Y (x, y) =

∑
i

p̂X,Y (i, y) (16)

from which the mutual information follows from Eq. 4.
For NE adaptive bins along each axis the MI estimate simplifies to

Î(X, Y ) =
∑

x

∑
y

p̂(x, y) log2 N2
e p̂(x, y) (17)

where Ne is the number of bins.
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This estimator is subject to finite sample bias (Treves and Panzeri 2008), but for the
purely comparative purposes of our experiment is empirically sufficient, and computa-
tionally very cheap.

The first is that while mutual information is well defined for continuous systems as
shown at least as early as (Shannon 1948a), this is often difficult to implement in prac-
tice as it does not give rise to an obvious algorithm that does not first involve an initial
discretisation step, thereby losing the information content of possibly important relation-
ships.The second issue is that of systems that are naturally continuous. The continuous
analogue of entropy and mutual information given in equations 2 and 3, the derivation of
the entropy can be found in (Shannon 1948b):

Hcont(X) = −
∫

X
p(x) log(p(x))dx (18)

Icont(X; Y ) =
∫

X

∫
Y

p(x)p(y) log
(

p(x, y)
p(x)p(y)

)
dxdy (19)

where x and y are continuous variables. Such continuous systems occur in research on
channel coding (MacKay 2003), chaotic dynamics (Granger and Lin 1994) and signal
detection theory (Parra et al. 1996) amongst many others. A natural first estimate of 19
is to divide the continuous spaces X and Y into fixed bin sizes of δX and δY and uses
the count of the occupancy of each bin in order to estimate the probability of bin occu-
pancy. This has been used successfully in many different studies that have discretised
continuous variables but it has been pointed out that it is often difficult to estimate the
mutual information with such an approach (Kraskov et al. 2004). Other estimators include
Gaussian-kernel inference, (Moon et al. 1995), spline estimators (Daub et al. 2004), and
k-nearest neighbour estimators (Kraskov et al. 2004).

An alternative that retains much of the continuous properties of Icont(X; Y ) is provided
in (Kraskov et al. 2004). The key idea is to measure the distance between element ei and
its nearest neighbour ej in the x-direction and ek in the y-direction. For every element
ei, i ∈ {1, . . . , N} located in the continuous space Z = X × Y a rank ordering of distances
between i and all other elements can be constructed based on a distance d(ei(x), ej(x))

(distance between elements in the x-direction) and d(ei(y), ek(y)) (distance between ele-
ments in the y direction). The number of points that lie within the vertical strip defined
by d(ei(x), ej(x)) are then counted: nx and similarly for d(ei(y), ek(y)): ny. This is called
k = 1 clustering as it is based on the nearest neighbour, in the case of the second nearest
neighbour being used to define d(ei(x), ek(x)) and d(ei(y), ek(y)) then k = 2 etc. For a sys-
tem with N interacting particles in Z = X × Y the mutual information is approximated
by (this is I(2) in (Kraskov et al. 2004)):

Icont(X; Y ) ≈ ψ(N) + ψ(k) − 1/k − 〈ψ(nx) + ψ(ny)〉 (20)

where ψ(n) is the Digamma function: ψ(n) = �−1(n)d�(n)/dn, �(n) = (n − 1)! (as n
is a simple counting function and so always an integer) and 〈. . .〉 is the average over all i
∈ {1, . . . , N} and across all samples.

As a numerical approximation this is an effective method that eliminates many of the
difficulties and scales as O(n). Kraskov et al. (2004) have shown that it is an effective esti-
mate of the mutual information between two coupled Gaussians where the exact solution
is known as well as for gene expression analysis, independent component analysis and
data clustering (Kraskov et al. 2004). However, some data is naturally discrete in nature



Bossomaier et al. Complex Adaptive Systems Modeling 2013, 1:9 Page 11 of 25
http://www.casmodeling.com/content/1/1/9

and the development of accurate measures of mutual information to accommodate this is
an important area of recent research.

Kraskov’s algorithm described above can be thought of as an adaptive partitioning tech-
nique in the sense that the kth nearest neighbour decides the width of a bin counting
technique. An alternative is to start by discretising the space Z = X × Y into a grid and
then adapting the bin sizes such that each ‘vertical’ or ‘horizontal’ strip in phase space
has the same number of elements. The joint probability is then the occupancy of the
rectangles formed by the intersection of these equally populated strips in X- and Y -space.

The calculations used in Cellucci et al’s work (Cellucci et al. 2005) starts with N, the
number of elements in Z-space, and the number of partitions that will be used to divide
up the X- and Y -axes, labelled Ne. Each ith partition of the X-axis contains, by definition,
a set SX(i) of sizeN/Ne elements, equally each jth partition of the Y -axis contains a set
SY (j) of size N/Ne. The joint probability PX,Y (i, j) = count(SY (j)∩SX(i))/N , i.e. the count
of the size of the intersecting set of the X and Y partitions divided by the total number of
elements in the system. The mutual information is then:

I(X; Y ) ≈
Ne∑
i=1

Ne∑
j=1

PX,Y (i, j) log(N2
e PX,Y (i, j)) (21)

where the N2
e term accounts for the case of statistically independent distributions of PX(i)

and PY (j).

Mutual information for phase transitions in a simple flocking model
Herding or flocking behaviour has been the subject of many studies and it serves here
as an illustration of the computation of mutual information and its attendant difficulties.
Despite the apparent simplicity of mutual information measures, there is no one simple
way which works in general for every data set. In the fields of bioinformatics and neu-
roinformatics in particular, much research has been done on the estimating of entropies
from samples. Dozens of estimators and many code-bases (Daub et al. 2004; Hausser and
Strimmer 2009; Ince et al. 2009; Slonim et al. 2005) are available for the task.

For observations generated by a simple parametric model, the mutual information
functional may sometimes be calculated analytically from the underlying distribution.
However, in the case that we wish to use a non-parametric model for our distributions,
the procedure is rather more complicated.

Vicsek model background

To eliminate the complexities of real-world data, we use a synthetic data set, the well-
studied model of self-propelled particles (SPP) of Vicsek (Vicsek et al. 1995). The SPP
model is one of many accepted to undergo a phase transition with varying noise as a
control parameter.

The SPP algorithm is a special case of Reynold’s “Boids” flocking algorithm, (Reynolds
1987), remarkable for the small set of rules required to produce its rich behaviour. It has
the virtues of trivial implementation, topologically simple configuration space, as there
are no repulsive forces, and a small number of control parameters. Moreover, there is
no known closed-form analytic relationship between system order and control parame-
ters, much as with many experimental data sets. Details of the model and analysis of its
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phases of behaviour are extensively studied elsewhere (Aldana et al. 2007; Chaté et al.
2008; Czirók and Vicsek 2000; Grégoire and Chaté 2004; Wicks et al. 2007).

The SPP process is given as:

The only rule of the model is: at each time step a given particle driven with a constant
absolute velocity assumes the average direction of motion of the particles in its
neighborhood of radius r with some random perturbation added (Vicsek et al. 1995).

Vicsek’s original specification is for an ensemble of particles moving in two spatial
dimensions on the unit square with periodic (i.e. toroidal) boundary conditions. The
model admits straightforward generalisation to other spatial dimensions, and alternate
interaction topologies, but it is this original configuration that is used here. The system
is parametrised by the temperature-analog noise parameter η, a fixed particle absolute
speed v0, a number N of particles, an interaction radius, R, and a system side-length L.
Particles travel at constant speed with random changes in direction as specified by the
noise parameter. When two particles come within the interaction radius, their directions
of movement are moved closer together. An order parameter, the magnitude of mean
velocity (or “mean transport”), reflects the phase transition (Figure 2 with the side-length
is set to 1 and particle interaction radius R to 1/L).

Initial conditions assign to all particles positions uniformly at random on the unit square
and velocities with a uniformly distributed angle. The simulation is run until the transient
behaviours have died out, at which time the system reflects a degree of order dependent
upon the noise – see Figure 3.

For different values of the noise control parameter, the system exhibits qualitatively dif-
ferent behaviour: for low noise parameters, the system exhibits spontaneous symmetry
breaking, with particles tending to align in one specific direction. At high values of the
noise parameter the particles approximate a random walk (and for maximal noise is pre-
cisly equal to a random walk). In between the system exhibitions transient regularity, and
“clumpy” clustering.

Figure 2 Order parameter versus noise in the Vicsek SPP model. Parameters: v0 = 0.00265,
R = 1/L = 0.0177, 1000 particles. Fitted line reflects a locally linear nonparameteric estimate of order, error
bars reflect conditional MSE estimates.
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(a)

(c)

(b)Low driving noise. η = 0 Low intermediate driving noise.
η = 0.785

High intermediate driving noise.
η = 0.98

(d) High driving noise. η = 1.96

Figure 3 One time step of the two dimensional Vicsek model, with various driving noise levels.
Parameters: v0 = 0.00265, R = 1/L = 0.0177, 1000 particles. (a) Low driving noise. η = 0. (b) Low
intermediate driving noise.η = 0.785. (c) High intermediate driving noise. η = 0.98. (d) High driving noise.
η = 1.96.

Wicks et al. (2007) then demonstrated under some simplifying assumptions that there
was also a peak in mutual information around the same noise values as for the phase-
transition. This is shown in Figure 4 reproduced from their paper.

This model, therefore, serves as a good illustration of the subtleties of calculating
mutual information. It also serves as a possible heuristic for the economic phase transi-
tions of section “Overview of phase transitions and metrics” whereby market traders can
self-organise to ‘flock’ in their trading behaviour.

Phase transitions in socio-economic systems
The stock market is one complex system we would all like to understand and predict.
Unfortunately it goes through bubbles and crashes, anticipated sometimes, but rarely pre-
cisely predicted. These phenomena seem like phase transitions: the market undergoes a
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Figure 4 Co-occurrence of mutual information peak and the magnetic susceptibility phase transition
as modelled by Vicsek. The mutual information, I (circles) peaks at approximately the same point as the
susceptibility, χ (crosses) and with the critical noise ηC = 1.33 marked. The system parameters are: interaction
radius, R = 1, time step δt = 1; particle speed v0 = 0.15; and particle density ρ = 0.31 per unit area with
arbitrary length units. 3000 particles were used. Reprinted from Wicks et al. (2007) Figure 5 with permission.

radical reorganisation. Harré and Bossomaier (2009) showed that they are indeed phase
transitions, exhibiting a peak in mutual information.

They calculated mutual information between pairs of equities in five different industry
and commercial sectors. Figure 5 shows the results for a period of over a decade.

For each equity the daily deltas were computed, the summary of the day’s trading which
indicates if the stock fell or rose overall. The distributions of these were then used to
calculate the mutual information between stocks (Harré and Bossomaier 2009).

The vertical red band in late 2002 shows a peak in maximum mutual information for
almost all equities. This corresponds to a significant correction in the Dow Jones index,
but unlike other notable crashes does not have a name. In the bottom right hand corner

Figure 5 Mutual Information for a set of equities over a twelve year period. Reprinted from Europhysics
Letters (Harré and Bossomaier 2009).
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there is another red patch. The lowest numbered equities are the financial stocks. This
fledgling tradition in late 2005 is undoubtedly linked to the subprime meltdown.

These are empirical results and as such there is no explicit order parameter. However,
the Vicsek self-propelled particle model of section “Mutual information for phase tran-
sitions in a simple flocking model” provides an econophysical analogy of a stock market
with two equities. If we consider each particle to be a trader and the axial position to be
the perceived instantaneous investment value of a stock, then any trader has a view at any
given time of the value of each stock. Her velocity is indicative of the rate of change of
perception of value of each stock, and thus the trade likelihood. Since in most cases stock
perceptions are cyclical, periodic boundary conditions are not too implausible.

Just as a change in order parameter can elicit behaviour change from the SPP model,
so can an endogenous change in market optimism induce variation in stock market per-
ceptions across all traders. As they approach the phase transition from the random side,
stock movements become increasingly synchronised. In the ordered phase all traders are
moving in the same direction and the market is surging or crashing.

The Vicsek phase transition is visible in the average velocity of the particles (traders).
But empirically we observe the mutual information peak in the equity prices. We would
expect this though. In the random phase there are no links between the trades of differ-
ent equities and their prices are uncorrelated. In the ordered phase their prices changes
are rigidly locked, but the entropy in their pricing is now very low. Thus the mutual infor-
mation must peak somewhere in the intermediate state. Note that, in this interpretation,
the phase transition would begin as the crash or bubble is forming: it is not the bubble or
crash itself, but the need for sufficiently wide time windows makes this distinction moot.

The theoretical underpinnings of bifurcations and phase transitions in economics and
finance have been around for many years. In the 1970’s the mathematical framework of
‘catastrophe theory’ (Rosser 2007; Zeeman 1980) became a popular field of research as
it provided one of the first formalisations of macro-economics that included a notion
of both an equilibrium and non-linear state transitions (Zeeman 1974). This formalism
provided a parsimonious description of bull and bear markets and market crash dynamics
based on bullish bubbles using a small number of macro-economic parameters such as
the proportion of chartists (traders who base their strategies on historical prices) and
the proportion of fundamentalists (traders who base their strategies on the underlying
business).

Such theoretical considerations have played an important role in socio-economic sys-
tems, but it was not until the onset of massive databases and high performance computing
that it became possible to empirically study the ‘microscopic’ dynamics of the relation-
ships between equities. Recent work has shown that there is an order parameter in
financial markets (Plerou et al. 2003) (section “Overview of phase transitions and met-
rics”). This order parameter measures the the net demand: before a phase transition,
net market demand is zero; after the phase transition (when the market is no longer in
equilibrium), the net demand either favours buying or selling.

Such hysteresis effects have been the basis of recent work in macro-economic models
(Wolpert et al. 2012) as well. In this work a control parameter, mean tax rate, is varied
in order to move from a low growth to a high growth game-theoretic equilibrium. Inter-
estingly, the model applies to varying the parameter by either the market (free-market
model) or a centralised government (socialist model).
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Phase transitions in the acquisition of human expertise
Thomas Kuhn in his famous book, The Structure of Scientific Revolutions (Kuhn 1962)
discussed the idea of paradigm shifts in science or human knowledge, where every-
thing is reorganised. Relativity and quantum mechanics were major paradigm shifts of
the twentieth century. Much earlier Copernicus’ idea, that planets travel around the sun,
rather than everything around the earth, was a dramatic shift in thinking about the solar
system.

Such shifts seem to occur in human thinking, where we learn to join the dots in different
ways. Yet it is difficult to find ways to measure such changes. Since expertise requires a
long time to develop, at least 10,000 hours according to Eriksson (1998), or the acquisition
of 50,000 or more “chunks” according to Simon (Simon and Chase 1973), now thought
to be as many as 300,000 (Gobet and Simon 2000). Thus any measurements on a single
individual would have to take place over a long period.

Harré et al. found a solution to this using online data mining. Where decisions are
recorded online, they can be analysed in large numbers, providing a quite different way of
inferring shifts in human thinking and knowledge organisation. To do this they used the
game of Go. This game is extraordinarily simple in structure and rules, but is as demand-
ing for human players as chess. Moreover, the best computer programs do not come close
to human experts at the time of writing in early 2012.

Figure 6 shows a sample Go board. Black and white stones are placed on the intersec-
tions, or points of a 19x19 grid. Black begins anywhere in the board, but typically in one
of the corners. Stones do not move. They are removed from the board when they die.
Stones require a contact along the grid, either directly, or via other stones of the same
kind, with an unoccupied point, or liberty. This simple setup defines one of the oldest and
most challenging of all board games.

Such developmental transitions have been implicated in the activation networks used
to model human cognition as well as artificial intelligence systems (Shrager et al. 1987).

Figure 6 Illustrative Go Board (taken from Sensei’s Go Library.
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These models, using activation networks, emphasise the role of network topology in
how information is accessed, implying that as topologies of associative networks change
via learning there is the possibility of a network-wide phase transition occurring. Since
this earlier work, many other theoretical models have argued that cognitive struc-
tures undergo significant reorganisation at intermediate stages of development. This has
included models for epileptic fits (Percha et al. 2005) and clustering algorithms used to
learn complex data relationships (Bakker and Heskes 2003).

Finding such transitions in cognitive data is more difficult though, although there
has been some evidence of non-linear changes through work on the ‘inverted-U’ effect
in novice-skilled-expert comparative studies (Rikers 2000). This effect is based on the
observation that while increasing skill increases the quality of decisions (in medical
practitioners, for example), other factors, such as the recall of individual case informa-
tion and the ability to elaborate more extensively on such cases, peaks for the ‘skilled’
subjects but were equally low for both the ‘expert’ and and the ‘novice’ groups. Such
inverted-U observations have been made in chess (Gobet 1997), meditation practition-
ers (Brefczynski-Lewis et al. 2007) and emotional responses to art (Silva 2005) This work
implies an intermediate point where cognitive organisation changes significantly, but as
many studies only have a small number of skill levels, i.e. three: novice-skilled-expert, dra-
matic changes in a dependent variable such as depth of search or recall is often difficult
to observe.

The use of entropy as an implicator of phase transitions in cognitive studies has also had
some success in recent studies. The developmental transition of generalising a mechan-
ical manipulation into a mathematical insight of the underlying logic, an ‘a-ha!’ moment
has recently been reported using entropy and based on notions of self-organising crit-
icality (Stephen et al. 2009). In this direction, some of the most exciting work has
been carried out in transfer entropy (Dixon et al. 2010) applied to self-organising crit-
icality and how it is the entropy that drives massive transitional changes in cognitive
structures.

Finally, in a more basic experimental paradigm, Dutilh et al. (2010). have used the
speed-accuracy trade-off and Catastrophe Theory in simple decision making to postulate
that even some of our most primitive decision making processes might implicate phase
transition-like behaviour. (See section “Overview of phase transitions and metrics”).

To find phase transitions in the development of expertise we use the same metric, a
peak in mutual information. The order parameter is the level of expertise. In Go this
is measured in Dan ranks, up to 8 Dan Amateur and 9 Dan professional. Up to 1 Dan
Amateur has a separate set of ranks, 26 kyu, with 26 being the weakest and 1 the strongest.

For each rank Harré et al. studied a game tree – every possible move that can happen
in a small region (7×7). The moves within the region are taken from actual games, thus
they do not have to be sequential: a player may play somewhere else and come back to the
region of analysis later.

We need three probability distributions to calculate the mutual information. Firstly
there is the joint probability, p(q, m), where q is a position and m is a move made at that
position. Then we need the marginal probabilities, p(q) and p(m) of the position and
move occurring respectively. For a 7×7 region there are approximately 37 possible posi-
tions. Some of these will be illegal, but, more importantly, many of them will never occur
in actual play. Thus the analysis is tractable.
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Figure 7 shows the mutual information as a function of rank. The MI peaks at around
the transition from amateur to professional, agreeing with other evidence that a radical
shift in strategic thinking occurs at this juncture.

Inferring social networks with transfer entropy
Social networks have rapidly become one of the dominant features of today’s world.
Understanding when such networks undergo phase transitions can be very important,
such as in modelling the spread of disease or public opinion at election time. Numerous
tools have been developed to measure information flowing between agents in a network,
such as the analysis of email traffice (Kossinets and Watts 2006). But in some cases no
direct measures of connectivity are availabe.

We encountered such a situation in customer records in the financial industry. Hence
we developed techniques based on mutual information and transfer entropy of invest-
ment time series. This section discusses this methodology.

In (Bossomaier et al. 2010) a detailed data set of 42 million records describing the invest-
ment profiles of 1.5 million customers over a 24 month period was analysed with the
aim of understanding the social networks among clients. In that study, pairwise (uncon-
ditional) mutual information between investment histories—lagged and unlagged—was
calculated with the aim of identifying relationships between investment behaviour pat-
terns that could be ascribed to social interaction.

Given that lagged mutual information is likely to be a misleading indicator of time-
directed information flow (see Section “Transfer entropy and granger causality”), the
study was recently repeated using transfer entropy. The exercise highlighted several fea-
tures and difficulties with the practicalities of estimating and significance testing transfer

Figure 7 Mutual information between the next move in a given position and the position itself. The
missing data points in the centre of plot is due to unreliable estimates, see (Harré et al. 2011) for details.
Reprinted from (Harré et al. 2011).
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entropy in large datasets. Critically, while a large number of investment history time series
were available, they were of short length; in practice only about 20 months’ data was gen-
erally available per client record. This was largely due to the significant fraction of missing
data, necessitating a principled approach to the handling of missing data in statistical
estimation. Initially investment histories with more than 4 months’ missing data were
excluded; all subsequent analysis was performed on a per-product basis. It was found
that (again due largely to the short length of histories) there were many duplicate time
series within a product. These are statistically indistinguishable, so only unique time series
were analysed, each corresponding to a specific group of customers within the given
product. The final number of unique histories was of the order of 500–5000 per
investment product.

As in the original study, it was deemed that the actual magnitude of monthly invest-
ments was not relevant; monthly investment states were thus classified simply into ‘+’
(account credited), ‘-’ (account debited) or ‘0’ (no change). This discretisation of invest-
ment states (a practice commonplace in econometric analysis) also makes estimation of
transfer entropies less problematic (cf. Section “Transfer entropy and granger causality”).
The stance taken on remaining missing data was that it should be “conditioned out”; that
is, statistics were estimated conditional on all relevant investment states being valid (non-
missing). Furthermore, as an attempt to control for common influences on all customers
(within the given population of investment histories), transfer entropy was conditioned
on a consensus sequence, Ct obtained by taking the most prevalent valid state in the
population at each time step. Thus conditional transfer entropy was calculated as

TY→X|C ≡ I(Xt : Yt−1|Xt−1, Ct−1and Xt �= ∗, Xt−1 �= ∗, Yt−1 �= ∗) (22)

where ‘∗’ denotes missing data. Due again to short history length, only one lag of history
was taken into consideration. In sample, (22) was calculated by estimating the requisite
probabilities as frequencies.

In order to derive networks of causal information flow, we calculated pairwise transfer
entropies conditioned on the appropriate consensus sequence between all pairs of time-
series Xi, Xj in the selected populations. These were then tested for statistical significance
(see below) and significant information flows presented as directed graphs, weighted by
the actual value of the transfer entropy statistic (Figure 8).

Note, however, that due to the large number of time series it was not possible to cal-
culate pairwise-conditional statistics [Section “Transfer entropy and granger causality”,
eq. (7)]. Thus if there is e.g. significant information flow from Xi → Xj and also from
Xj → Xk then it is likely that the information flow Xi → Xk will appear as significant too,
even if there is no direct information flow from Xk to Xi; i.e. the apparent information
flow Xi → Xk is intermediated by Xj.

Pairwise information statistics were permutation tested to establish significance,
against the null hypothesis of zero information flow. For each statistic, 1000 random
permutations of the time series of the causal variable were generated (missing data is
held in-place during permutation) to disrupt any possible causal effects. The unper-
muted statistic was then tested against the resulting surrogate null distribution to derive a
p-value, representing the probability that a value at least as large as the statistic being
tested might be obtained by chance under the null hypothesis. A subtlety is that, while
the number of (unique) values for a permuted statistic can be quite small—many different
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Figure 8 Sample social network inferred from statistically significant pairwise transfer entropies
between client investment histories for a single investment product, conditioned on a consensus
sequence (see text for details). The thickness of the arrows corresponds to the magnitude of information
flow. After pre-processing there were 1429 unique investment histories for this product. The resulting
network features 68 of these histories linked by 50 directed edges.

permuted sequences will in general give rise to the same sample statistic—some values
are very rare, and will frequently not be discovered by any of the 1000 permutations. It
is thus possible that a p-value can come out as zero; this is patently unsatisfactory, as it
would reject the null hypothesis at any significance level, thus giving rise to Type I errors
(false positives). To address this issue, we use the fact that the maximum sample infor-
mation flow statistic will be obtained when the (lagged) causal sequence is identical to
the causee sequence. In general there will be only one possible permutation with this
property, which thus occurs with probabilityf

pImax ≡ n0! n+! n−!
(n0 + n+ + n−)!

(23)

where n0, n+ and n− are the number of 0, + and − states respectively in the investment
history sequence being tested. The following procedure was implemented to mitigate the
effects of spurious zero p-values: if a p-value was empirically calculated to be zero—i.e.
the test statistic was larger than all permutation statistics—the resulting p-value was set
to pImax rather than zero. This does not preclude the possibility that the “true” p-value is
actually larger than pImax, but can at least be expected to reduce substantially the number
of false-positives that might otherwise arise due to zero p-values.

A further issue to be addressed is that we are performing multiple hypothesis tests
(Miller 1981); i.e. one for each pairwise information flow statistic within the population
under consideration. Under this scenario, at any given significance level, α, we would
expect approximately α× (number of pairwise statistics) Type I errors (false positives).
There are various established approaches to controlling for this effect, which generally
require a stronger level of evidence for rejection of null hypotheses. Unfortunately, in our
situation where the number of simultaneous hypothesis tests may be very large [it will be
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Table 2 Number of significant information flow sample statistics by product at significance
level α = 0.01, with per-time-series family-wise error rate correction (see text)

Product LMI uncond LMI cond TE uncond TE cond

1 29449 2971 7540 1986

2 739 109 179 75

3 191 94 112 50

4 112 116 90 31

5 12 19 30 15

6 38 27 25 15

7 60 6 20 8

8 7 10 6 4

9 52 7 18 3

LMI = Lagged mutual information, TE = Transfer entropy; conditional/unconditional refers to conditioning on the population
consensus sequence.

n(n − 1) where n is the number of unique time series in the test population] common
approaches such as controlling for false discovery rate or family-wise error rate (Benjamin
and Hochberg 1995) are highly likely to yield no significant statistics at acceptable sig-
nificance levels; essentially, Type I errors will have been traded off for an unacceptably
high Type II (false negative) error rate. As a compromise, for each time-series Xj in the
given population, we estimated significance for information flow statistics by controlling
the family-wise error rate among all time series that might potentially exhibit a significant
causal influence on series Xj - i.e. for all statistics Xi → Xj. Family-wise error rates were
calculated at a significance level α = 0.01 using the well-known Bonferroni correction
(Miller 1981).

Numbers of significant information flows under this scheme are displayed in Table 2.
We see that conditioning out the common influence represented by the consensus
sequence usually (but not always) reduces the number of significant statistics. Trans-
fer entropy generally yields fewer significant information flows; this is consistent with
the known deficiencies of lagged mutual information as a measure of directed informa-
tion flow, whereby spurious information flows may be reported due to shared historical
influences (Section “Transfer entropy and granger causality”).

Worthwhile future work on this study would include comparison of the causal den-
sity dynamic complexity measure (Section “Transfer entropy and granger causality”)
between investor networks; however, this presents a technical challenge with regard to the
difficulties mentioned above in obtaining true pairwise-conditional transfer entropies.

Conclusions
Mutual information is a useful indicator of phase transitions. It peaks in the same region
as other indicators, such as the magnetic transition in the Vicsek model. We have shown
that the calculation of mutual information is fraught with difficulty, but it can be used
with care to find phase transitions in socio-economic and cognitive systems.

Transfer entropy, a conditioned extension of lagged mutual information, is closely
related to mutual information and is a powerful new technique. It can be used to infer
causal information flows within complex systems (Lizier 2008) and holds out the possibil-
ity of being able to predict phase transitions before they occur. Of particular interest for
future study would be to investigate the behaviour of the information-theoretic dynam-
ical complexity measures described in Section “Transfer entropy and granger causality”
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with regard to phase transitions and the application to socio-economic systems from
organisational change to the onset of recessions.

Endnotes
aThese informational properties can be extended, with some qualifications, to continu-
ous random variables as well — see, for example, (Gray 1991) — but as random variable
considered herein are either discrete or discretised before analysis, these extensions will
not be discussed here. Generalisations of mutual information to more than two variables
also exist.
bHere, and below, we leave ambiguous the number of lags to be included in expressions
of this type; in principle one might include the entire past of a process, while for empirical
estimation (or on domain-specific grounds) lags may be truncated at some finite number.
cIt is a standard result in time series analysis that maximum likelihood estimation of
the regression parameters in (8) is equivalent to minimisation of the “total variance”
trace(cov(εt)), e.g. by a standard ordinary least squares (OLS) (Hamilton 1994). Other
equivalent approaches are by solution of the Yule-Walker equations for the regression,
e.g. via the LWR algorithm or one of its variants (Morettin 1984).
dIn the case of a univariate predictee variable X, the Granger statistic is sometimes
defined as the R2-like statistic exp(FY→X) − 1, which has an asymptotic F- rather than a
χ2 null distribution (Hamilton 1994).
eIn fact this is probably the most commonly encountered variant of Granger causal-
ity, at least in the neuroscience literature; confusingly, it is frequently this quantity that
is referred to as “multivariate” (conditional) Granger causality, as opposed to the case
FY→X|Z where the individual variables X, Y , Z are themselves multivariate.
fThis will not be precisely the case if e.g. there number of + states and − states in the
sequence is the same; in this case the permutation derived by swapping + and − states
will yield an additional maximum information sequence. We do not believe this affects
significance test results unduly.
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