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Abstract – The existing consensus is that flocks are poised at criticality, entailing long correlation
lengths and a maximal value of Shannon mutual information in the large-system limit. We show,
by contrast, that for finite flocks which do not truly break ergodicity in the long-observation-
time limit, mutual information may not only fail to peak at criticality —as observed for other
critical systems— but also diverge as noise tends to zero. This result carries implications for other
finite-size, out-of-equilibrium systems, where observation times may vary widely compared to time
scales of internal system dynamics; thus it may not be assumed that mutual information locates
the phase transition.

Copyright c© EPLA, 2018

Introduction. – From the 40000 strong murmurations
of starlings to traffic jams, flocking occurs in many an-
imal species, as well as many domains of human soci-
ety. Recent developments in video pattern recognition
and GPS technology have greatly increased our under-
standing of animal systems, such as fish [1,2], pigeons [3],
starlings [4], midges [5] and sheep [6]. Flocks offer en-
ergy efficiency, reduced navigational effort and increased
resilience to predation. For biological, finite-size flocks,
however, it is under-appreciated that macroscopic statis-
tics depend essentially on observation time scales.

Understanding of flocking dynamics owes much to
abstract models, such as the Standard Vicsek model
(SVM) [7] which, at large system size, exhibits phase-
transition–like behaviour at a critical noise value. In other
systems studied to date, such as the Ising spin model
[8–10], cellular automata [11] and financial systems [12],
mutual information (MI) [13] is the gold-standard marker
of order-disorder (2nd order) phase transitions in equilib-
rium statistical mechanics: in the thermodynamic limit it
typically tends to zero in the limits of low and high noise,
peaking at criticality [14,15]. Less is known, however, of
its behaviour in out-of-equilibrium and/or finite-size sys-
tems. The SVM exemplifies an out-of-equilibrium phase
transition [16] between coordinated behaviour and ran-
dom diffusion [7], thought to be in its own universality
class [17]. The thermodynamic limit of large system size

has been studied by Toner and Tu, both at the phase tran-
sition [18] and the low-noise, single-flock, limit [19]. At
the limit, continuous rotational O(∞) symmetry is bro-
ken, leaving Goldstone modes, and thus large, long-range
density fluctuations in two dimensions. In higher dimen-
sions, the situation is more complicated.

Here, by exploiting an approximate isometry of the
SVM, we obtain a novel closed-form dimensional reduc-
tion of the neighbour-pair MI between particle headings on
the basis that, in a finite-size system at long observation
times, rotational symmetry is never broken. This reveals
a hitherto unnoticed behaviour of MI in such systems: ab-
sence of a peak at the phase transition, and divergence at
low noise, contrary to the behaviour of the Ising model
and other complex systems [20].

The standard Vicsek model. – The two-dimensional
SVM comprises a set of N point particles (labelled i =
1, . . . , N) moving on a plane of linear extent L with
periodic boundary conditions. Each particle moves with
constant speed v, and interacts only with neighbouring
particles within a fixed radius r, which we take to be 1.
We denote the position of the i-th particle by xi(t) and
its velocity vector by vi(t) = (v cos θi(t), v sin θi(t)), where
θi(t) is its heading1. Let νi(t) ≡ {j : |xj(t)−xi(t)| < r} be

1We consider headings as circular variables defined on (−π, π]
with arithmetic modulo 2π.
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the index set of all particles neighbouring particle i at time
t (including i itself, so that νi(t) �= ∅). The neighbourhood-
average velocity of particle i is then given by

v̄i(t) =
1

|νi(t)|
∑

j∈νi(t)

vj(t), (1)

with heading θ̄i(t).
Particle positions and headings are updated syn-

chronously2 at discrete time intervals Δt = 1 according to

xi(t + Δt) = xi(t) + vi(t)Δt, (2)
θi(t + Δt) = θ̄i(t) + ωi(t), (3)

respectively, where ωi(t) is a thermal fluctuation (white
noise) uniform on the interval [−η/2, η/2] with intensity
η ∈ (0, 2π].

Note that, since a particle travels a distance v in a single
time increment Δt = 1, the SVM only approximates con-
tinuity in space and time in case v � 1 (the model is thus
arguably unrealistic as a model for real-world flocking if
particle velocities are large).

The SVM ensemble. We consider the SVM as a statis-
tical ensemble of finite size N , parametrised by the velocity
v, particle density ρ = N/L2 and noise intensity η. For
simplicity, particle density is fixed at ρ = 0.25 through-
out, and noise intensity η is taken as a control parameter.
We suppose that the ensemble is relaxed into a steady
state, and use capitals Vi,Θi, etc., to indicate correspond-
ing quantities sampled from the steady-state ensemble. In
the limit v → 0, the model is equivalent to an XY model,
where particles do not move3, while in the limit v → ∞
particles become fully mixed between updates [7].

The full order parameter for the SVM ensemble is the
2D random vector

M =
1

Nv

N∑
i=1

Vi, (4)

with magnitude M ≡ |M | and heading Φ. We have 0 ≤
M ≤ 1, with M = 1 if and only if all particles in the
ensemble are aligned, and M → 0 in the large-system
limit N → ∞. The ensemble variance

χ = 〈M2〉 − 〈M〉2 (5)

of the order parameter magnitude defines the susceptibil-
ity, where angle brackets 〈· · ·〉 denote ensemble averages.
Although phase transitions only exist formally in the ther-
modynamic limit, for finite systems we consider a peak
in susceptibility (with respect to a control parameter) as
identifying the approximate location of a phase transition.

2We implement a “backward update” scheme, where both particle
positions and velocities for time t + Δt are updated on the basis of
particle velocities at time t, as opposed to the “forward update”
scheme which updates particle positions for time t + Δt using the
already updated velocity at t + Δt.

3Note that the limiting behaviour of the model as v → 0 must
be considered as distinct from models with v = 0, e.g., the XY
model [21].

Long-term vs. short-term statistics. In estimating
ensemble statistics from simulated (steady-state) dynam-
ics, it is commonplace to invoke ergodicity in some form:
that is, the simulation is observed, and statistics collated,
over a time window of length T , under the assumption
that as T → ∞ the statistic in question converges to
its ensemble average value. This approach implicitly as-
sumes that observation times are long in comparison to
the internal dynamics of the system. In the case of the
finite-size SVM, however, this assumption may well be
violated, particularly at low-noise intensities. What we
see, rather, is akin to what has been termed “continuous
ergodicity-breaking” [22]: over short observation times,
the system is confined to a comparatively small volume
of phase space. As we observe the system over increas-
ing lengths of time, progressively larger volumes of phase
space are explored. Since a finite SVM is ergodic, the sys-
tem eventually explores the entire phase space. At low
noise, however, observation times necessary to obtain ef-
fectively ergodic behaviour become impractically large.

Our resolution to this issue is a pragmatic one: we
consider ensemble statistics as essentially observation
time-dependent. Short-term statistics are thus collated
separately (with no ergodic assumptions) over ranges of
observation times spanning several orders of magnitude.
This affords insights into how the extent of phase-space
exploration affects our statistics (and also neatly side-
steps the somewhat vexed issue as to whether the SVM
features true ergodicity-breaking in the thermodynamic
limit). In addition, to estimate the limiting ergodic be-
haviour of the system, below we exploit a rotational sym-
metry approximation to collate long-term statistics, under
the assumption that in a finite-size SVM, symmetry —like
ergodicity— is never truly broken.

Simulation details. Simulation models were written
in C++ and run on the raijin supercluster at the Aus-
tralian National Computer Infrastructure Facility. Since
the particle velocity (angle) is continuous, the differen-
tial entropy and mutual information were calculated us-
ing nearest-neighbour estimators which were developed for
continuous variables [23,24]. The accuracy of the estima-
tors was checked by: permutation testing —shuffling the
source to remove any information sharing; and decima-
tion —comparing the estimate with subsets of one-tenth
of the number of events [25]. Theoretical work on the
performance of these estimators is limited and is most rel-
evant to smaller systems [26]. The entropy estimation by
nearest neighbour is computationally demanding and was
carried out in situ on raijin. As an example of the data
requirements, the interactions of particles in the large win-
dow simulation, with N = 500, T = 5 × 104, at η = 0.1
produced approximately 2 × 109 points for the nearest-
neighbours estimators, each of which required a search for
the k nearest neighbours (k -nn) and fixed radius search.

Following Vicsek et al. [7], we employed a cooling regime
to reduce computation times required for simulations
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to settle into a steady state, whereby simulations were
started with the maximum noise (η = 2π) case, with parti-
cles uniformly distributed over the flat torus and headings
uniformly distributed on (0, 2π]. Simulations were run for
an initial number Ts of skip steps to allow the system to
settle, followed by a data collection phase of T time steps,
over which MI statistics were collated. On completion, η
was decreased and another Ts + T simulation steps run
with the new η value. This technique enabled reduction
of Ts by an order of magnitude, as compared to restarting
simulations anew for each η. Appropriate settling time
depends on η (η = 2π, for instance, requires zero settling
time). We found that a satisfactory regime was to adjust
Ts in tiers:

Ts =

⎧⎨
⎩

1000, η ≥ 3.0,
50000, η ≤ 1.0,
20000, otherwise.

(6)

Neighbour-pair mutual information. – The
neighbour-pair MI is defined as the ensemble statistic

Ipw ≡ I(ΘI : ΘJ ) = H(ΘI) + H(ΘJ ) − H(ΘI ,ΘJ ) , (7)

where H denotes differential entropy and (I, J) is uniform
on the set of unique neighbour index-pairs4. While dif-
ferential entropy may go negative, MI (in particular Ipw)
is strictly non-negative. Note that by particle indistin-
guishability, the marginal distributions of ΘI and ΘJ are
the same, so that H(ΘI) = H(ΘJ ). In the short-term
case, we estimate Ipw over multiple realisations of simu-
lated SVMs. The SVMs are first relaxed/annealed to a
steady state, and then headings θi(t) sampled over a fur-
ther simulation period of T time steps, where T is the
observation window.

Given that (as discussed above) ergodicity remains un-
broken in the long-term–observation limit, near-isotropy
of the SVM allows us to approximate eq. (7) in this case
by a one-dimensional form, in which only particle heading
differences θi − θj appear. Specifically, we assume rota-
tional symmetry : that for any fixed angle ϕ, the joint
distribution of (Θ1 + ϕ, . . . ,ΘN + ϕ) is the same as the
joint distribution of (Θ1, . . . ,ΘN ). We note that the SVM
on the 2D torus with periodic boundary conditions is not
strictly isotropic, so that this is indeed an approxima-
tion. We tested the approximation by repeating our ex-
periments with the frame of reference of the SVM rotated
randomly between updates, thus enforcing isotropy [27].
We found that in a large, but finite, SVM the isotropy
assumption introduces almost negligible error (the error
only being discernible near the phase transition; see the
inset in fig. 1).

Let p(θ1, θ2) be the probability density function (pdf)
of (ΘI ,ΘJ ). Under assumption of rotational symmetry,
we have

p(θ1, θ2) =
1
2π

q(θ1 − θ2) , (8)

4Ipw is essentially the same quantity as calculated in [10],
although it was formulated somewhat differently there.
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Fig. 1: (Colour online) Long-term MI ILT
pw calculated accord-

ing to eq. (10) for a range of particle velocities. System size
N = 1000 particles, density ρ = 0.25 and velocities v as indi-
cated. Simulation: 20 realisations at observation time T = 500
time steps. Error bars at 1 standard error (s.e.) (smaller than
symbols) were constructed by 10 repetitions of the experiment.
H(ΘI −ΘJ) was calculated using a 512-bin histogram estima-
tor. Filled symbols show estimated peaks in susceptibility χ.
Inset: system using a rotated reference frame for v = 0.10, 2.00.

where q(θ) is the pdf of ΘI−ΘJ . Noting that the marginal
distributions of ΘI and ΘJ are uniform on the unit circle,
we obtain

H(ΘI ,ΘJ ) = log 2π + H(ΘI − ΘJ), (9)

leading to the expression

ILT
pw = log 2π − H(ΘI − ΘJ) (10)

for the approximate long-term neighbour-pair MI. Note
that ILT

pw vanishes precisely when ΘI − ΘJ is uniform.
This is the case at maximum noise, when ΘI ,ΘJ are in-
dependent; that is, ILT

pw vanishes at maximum noise, as
we would expect. At very low noise, all particles nearly
align so that the distribution of ΘI −ΘJ becomes sharply
peaked. However, because H(ΘI − ΘJ) is a differential
entropy, it will generally diverge logarithmically to −∞ as
the variance decreases (e.g., the differential entropy of a
narrow uniform “notch” of width ε is log ε). Thus, in the
long-term–observation scenario, ILT

pw → +∞ as the noise
intensity decreases to zero. That is to say, as particles
align even more closely, ΘI describes ΘJ with increasing
precision —i.e., the shared information. As the variables
are continuous —and thus contain infinite precision— the
MI increases, representing the extra bits required to en-
code the extra precision.

This diverging nature is demonstrated in the MI of
two Gaussian variables, X,Y , with covariance r, which
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Fig. 2: (Colour online) Ipw (top plot) and susceptibility χ (bot-
tom plot) estimated for a range of particle velocities (param-
eters as in fig. 1). Ipw was estimated according to eq. (7)
over T = 5000 time steps after relaxation to steady state, us-
ing a nearest-neighbour estimator. χ was estimated over the
same realisations. Error bars at 1 s.e. again constructed by
10 repetitions.

is exactly known [28]:

IGaussian(X : Y ) = −1
2

log(1 − r2) , (11)

where I(X : Y ) clearly diverges as X and Y become more
and more correlated (r → 1). However, we note that the
case of r = 1 is different to η = 0 in the Vicsek model.
At η = 0, ergodicity is truly broken —i.e., ΘI = Θc for
all T ’s after some settling time— and thus we have 0 MI,
while the Gaussian variables are still “ergodic” (that is,
any x ∈ X can be drawn) therefore requiring infinite bits
to encode.

Simulation results. – Figure 1 shows the long-term
MI ILT

pw estimated in sample according to eq. (10) for a
range of particle velocities. Note that there is no evidence
of a peak at the phase transition. For short observation
times, by contrast, Ipw estimated according to eq. (7)
(i.e., with no assumption of rotational symmetry) does
indeed peak at the phase transition, as reported by Wicks
et al. [29]; see fig. 2. Some divergence at low noise is also
in evidence. Figure 3 plots Ipw for a single fixed veloc-
ity at observation window size T varying over two orders
of magnitude, along with the long-observation-time limit
ILT

pw . As observation time increases, the MI peak flattens
and divergence at low noise increases, approaching, as pre-
dicted, the long-observation-time limit.

Thus, long-term MI behaves in a distinctly different
fashion to what has typically been observed in short-range
MI studies of order-disorder transitions, where MI is seen
to peak at the phase transition, and then tail off as noise
tends to zero. Here, as the noise intensity is reduced
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Fig. 3: (Colour online) Ipw estimates according to eq. (7) at
fixed velocity v = 0.30 for a range of observation times T as
indicated, along with the long-term ILT

pw of eq. (10) as per
fig. 1. System sizes N as indicated, other simulation details as
for previous figures.

towards zero, particles align more and more strongly, so
that the distribution of ΘI −ΘJ becomes more and more
sharply peaked, resulting in divergence of ILT

pw . At the
same time, non-ergodicity-breaking is evidenced by a ran-
dom walk-like precession of the order parameter heading
Φ around the unit circle (cf. fig. 4 below).

We remark that the continuous-state nature of the SVM
is central to the divergence; in a discrete-state system MI
cannot diverge. Nonetheless, a similar effect is seen for
discrete systems, although divergence is capped by the
number of distinct states. For a discretised Vicsek sys-
tem, for example, where particle headings are constrained
to m equispaced sectors, rotational symmetry remains un-
broken (fluctuations due to noise still cause precession of
Φ around the sectors) so that eq. (10) still holds, with the
log 2π term replaced by log m. Now H(ΘI − ΘJ) → 0 as
η → 0, so that ILT

pw → log m.

Discussion. – Since the introduction of the SVM, in
which the phase transition was originally claimed to be
of second order, much controversy has surrounded its na-
ture. Gregoire and Chaté [30] claimed on the basis of
simulations that it was of first order, and much discus-
sion ensued. Seemingly small details affect the nature
of the transition: type of noise statistics [31]; forward
vs. backward updating (especially at high particle veloc-
ities) [32]; boundary conditions associated with density
bands or spin waves [33]; and the cone of influence on
each particle [34,35]. In this study we utilise the original
SVM model (backward updating, angular noise, periodic
boundary conditions and low density) over a range of ve-
locities.

But there is an additional aspect to the phase transition
beyond the order controversy: the effect of finite size. In
classical equilibrium systems, finite-size effects with O(2)
symmetry are known to exhibit a random walk behaviour
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Fig. 4: (Colour online) Snapshots from a single simulation demonstrating precession of high density bands of a flock with
N = 1000 particles at high velocity (v = 2.0) at η = 1.5 (below the peak in susceptibility). Snapshots taken at, from left to
right, t = 23 × 103, 24 × 103, 28 × 103, 40 × 103, 47 × 103, 49 × 103. The top row shows the state of the flock, while the bottom
row shows the two-dimensional order parameter M —that is, mean particle velocity— for the previous 1000 time steps going
from blue (t− 1000) to red (t). Distance from the centre of the circle corresponds to the order parameter magnitude M = |M |.
Note that, as witnessed by the first two snapshots, precession can be rapid, with only 1000 time steps required for the band to
precess π/4 radians.

along the Goldstone modes at low noise, but little is known
about the active matter system considered here [36,37].
For d = 2, the Mermin-Wagner theorem (MW) would lead
one to suspect that there is no order-disorder phase transi-
tion5, but this strictly only holds for ergodic, equilibrium
systems [40]. However, not only is the Vicsek system not
an equilibrium model but it also has an effective dimension
of d = 4 [41], thus the Mermin-Wagner theorem does not
hold and an order-disorder transition is valid and present.
Baglietto et al. [42] and Albano et al. [43], for example,
discuss finite-size scaling, showing good agreement with
theory for the susceptibility at the phase transition.

In the finite-size SVM, even at low (sub-critical) noise
intensities, neither ergodicity nor (approximate) rotational
symmetry is broken over large time scales. At short ob-
servation times, ergodicity is approximately broken, but
as observation time increases the system becomes in-
creasingly ergodic, exploring progressively larger volumes
—and ultimately the entirety— of phase space. In the
finite-size SVM this manifests as a stochastic precession
of the order parameter heading Φ around the unit circle
(fig. 4). We note too, that at (albeit physically implausi-
ble) high velocities, the SVM exhibits travelling “bands”
of particles [32]; while it might be thought that this repre-
sents true symmetry breaking, detailed simulations (fig. 4)
reveal that banding orientation, as well as Φ, precesses and
through this, ergodicity is maintained.

The behaviour we see here has elements of classical ther-
modynamic equilibrium systems, although it is an active
matter, far-from-equilibrium system. For active matter,
the concept of equilibrium itself, is still not clearly de-
fined [44]. The continuous symmetry implies that at even

5See [38,39] for examples of phase transitions which are not for-
bidden at d = 2 by MW.

extremely low noise, the flock(s) can gradually change di-
rection and cover the whole of phase space as observa-
tion time tends to infinity. This movement is analogous to
the Goldstone modes of classical systems left behind when
symmetry breaking occurs.

Goldstone modes have been discussed relative to flock-
ing by Bialek et al. [45] and rejected as the source of
information flow through the flock. On the other hand
Melfo [46] claims that it is in fact the Goldstone mode
which allows flock stability over a wide range of noise (sys-
tem) parameters.

Although the unexpected behaviour of the MI has been
demonstrated for the SVM —which is far from the only
flocking model (see [47] for a recent alternative)— it
seems likely that it will apply to many finite systems
where symmetry only approximately breaks over short
windows, but is restored over long observations: for such
systems, MI may vary dramatically with observational
time scale, diverging in the long-term limit as thermal
noise approaches zero.
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