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A murmuration of starlings flocking over the West Pier in Brighton, UK
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Phase transitions in complex dynamical systems

Phase transitions are ubiquitous in complex systems featuring large ensembles of
dynamically interacting elements

In many cases, these may be classed as order-disorder transitions, for example:

Natural systems:

Physical systems (states of matter, magnetization, etc.)

Neural systems

Financial markets

Ecosystems

Model systems:

Physics models (statistical ensemble models, spin-system models, etc.)

Particle swarm (flocking/schooling) models

Agent-based models (economics, games, etc.)

Phase synchronization models (e.g. Kuramoto oscillators)

Cellular automata

Random boolean networks
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Phase transitions in complex dynamical systems

In many natural systems, disorder is associated with “healthy” dynamics, while order
is associated with “pathological” dynamics; a disorder → order transition signals a
calamitous event

Financial markets - crashes associated
with “herding” behaviour

Neural systems - onset of epileptic seizures
associated with runaway synchronisation

Ecosystems - catastrophic loss of biodiversity
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Phase transitions in complex dynamical systems

Can we predict if a system is moving towards a phase transition?

More specifically: Can we predict an imminent disorder → order phase transition using
information flow dynamics?

Perhaps . . . proof of concept:

L. Barnett, J. T. Lizier, M. Harré, A. K. Seth and T. Bossomaier, Information flow in
a kinetic Ising model peaks in the disordered phase, Phys. Rev. Lett. 111(17), 2013.
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What is a phase transition (thermodynamics)?

Probability distribution P (s) over microstates s of system (ensemble)

s = (s1, s2, . . . , sN ) where si is state of ith element, N is system size

E.g. Boltzmann-Gibbs distribution in statistical mechanics: P (s) =
1

Z
e
−E(s)/kT

E(s) is the energy associated with microstate s (specifies interactions between elements), T is

temperature, k is Boltzmann’s constant, Z ≡
X

s

e
−E(s)/kT is the partition function

Thermodynamic limit: system size N →∞

P (s) depends on control parameters (temperature, pressure, volume, . . . )

Order parameter (particle density, magnetization, . . . ) - may be scalar or vector

Susceptibility measures statistical fluctuations of the order parameter

Correlation may be measured between states of system elements at various distance
scales

Correlation frequently decays exponentially with distance, defining a correlation length

Various other thermodynamic properties are associated with the system (entropy, free
energy, internal energy, specific heat capacity, . . . )
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Characterizing order/disorder phase transitions

In the thermodynamic limit . . .

Order parameter is zero beyond a critical point in the trajectory of the system in the
(phase) space of control parameters - this defines the disordered regime

Types of phase transitions (1st order, 2nd order, etc.) are characterised by the discontinuity of the

order parameter or its derivatives at the critical point

Susceptibility, specific heat and correlation
length diverge at the critical point

In general, thermodynamic properties have universal power-law scaling properties at a
critical point (critical exponents)

Everything goes fractal

Spontaneous symmetry breaking and
ergodicity breaking (may) occur
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Dynamical ensemble systems

No dynamics implied yet . . . just P (s)

Stationary∗ stochastic process S(t) describes how microstates evolve over time

Stationary =⇒ P
`
S(t) = s

´
= P (s) for all microstates s

Frequently modelled as Markov process: transition probability P (s→ s′)

Reversible =⇒ detailed balance:
P (s→ s′)

P (s′ → s)
=
P (s′)

P (s)

Useful for sampling microstates from P (s) in simulation: Markov Monte Carlo
methods

Examples (Boltzmann-Gibbs distribution):

P (s→ s
′
) =

(
e
−∆E/kT

∆E > 0

1 ∆E ≤ 0
- Metropolis dynamics

P (s→ s
′
) =

“
1 + e

∆E/kT
”−1

- Glauber (heat-bath) dynamics

. . . where ∆E ≡ E(s
′
)− E(s) is the energy difference between states
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Below the thermodynamic limit: N <∞

Phase transition is “blurred”

The order parameter (and its derivatives) are not discontinuous at the critical point

Nor do susceptibility, correlation length, etc. diverge

However, susceptibility does peak near the critical point; this furnishes a “working
definition” for identifying a critical point in practice

As N increases, the susceptibility peak becomes sharper and approaches the true (thermodynamic

limit) critical point

Critical slowing down: for a dynamical system near a critical point, fluctuations in the
dynamics generally become larger and larger (this is a thorny issue for simulation. . . )

Monte Carlo Markov simulations take longer and longer to approach stationarity

Statistical estimates become noisier

Finite-system fluctuations break symmetry and ergodicity breaking!

Especially just on the ordered side of a critical point (again, a thorny issue for simulation studies)
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Below the thermodynamic limit: N <∞
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(a) “Blurring” of phase transition for finite systems: susceptibility doesn’t diverge and peak (bold vertical line) is
shifted from true (thermodynamic limit) critical point (light vertical line). (b) Symmetry breaking and ergodicity
breaking fail: even though strictly in the ordered regime, the order parameter “flips” repeatedly. (2d lattice Ising
model of size N = 32× 32 with Glauber dynamics.)
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The 2d lattice Ising model

The “fruit fly” of phase transitions - almost everything we know about phase
transitions stems from analysis of this model

2-spin model: si = ±1, where i specifies a site on a 2d square lattice (usually wrapped
to torus)

Boltzmann-Gibbs model with interaction
energy (isotropic, zero external field)

E(s) = −
P
<i,j> sisj

where < i, j > denotes summation over
lattice neghbours

increasing temperature T −→

Lionel Barnett (SCCS, Uni. Sussex, UK) Information flow and phase transitions CIDNET14, Dresden, June 2014 11 / 22



The 2d lattice Ising model

Has a 2nd order phase transition: model exactly solved (for zero external field) by Lars
Onsager in 1944:

critical temperature Tc =
2

log
“

1 +
√

2
”

magnetization M = ±
“

1− sinh
−4

2β
” 1

8 for T < Tc, M = 0 for T ≥ Tc

free energy −2βF = log
“

2 cosh
2

2β
”

+
2

π

Z π/2

0
log
“

1 +
p

1− κ2 sin2 θ
”
dθ

internal energy −U = coth 2β

"
1 +

2

π
(κ sinh2β − 1)

Z π/2

0

dθp
1− κ2 sin2 θ

#

Thermodynamic limits for the 2d lattice Ising model: here β ≡ 1/T , κ ≡ 2 tanh 2β sech 2β.
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Information theory: mutual information

Entropy: X a random variable, pX(x) the density of X.

H(X) ≡ −
Z
pX(x) log pX(x) dx

Intuition: “the uncertainty of X”

Mutual information: X,Y jointly distributed

I(X : Y ) ≡ H(X) +H(Y )−H(X,Y )

Intuition: “the degree to which X disambiguates Y (and vice-versa)”

I(X : Y ) = 0 ⇐⇒ X,Y are independent

Conditional versions: X,Y, Z jointly distributed

H(X|Z) ≡ H(X,Z)−H(Z)

I(X : Y |Z) ≡ H(X|Z) +H(Y |Z)−H(X,Y |Z)
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Information theory: multivariate information measures
Multivariate system of random variables X = (X1, . . . , XN ) with adjacency relation
(network)

Mean pairwise (bivariate) mutual information

Ipw(X) ≡ 1

ν

X
<i,j>

I(Xi, Xj)

ν = number of unique adjacent pairs

Intuition: “the degree to which adjacent variables are statistically independent”

Ipw(X) = 0 ⇐⇒ all adjacent pairs Xi, Xj are independent

Note: no conditioning, so doesn’t take into account indirect connections between variables

Multi-information (“global”)

Igl(X) ≡
X

i

H(Xi)−H(X)

Intuition: “the degree to which the system X is statistically uncoupled”

Igl(X) = 0 ⇐⇒ X1, . . . , XN are mutually independent

For a highly ordered system entropies are low, so our information measures take low
values. But for a highly disordered system variables behave independently, so measures
are again low; thus we may expect them to peak at some intermediate order

We wouldn’t be surprised if they peak at an order/disorder phase transition . . .

cf. integration/segregation balance theory in neuroscience (Tononi)
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Information theory: information flow (transfer)

Transfer entropy (Schreiber) - X(t), Y (t) jointly stationary∗ stochastic processes:

T (Y → X) ≡ I
`
X(t) : Y (`)(t) |X(`)(t)

´
X

(`)
(t) ≡ X(t− 1), . . . , X(t− `) denotes the history (past) of X(t) of length `

Intuition (i): “the degree to which the past of Y disambiguates current X, given past X”

Intuition (ii): “the quantity of information transferred from Y to X per unit time”

T (Y → X) = 0 ⇐⇒ X, conditional on its own past, is independent of the past of Y

Conditioning on the past of X is essential to take into account shared history between the processes

Conditional version:

T (Y → X |Z) ≡ I
`
X(t) : Y (`)(t) |X(`)(t), Z(`)(t)

´
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Information theory: multivariate information flow measures

Mean pairwise (bivariate) transfer entropy

Tpw(X) ≡ 1

ν

X
<i,j>

T (Xj → Xi)

Intuition: “the degree to which adjacent variables are dynamically independent”

Again, doesn’t take into account indirect connections between variables

Note: some given number of lags ` is assumed

Global transfer entropy

Tgl(X) ≡ 1

N

X
i

T (X → Xi)

Intuition (i): “the degree to which the system is dynamically uncoupled”

Intuition (ii): “density of gross information transfer per unit time”

cf. causal density: Seth et al. Proc. Natl. Acad. Sci. U.S.A. 103 10799, 2006

Tgl(X) = 0 ⇐⇒ each Xi, conditional on its own past, is independent of past X; that is of the

history of the entire system

As for the “static” mutual information measures, these measures may also be
expected to peak at an intermediate order

Again, we wouldn’t be surprised if they peak at an order/disorder phase transition . . .

. . . but should we be surprised if they don’t?
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Information measures for the 2d lattice Ising model
Analytic results

The mutual information measures in the thermodynamic limit may be calculated entirely analytically,

using the Onsager results. We have

Ipw = −2
X
σ=±1

pσ log pσ +
X

σ,σ′=±1

pσσ′ log pσσ′

1

N
Igl = −

X
σ

pσ log pσ −
1

T
(U − F)

with pσ = 1
2 (1 + σM), pσσ′ = 1

4 [1 + (σ + σ
′
)M− 1

2σσ
′U ] for σ, σ′ = ±1.

The finite-lag∗ transfer entropy measures for Glauber dynamics may be expressed in terms of

ensemble averages that must be estimated in simulation:

NTpw = −q
X
σ=±1

log
q

pσ
+
X

σ′=±1

qσ′
X
σ=±1

log
qσ′

pσσ′

NTgl = −q
X
σ=±1

log
q

pσ
+ r

with q = 1
2 〈Pi(S)〉, qσ′ = 1

4 (〈Pi(S)〉 + σ
′ 〈SjPi(S)〉) and r = 〈Pi(S) logPi(S)〉 for an

arbitrary site i, where Pi(S) denotes the Glauber spin-flip probability at site i for a random state S

sampled from the Boltzmann-Gibbs distribution

∗ It is easy to show that in the thermodynamic limit, if the number ` < ∞ of historical lags is fixed, then the result is the same as for 1 lag;
however, taking the “long time range” infinite lags limit before proceeding to the thermodynamic limit has so far proved intractable. In this
sense the measures as calculated are essentially short-range.
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Information measures for the 2d lattice Ising model
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Information measures for the 2d lattice Ising model. Mutual information measures were calculated analytically.
Transfer entropy measures were calculated for Glauber dynamics from large-scale simulations on a 512 × 512
toroidal lattice. From L. Barnett et al., Phys. Rev. Lett. 111(17), 2013. The critical temperature is Tc ≈ 2.269,
while the Tgl peak is at ≈ 2.354.
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Analysis
Unlike the other measures, Tgl peaks strictly in the disordered phase

Tested with large-scale simulation to a high degree of statistical significance

Surprising: for the Ising model just about anything that peaks does so at the critical temperature

From the paper:

The pairwise measures incorporate putative statistical dependencies intermediated by the joint
distribution of the remaining system elements with the spin pair in question. The global measures
do not suffer from this effect; nonetheless, the static global measure Igl also peaks at the phase
transition, while the dynamic measure Tgl peaks strictly in the disordered regime. We conclude
that a postcritical peak is not simply a consequence of accounting for common influences, nor is
it a consequence alone of incorporating past-conditional dependencies; both factors are required.

Intuitive explanation? Admission: we don’t have a really good one . . .
from the paper:

Preliminary analysis implicates a subtle interplay between differing contributions to Tgl from
sites within and on the boundaries of same-spin domains, and the change in distribution of
domain sizes as the temperature increases and domains disintegrate.

increasing temperature T −→
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Why is this significant?

Scenario: We watch a “healthy” (disordered?) complex
dynamical system over time, collating information statis-
tics over a sliding window (in “shortish” time windows
the process appears near-stationary). We observe both
Ipw and Tgl to be slowly increasing. Then Tgl starts
to fall, but Ipw continues to increase; we anticipate an
imminent phase transition

Interpretation: some (unidentified) control parameter is
changing slowly, pushing the sytem towards a critical
point

Note: for real-world systems it is likely that we don’t
know what the control parameters are, nor may we have
a sutitable candidate for an order parameter . . . however,
it has been demonstrated for a range of model systems
that Ipw peaks at an order/disorder phase transition (e.g.
Ising model, Vicsek particle swarm model, RBNs)

And even if the Ipw peak does not coincide precisely with

the phase transition, a shift in peak of Tgl with respect

to Ipw may still furnish a useful indicator

In fact, a peak in Ipw may be your best bet in

practice for identifying a phase transition
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Practical issues

Just how universal is this result? That is, to what class of systems/phase transitions is it likely to hold?

Current research by our group is clarifying this question

Strong dependence on interaction (network) topology

Given stationary time-series data, Ipw is straightforward (if computationally costly for large N) to estimate

in sample. However, it seems as if Tgl—even to 1 lag—will be problematic, as the joint distribution of states

of all N system elements is implicated

For real-world data we don’t have the luxury of the analytic result as for the Ising model

If, however, (as in lattice spin models) interactions between elements scale� N then the problem becomes

more tractable

Example: particle swarm models where only nearby particles interact

Another possibility is to take a lower-dimensional “proxy” (e.g. first few principal components) for the full
system X in the T (X → Xi) terms in Tgl

Information-theoretic quantities are notoriously tricky to estimate in sample. One approach is to consider
linear models, perhaps under Gaussian assumptions; thus mutual information corresponds to (generalised)
correlation, while transfer entropy corresponds to Granger causality [Barnett et al., Phys. Rev. Lett. 103(23),
2009]

Statistical significance may be difficult to establish - but essential to distinguish behaviour (especially peaks)
of the measures
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