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APT CoDE 
GloVeregular + 

regular
offset + 
regular

regular + 
regular

offset + 
regular

Adjective Nouns .38 .38 .36 .44 .38

Compound Nouns .38 .38 .37 .39 .47

Verb Objects .35 .33 .36 .32 .39

Average .37 .36 .36 .38 .41

6. Conclusions

2. APTs

1. Dependency Embeddings
Syntactic representation at word level: what have models encoded?
Previous work mainly focused on expanding word2vec to use first and second order dependencies
as contexts, instead of proximity (e.g. [3], [1]).

They generated spaces for word and dependency-aware embeddings, extensively tested on
word-word similarity. Benefits of and how to use syntax-aware representations for composition
remain largely unclear.

CoDE: from syntax-aware to syntactically-contextualized representations
It has been suggested that syntactic contextualization plays a key role in composition [7].
We introduce a model to generate regular and syntactically-contextualized word
embeddings, with the clear aim of using the latter to carry out composition.

3. CoDE
CoDE: a space for word and composable dependency-embeddings 

GloVe [6] optimizes the function 

The model learns two vector spaces, defined as focal (HI) and context (H~), both of dimensionality
vocabulary×n, that are summed after the training.

Our goal is to encode APT’s compositionality strategy, based on offset representations, in the
embeddings’ domain, by learning syntactically-contextualized word representation that will:

1. lie in the same space as regular words
2. exhibit similar features as APT’s offset representations
3. hence, improve compositionality

All these aims are linked to the notion of feature alignment in the APT space:

• to align features, CoDE uses GloVe iteratively: it creates a different focal sub-space for each
dependency relation and trains them by sharing a context one.

• composition will be carried out by adding syntactically-contextualized and regular embeddings,
here seen respectively as offset and root (e.g. white!"#$ + clothes, folded + clothes$#&' ).
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APT: composition via syntactic contextualization in a count-based model

Typed count-based model. Composition is carried out by contextualising each lexeme, other
than the root, in its syntactic role, through the offset function.

Vectors can be seen as collections of dependency trees with the focus (root) on the lexeme they
represent. Offsetting shifts the root along a given path, allowing feature alignment between words
of different types.

Hence, offsetting shifts the semantics of the original lexeme. That is, offsetting white by _`\a
generates a noun-view of it – i.e. things that are white.

• Novel model to learn standard and dependency-based embeddings that are  
syntactically-contextualized and composable.

• Results suggests we successfully encoded desired features in representations.

• Further work will focus on composition above the phrase level.

We trained an APT space, and accordingly CoDE, on a clean Wikipedia 2014 corpus, sequentially reduced to ~28k lexemes. 
Code and embeddings available at github.com/lorenzoscottb/CoDE_iwcs_19 .

Mitchell-Lapata 2010 task evaluates similarity between two phrases (e.g. black
hair – dark eyes). Values report Spearman’s b. The benchmarks is a pretrained
GloVe space (Wikipedia 2014 + Gigaword 5). Both CoDE and GloVe
representations have dimensionality of 300.

a)                                                                     b)

a) Dependency parsed sentence. b) Contexts
for ‘discovers’.
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