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Problem
Network structure is known to be an important determinant of criticality. In most studies of its impact on critical behaviour, however, network structure
is characterised in terms of simple quantities such as degree distribution and global clustering. Recently [1], we have argued that such quantities can
obscure important differences in the prevalence of higher-order structures and that these may impact dynamics in classical epidemic models.

CCM MDR BigV

Here, we provide new evidence about how diversity in higher-order subgraphs (for a given degree distribution and global clustering value) can impact
the critical behaviour in two other key types of complex systems: complex contagion and the classical Kuramoto model of synchronisation.

Network Generation
To systematically explore the impact of
higher-order structure, we used our recently
developed method [2] for generating net-
works with the same degree distribution
and global clustering coefficient but differ-
ent subgraph decomposition. It enables to
parametrise networks using arbitrarily chosen
subgraphs, e.g., clustering-inducing subgraphs
such as 4, � or �. Code is available
at: https://github.com/martinritchie/Network-
generation-algorithms

Evolving for Diversity
We search the space of networks satisfying the
same degree distribution and global cluster-
ing coefficient through degree- and clustering-
preserving operations via resolution of an un-
derdetermined system of Diophantine equations.
We optimise for diversity by using a vari-
ant of MAP-Elites (arXiv:1504.04909 [cs.AI]).

Comparing the histograms of betweenness cen-
trality of networks produced using BigV (red),
dK-2.1 (green) and above method (blue) reveals
that each method samples from different regions
of the parameter space [3].

Complex Contagion

In complex contagion [4] susceptible nodes can
only become infected if exposed to multiple in-
fectious events. Further, these events must be
from different infectious neighbours as only the
first infection attempt from an infectious node
counts; and infected individuals remain infected
for the duration of the epidemic.
Three pairs of network configurations were se-
lected that had the same degree distribution
(regular, N = 1000, k = 5) and global cluster-
ing coefficient (C = 0.4) but maximising diver-
sity in subgraph decomposition (networks A and
B), number of G� subgraphs (minC4, maxC4)
and mean betweenness centrality (BCmSPm-
Min, BCmSPmMax). The model was simulated
on 100 instances of each configuration.

We tracked the mean and standard deviation of
final size and time to reach final size when vary-
ing the number of initial seeds. We used maxi-
mal variability in both quantities as markers of
the (hybrid) critical transition [5].

Synchronization
We considered a spatially-embedded version
of the Kuramoto model of synchronization,
whereby N = 1000 self-sustained oscillators
(phase φi) with intrinsic frequency (ωi) drawn
from a unimodal distribution were coupled as
follows:

φ̇i(t) =

ωi(t) +
K
N

∑N
j=1 Cij sin (φj(t)− φi(t)) + ηi(t)

where K is coupling constant, ηi Gaussian noise
and C the adjacency matrix of a network realisa-
tion. Such system is known to undergo a second-
order phase transition at a critical coupling Kc.
The model was simulated on the same networks
as used with the complex contagion model.

We calculated the order parameter

reiψ = 1
N

∑N
j=1 e

iφj

when systematically varying the coupling con-
stant K. The transition was identified as the
onset of maximum variability in phase synchro-
nization. Data shown is for networks maximis-
ing diversity in subgraph decomposition. Re-
sults were qualitatively similar for the other
pairs (min/max C4 and min/max BC).

Conclusions
In both models, the value of the order parameter at which the critical transition occurred changed
with subgraph decomposition, suggesting that (1) degree distribution and clustering alone have
limited predictive power and (2) controlling the prevalence of higher-order subgraphs (i.e., through
local rewiring) may provide the means to steer networks toward or away from the critical regime.
In addition, this work highlights the need for proper null-models for clustered networks, including
greater understanding (and control) of by-products in finite-size networks.
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