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a  b  s  t  r  a  c  t

Detrended  fluctuation  analysis  (DFA)  is  a technique  commonly  used  to  assess  and  quantify  the  pres-
ence  of  long-range  temporal  correlations  (LRTCs)  in neurophysiological  time  series.  Convergence  of the
method  is  asymptotic  only  and  therefore  its  application  assumes  a constant  scaling  exponent.  However,
most  neurophysiological  data  are  likely  to involve  either  spontaneous  or experimentally  induced  scaling
exponent  changes.  We  present  a novel  extension  of the  DFA  method  that permits  the  characterisation
of  time-varying  scaling  exponents.  The  effectiveness  of the  methodology  in recovering  known  changes
in  scaling  exponents  is  demonstrated  through  its application  to synthetic  data.  The  dependence  of  the
method  on  its  free  parameters  is systematically  explored.  Finally,  application  of  the  methodology  to
neurophysiological  data  demonstrates  that  it provides  experimenters  with  a way  to identify  previously
un-recognised  changes  in  the  scaling  exponent  in the data.  We  suggest  that  this  methodology  will  make
it possible  to  go  beyond  a simple  demonstration  of  the  presence  of scaling  to  an  appreciation  of  how  it
may  vary  in  response  to either  intrinsic  changes  or experimental  perturbations.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Neurophysiological processes are interaction dominated such
that the operation of one component of the system closely depends
on the state of another component. In contrast to systems dom-
inated by additive and subtractive interactions, which produce
distributions characterised by Gaussian statistics, neuronal activ-
ity is characterised by multiplicative interactions that can produce
heavy-tailed distributions including power law distributions (Kello
et al., 2010).

It has now been established that many neurophysiological sig-
nals show power law distributions of their autocovariance function,
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i.e., they exhibit long-range temporal correlations (LRTCs). These
LRTCs have been observed in fluctuations of amplitudes (e.g.,
Linkenkaer-Hansen et al., 2001, 2004; Nikulin and Brismar, 2005;
Berthouze et al., 2010) and inter-event intervals (Hartley et al.,
2012). The detection and characterisation of LRTCs in neurophys-
iological data has received great attention in part due to the fact
that LRTCs are a (necessary, but not sufficient) signature of criti-
cal systems. The idea that the brain may  be operating in a critical
regime is very attractive (Chialvo, 2010) because critical systems
have been shown to maximise their dynamic range of process-
ing (Kinouchi and Copelli, 2006; Shew et al., 2009; Buckley and
Nowotny, 2011), and implement balanced activity (Benayoun et al.,
2010; Magnasco et al., 2009; Meisel and Gross, 2009). In their semi-
nal work, Linkenkaer-Hansen et al. (2001) interpreted the presence
of LRTCs in the fluctuations of EEG and MEG  amplitude oscilla-
tions within the framework of criticality in which once LRTCs are
established, the scaling exponent would be expected to be con-
stant throughout a normal resting state neurophysiological record.
From the perspective of criticality (in its physics sense of the term),

0165-0270/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
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such an assumption may  be justified. However, there is an alterna-
tive view which is that heavy-tailed distributions (including power
laws) could also be observed as the result of the superposition of
processes with distinct time scales (Wagenmakers et al., 2004),
or as a result of measurements (Touboul and Destexhe, 2010). In
this view, the validity of the assumption that the scaling exponent
is constant throughout a neurophysiological recording should be
firmly established because the overall organisation of these differ-
ent time scales may  no longer result from a global order parameter.
We suggest that any exponent estimation method should be agnos-
tic to the origin of the LRTCs and instead focus on providing a robust
estimation of exponent magnitude over small enough time scales
within which exponent magnitude fluctuations if present can be
observed.

Furthermore, LRTCs in neurophysiological time series have been
characterised using estimates of the Hurst exponent which quan-
tifies the slope of the auto-covariance function of the signal, with
exponents in the interval (0.5,1] denoting the presence of LRTCs.
These estimates can be obtained using several methodologies, see
Taqqu and Teverovsky (1995) and Serinaldi (2010) for comprehen-
sive comparative reviews of methods operating in both time and
frequency domains, including detrended fluctuation analysis (DFA,
Peng et al., 1994). These methodologies estimate the statistical
properties of the data under the implicit assumption of constancy
of the scaling properties of the signal. Therefore, they are by defi-
nition insensitive to any within time series change in the exponent
magnitude that characterises LRTCs.

In the case of DFA, which has been extensively used in the neuro-
physiology literature, if the changes are small enough, the scaling
property of the detrended fluctuations can be maintained (based
on the R2 value of the linear regression being greater than a given
threshold, typically 0.95) and therefore the method, as commonly
implemented in published reports, will return valid exponents
without any indication that the assumption of scaling exponent
constancy has been violated. Only close inspection or a more robust
test of the distribution of the fluctuations in the log–log scale could
provide an indication of superposition of processes (Chen et al.,
2002; Hu et al., 2001).

To date, there have been a few attempts to track changes in
the scaling parameter and these attempts have relied on a rolling
implementation of standard DFA methodologies over moving win-
dows (e.g., Alvarez-Ramirez et al., 2008; Peña et al., 2009; Yue et al.,
2010). This approach does not involve optimal filtering and has not
been validated against time series in which the magnitude of the
scaling exponent is systematically manipulated within the record.
Further, this approach when applied to non-physiological time-
series has been shown to lead to erratic behaviour in the estimates
of the scaling exponent (Alvarez-Ramirez et al., 2008; Peña et al.,
2009).

Here, we present a novel extension of the detrended fluctua-
tion analysis method (adaptive time-varying detrended fluctuation
analysis – ATvDFA) which permits the robust characterisation of
time-varying scaling parameters. We  systematically compare the
ATvDFA method with a moving windows DFA using synthetic data
and demonstrate its applicability within 3 different types of neu-
rophysiological time series.

2. Material and methods

2.1. Method formulation

The core component of the method is detrended fluctuation
analysis, and it is briefly summarised here. We  assume a bounded

time series x(i), where i = {1, . . .,  N}, and N is the length of the signal.
First, we  construct the integrated signal y(i) as the cumulated sum:

y(i) =
i∑

j=1

(x(i) − x) (1)

We then construct a set of box sizes s(k) with k = {1, . . .,  n} that
are equidistant in logarithmic space where n is suitably large to
provide enough resolution in the interval [s(1), s(n)], with s(1) and
s(n) the inner and outer cut-offs, chosen to maximise the range of
temporal correlations whilst providing a sufficiently high number
of non-overlapping segments for all box size (Peng et al., 1994). For
each box size s(k), the integrated signal is then split into �N/s(k)�
non-overlapping segments, where �x� denotes the largest integer
not greater than x. The signal is then locally detrended by subtract-
ing a polynomial fit ŷ(i). Finally, for each box size s(k), the root mean
square fluctuation for the detrended integrated signal is computed:

F(s(k)) =

√√√√ N∑
i=1

(y(i) − ŷ(i))2 (2)

For signals with long-range temporal correlations, there is a
power-law relationship between the root mean square fluctuation
F(s(k)) and s(k):

F(s(k)) ≈ s(k)˛ (3)

where  ̨ is the scaling exponent and is readily obtained by linear
regression of the log detrended fluctuations over the log box sizes.
The exponent is accepted if the R2 value is sufficiently high (typi-
cally >0.95) and there is no cross-over in the linear scaling of the log
detrended fluctuations in relation to the log box sizes (Chen et al.,
2002). Convergence of the method is asymptotic only in the limit
of N, the number of samples (Bardet, 2008; Taqqu and Teverovsky,
1995), and therefore the recommended practice is that it should
be applied to lengthy time series under the implicit assumption
of a constant scaling exponent. However, it has been recently sug-
gested that robust estimates can be obtained even with extremely
short time series, especially if the data have genuine long-range
correlations (Crevecoeur et al., 2010).

The simplest solution to the problem of detecting changes would
be to compute DFA within a moving window (we will refer to this
method as mDFA henceforth). Such an approach has been used with
non-physiological data previously but leads to considerable statis-
tical variation in the estimates of the scaling exponent (Peña et al.,
2009). For short time-series, the application of linear regression of
the log fluctuations over the log box size does not lead to a robust
estimate of the exponent because of the violation of homoscedas-
ticity, i.e., the fact that the variance in the fluctuations at each box
is not identical for all box sizes. Here, we address this problem
through the application of a Kalman filter, a data-adaptive filter-
ing procedure, in order to track exponent estimates obtained from
overlapping data segments.

A Kalman filter operates over a state-space model, with state
and measurement equations given by

xk+1 = �kxk + wk (4)

zk+1 = Hkxk + vk (5)

where xk and zk are the state and measurement vectors, �k is the
state transition matrix, Hk is the state-to-measurement matrix, and
wk and vk are the process and measurement noise sources respec-
tively. Here, we define the state as the parameters of the linear
regression of the log detrended fluctuations log F(s(k))k={1,. . .,n} over
the log box sizes log s(k)k={1,. . .,n}. The state vector xk is therefore
defined as the 2 × 1 column vector xk = [u1, u2] where u1 is the
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slope (the estimated exponent) of the regression, and u2 is the
intercept. We  expect the filter to estimate the local changes in
those regression parameters based on our statistical knowledge
of the fluctuations. Since the statistics of the regression parame-
ters over each segment are not known, we set the measurement
vector zk to be the log detrended fluctuations over a single seg-
ment because their statistical properties are known for some
long-range dependent processes (see Bardet, 2008, for results on
a general class of stationary long-range dependent processes). zk
is therefore given by the nx1 column vector zk = [log F(s(1)), . . .,
log F(s(i)), . . .,  log F(s(n))] where log F(s(i)) is the log transformed
root mean squared detrended fluctuation at box size s(i). As the
state estimates are the parameters of the linear regression of the
log F(s(k))k={1,. . .,n} over the log s(k)k={1,. . .,n} box sizes, the state-to-
measurement matrix Hk in the case of 1-DFA (linear DFA) is simply
given by the constant n × 2 matrix:

Hk =

⎡⎢⎢⎢⎣
logs(1) 1

logs(2) 1
...

...

logs(n) 1

⎤⎥⎥⎥⎦ (6)

As we have no reason to assume a systematic change in the
state parameters, we set the state-transition matrix � to be the
2 × 2 identity matrix I. We  therefore expect the filter to track any
exponent changes through the process noise term wk (a 2 × 1 col-
umn  vector). The process noise term is assumed to be normally
distributed with zero mean and (2 × 2 diagonal) covariance matrix
Q. As in Brittain et al. (2009),  this covariance matrix Q is considered
a tracking parameter and is therefore kept constant, the diagonal
terms being free parameters of our method. The role of these free
parameters will be illustrated in Section 3.1.1 and in the Discus-
sion. Finally, the measurement noise rk (a n × 1 column vector) is
also considered to be normally distributed with zero mean and (n×
n diagonal) covariance matrix Rk. Here, we propose that robust esti-
mates of this covariance matrix can be obtained by computing the
variance of the single-segment log fluctuations over multiple over-
lapping segments shifted by a small increment. In practice, we  used
a minimum of 10 measurements between each segment used in the
filtering process, e.g., one measurement every 100 ms  for an incre-
ment of 1 s between estimates. This is possible if one assumes that
for very small increments, the scaling exponent will be constant,
that is, we assume that changes in scaling exponent (either sponta-
neous or experimentally induced) occur on a time scale that is much
smaller than that of the generators of the intrinsic fluctuations. In
such cases, it can be shown (derivation not provided, but trivial
using the method of Taqqu and Teverovsky (1995) for fractional
Gaussian noise) that the expected value of the difference between
exponents of shifted time series is zero.

The Kalman filter algorithm is initialised by

xp
2 = x1, Pp

2 = P1 + Q (7)

with x1 and R1 the a posteriori estimates of the state and error-
covariance matrix at the first segment and xp

2 and Pp
2 the a priori

state and error covariance matrix for the second segment. We
initialise x1 to the regression parameters (slope and intercept)
obtained by applying DFA on the first segment. P1 = R1 and is com-
puted as per above. Kalman tracking is then performed by using the
following update and projection equations for k = 2, . . .,  M (Brown
and Hwang, 1997).

Update

Kk = Pp
k
(Pp

k
+ R)−1 (8)

xk = xp
k

+ Kk(zk − xp
k
) (9)

Pk = (I − Kk)Pp
k

(10)

Projection

xp
k+1 = xk (11)

Pk+1 = Pk + Q (12)

Here, it should be noted that the degree of temporal localisation
of the estimate is dependent upon the choice of filter parameters
(specifically Q) leading to a fundamental trade-off between tem-
poral localisation and consistency (see Sections 3.1.1 and 4). As
in Brittain et al. (2009),  smoothed estimates can be obtained by
employing Kalman equations derived to provide optimal estimates
of the smoothed state vector and error-covariance matrix. The full
equations are given in Brown and Hwang (1997) and produce expo-
nent estimates that are conditioned on the entire measurement
sequence through filtering in the forward direction and then filter-
ing the forward output in a backwards direction.

The methods were implemented as scripts in the MatlabTM envi-
ronment and build on publicly available code, specifically the DFA
implementation (McSharry, 2009) and the EKF/UKF Toolbox for
Matlab V1.3 (Hartikainen et al., 2011). The ATvDFA scripts are avail-
able from the first author upon request.

2.2. Synthetic data

To systematically investigate the tracking capabilities of
ATvDFA, time-series were constructed such that their local expo-
nent slowly fluctuated in time, i.e., with the timescale of the
fluctuations 3 orders of magnitude lower than that of the
sampling frequency. Fractional autoregressive integrated moving
average (FARIMA) processes were used. A FARIMA(p,d,q) process
{Xt : t = . . . , −1, 0, 1, . . . } is formally defined to be:

�(B)�dXt = �(B)at (13)

where

�(B) = 1 − �1B − �2B2 − · · · − �pBp (14)

�(B) = 1 − �1B − �2B2 − · · · − �qBq (15)

B is the backward-shift operator, i.e., BXt = Xt−1, {at} is a white noise,
p and q are non-negative integers, � is the differencing operator
and �d  denotes the fractional differencing operator,

�d = (1 − B)d =
∞∑

k=0

(
d

k

)
(−B)k (16)

with d ∈ (−0.5, 0.5) and(
d

k

)
= �(d + 1)

�(k + 1)�(d − k + 1)
(17)

where � denotes the Gamma  function. FARIMA processes are
the generalisation of standard ARIMA (p,d,q) processes (defined
in Box and Jenkins, 1976) where the degree of differencing d is
allowed to take nonintegral values (Hosking, 1981). FARIMA(p,0,q)
processes are the usual ARMA(p,q) processes. FARIMA(p,d,q) pro-
cesses with d ∈ (0, 0.5) exhibit long-range dependence. The simple
FARIMA(0,d,0) process is similar to the fractional Gaussian noise
process used to demonstrate convergence of DFA (Bardet, 2008).
The parameter d relates to the Hurst exponent estimated by
DFA through H = d + 0.5. Here, FARIMA(0,d,0) processes were con-
structed where d took the values 0.1271 at t = 0 s, 0.1569 at t = 60 s,
0.2681 at t = 70 s, 0.4018 at t = 80 s, 0.4491 at t = 90 s, 0.4018 at
t = 150 s, 0.2681 at t = 160 s, 0.1569 at t = 170 s, and finally 0.1271 at
t = 180 s, as shown by the black line in the bottom panel of Fig. 1A
(H values shown). All signals had unit variance. The variance of
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Fig. 1. Comparison of DFA, mDFA, ATvDFA using synthetic data with time-varying exponent. (A) (Top panel), sample FARIMA(0,d,0) time series with d systematically varying
during the record. (Bottom panel), the black line shows the sequence of exponents (H = d + 0.5) used to create the synthetic data such as that shown in the top panel. The
solid  and dotted green lines are the average and standard deviation of the exponents obtained when using DFA over each of the 50 time series. The mean and standard
deviations obtained by the different methods over each of the 50 time series are shown by the magenta (mDFA), blue (ATvDFA without smoothing), yellow (ATvDFA with
smoothing) lines and shaded areas. (B) Scaling relationship between log detrended fluctuations and log box sizes for the pre (red), post (blue) exponent inflation and whole
record (green). (C)–(E) Dependences of the RMS  error (RMSE) of mDFA (magenta), ATvDFA without smoothing (blue) and ATvDFA with smoothing (yellow) on the number
of  time series used to obtain an average estimate (C), the increment between windows (D) and the window length (E). In D and E, all 50 time series were used to estimate
the  mean and standard deviation of the RMSE. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)

the data appears as a multiplicative term in the expected value of
the detrended fluctuations. By normalising the variance, the linear
regression of the log detrended fluctuations of two segments with
an identical exponent over the log box sizes would be expected to
have the same intercept. With this simulation, there was no change
in exponents within less than 10 s, and the largest single exponent
change was 0.13. Fifty 240 s long time series were created at a sam-
pling rate of 256 Hz (typical in EEG recordings). An example of a
resulting time-series is shown in Fig. 1A (top panel).

2.3. Physiological data

To demonstrate the range of applications of the method, we
considered three possible sources of disruptions/perturbations of
the scaling exponent: disruption by manipulation of the data,
e.g., localised random shuffling, disruption through experimental
manipulation and disruption due to fluctuations of spontaneous
origin (or, at least, non systematic origin). We  describe each case in
order.

2.3.1. Disruption of LRTCs by data manipulation
As multiple studies have confirmed the existence of LRTCs in

the fluctuations of oscillation amplitude of seizure-free EEG record-
ings in a number of frequency bands (e.g., Linkenkaer-Hansen et al.,
2001; Nikulin and Brismar, 2005), we  used data (sampled at 256 Hz)
from the CHB-MIT Scalp EEG Database (Shoeb, 2009) available from
PhysioNet (Goldberger et al., 2000). To extract the fluctuations
of oscillation amplitude, an EEG record (electrode F8-T8, subject
CHB01) was band-pass filtered (black line in Fig. 4A) in the alpha
rhythm frequency range (8–12 Hz) and its envelope (red line in
Fig. 4A) extracted using the Hilbert transform. A 1-min section of
the data confirmed to have constant non-trivial scaling exponent
(>0.7) was  then shuffled to destroy its LRTCs and the tracking meth-
ods were applied to the envelope of the whole record including the
shuffled section.

2.3.2. Disruption of LRTCs through spontaneous fluctuations
We  used electrocorticography interictal data (sampled at

200 Hz) recorded at the Great Ormond Street Hospital (London,
UK) on an 11-year-old female who  was  suffering from intractable
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epilepsy and was  implanted with a 6 × 8 electrode mesh as part
of a pre-assessment for surgery. The data were identified by the
consultant clinical neuro-physiologist as showing seizure activity
in several electrodes over a finite period of time (see Fig. 5F). Data
were processed as in Section 2.3.1.

2.3.3. Disruption of LRTCs through experimental manipulation
The EMG signals (sampled at 5 kHz) of the first dorsal

interosseus (FDI) muscle of a healthy adult male were recorded
during two conditions. In the first (condition LL), the subject main-
tained a steady voluntary contraction at 10% of MVC for a duration
of 90 s with visual feedback of the muscle’s force output. In the
second condition (condition LH), the subject performed a steady
contraction at 10% of MVC  for 40 s followed by a 10-s ramp force
increment (directed by visual cue which was matched by the sub-
ject changing force output) ending at 50% of MVC  which the subject
then maintained for a further 40 s. The data was band-pass fil-
tered between 23 and 31 Hz which corresponded to a peak in the
power spectrum of the rectified EMG  (Fig. 5A). Its envelope was
then extracted using the Hilbert transform.

3. Results

3.1. Application to synthetic data

We assessed the performance of ATvDFA and its sensitivity to
the choice of its free parameters by applying it to the different time
series and systematically varying the free parameters that most
affect the physiological interpretation of the results. These are as
follows:

1 The window length over which the detrended fluctuations are
estimated provides the temporal resolution and was varied
between 2 s (much shorter than the known order of magnitude
of the changes in exponent) and 110 s (almost half of the total
record).

2 The temporal increment between segments used for estimating
the exponent. This also influences the temporal resolution and
was varied between 0.1 s (1/100th of the smallest window length)
and 6 s (i.e., less than 10 s).

3 The number of repetitions which makes it possible to obtain
smooth estimates and provides confidence intervals on the
results. The number of repetitions was varied between 1 and 50.

4 The covariance parameter Q controls the degree of localisation of
the state estimate. The same parameter was used for both com-
ponents of the state vector and it was varied between 1E-6 (very
tight) and 1E-4 (loose).

3.1.1. Comparison of DFA, mDFA and ATvDFA on changing scaling
exponent

We applied DFA, mDFA and ATvDFA (with and without Kalman
smoothing) to all time series (a sample of which is shown in the
top graph of Fig. 1A). The average value of the DFA exponents com-
puted over the entire time series (solid green line in Fig. 1A) was in
between the extrema of the exponents used to construct the time
series (H = 0.6271 for the first and final segments, H = 0.9491 for the
central segment). Importantly, the linear relationship between the
log detrended fluctuations and log box size was maintained (green
line in panel B, for one time series) showing that for small changes in
exponent the standard DFA algorithm does not provide the means,
whether through thresholding of the R2 value or through visual
inspection, to detect the violation of the assumption of constancy
of the exponent even if when the changes take place over almost
half of the record. In contrast, the estimates (averaged over 50 rep-
etitions) from mDFA (solid magenta line), ATvDFA without Kalman

smoothing (solid blue line) and ATvDFA with Kalman smoothing
(solid yellow line) all tracked the changes in exponent within the
time series and provided an accurate estimate of both pre- and
post-inflation baseline exponent values. The fact that the mean
estimates from mDFA, ATvDFA without Kalman smoothing and
ATvDFA with Kalman smoothing are very close (RMSE between fil-
tering methods and expected values in range [0.042–0.051]; RMSE
between filtering methods in range [0.019–0.037]) is in agreement
with similar observations by Peña et al. (2009) and is expected
by statistical sampling theory. The standard deviations (coloured
areas in Fig. 1A), however, reveal a different picture, with very tight
intervals (0.039 ± 0.003 for ATvDFA with smoothing, 0.049 ± 0.008
for ATvDFA without smoothing) for both versions of ATvDFA com-
pared with those of mDFA (0.11 ± 0.015). This indicates that there
are large fluctuations in mDFA estimate profiles between repeti-
tions that reduce the confidence levels on those estimates, both
when averaged but more specifically when only one repetition is
available (e.g., when applying the method to single physiological
time series to locate periods in the record where the scaling expo-
nent changes). This difference in variability of the estimation is
illustrated in Fig. 2C where individual time series of estimates are
provided for the parameter settings used to produce Fig. 1A. It can
be seen that the mDFA estimates (magenta line) fluctuate wildly
around the average whilst both forms of ATvDFA provide smooth
estimates (blue and yellow lines).

We assessed the RMS  error between the sequences of mDFA,
ATvDFA (with and without Kalman smoothing) estimates and the
sequence of exponents used to generate the data against the three
parameters that affect the estimation process: the number of
repetitions (or trial number), the window length and the incre-
ment time (Fig. 1C–E). Irrespective of the number of trials, the
ATvDFA method compares favourably with mDFA with a mean
RMSE smaller by a factor 2 (Fig. 1C). Only marginal gains in accuracy
were obtained when increasing the number of trials, ATvDFA with
Kalman smoothing proving particularly stable. The standard devia-
tions for the RMSEs are equally tight for all methods suggesting that
the difference in performance is robust. For both versions of the
ATvDFA method, there is a straightforward relationship (Fig. 1D)
between RMS  error and increment size, with smaller increments
leading to more accurate exponent estimates. This is expected since
small increments provide for more robust estimates of the mea-
surement noise, and an increased likelihood that the exponent
be constant between consecutive windows. In contrast, mDFA is
shows little sensitivity to the increment for increment values of
less than 3. This illustrates the noisy character of such an estimation
process. The mean estimates of ATvDFA without Kalman smooth-
ing (blue line) prove robust to the [1–5 s] range of increment size
although the standard deviations increase as expected. The rela-
tionship between the RMS  error and the window length is shown
in Fig. 1E. The results illustrate the trade-off between choosing a
long-enough window length that LRTCs can be robustly estimated
and short-enough that changes in exponents can be detected. Crit-
ically, however, both ATvDFA methods provide a wider range of
operation with window lengths in the range [3–30 s] resulting in a
level of accuracy equal or better than the best accuracy achieved by
mDFA (at ∼15–20 s). In the scenario presented here, it was found
that a window length of 5 s provided the best estimates for both
ATvDFA methods. This is half the duration of the shortest periods
of constant exponents (10 s).

Fig. 2A and B provide the ratio of RMSE of Kalman filtered esti-
mates over DFA estimates, and Kalman filtered estimates with
smoothing over DFA estimates respectively, over the fluctuating
exponent time series. They illustrate the sensitivity of the method
to the choice of covariance in relation to the window length, with
tighter covariances required for longer window lengths due to
potentially more noisy measurements. However, our results (with
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Fig. 2. Dependence on choice of covariance parameter. (A) Ratio of RMSE for ATvDFA without smoothing to RSME for mDFA for window lengths in [5–50 s] and covariance
parameter q in [0.000001—0.0001 s]. Darker regions denote parameter settings where ATvDFA without smoothing outperformed mDFA. (B) Same as A for ATvDFA with
smoothing. (C) Time series of estimates obtained by mDFA (magenta), ATvDFA without smoothing (blue), ATvDFA with smoothing (yellow) for a single time series constructed
as  per the series of exponents given by the black line (as in Fig. 1) when the covariance parameter q and the window length are chosen to minimise the ratio of RMSE in
panel  B (window length = 5 s, covariance parameter q = 1e–5 s). (D) Time series of estimates obtained when maximising the ratio of RMSE in panel B (window length = 50 s,
covariance parameter q = 1e–4 s). (E) and (F) Average of the estimates over 50 time series for parameter settings corresponding to (C) and (D), respectively. (For interpretation
of  the references to colour in this figure legend, the reader is referred to the web version of the article.)

ratios<1) demonstrate that the Kalman-based methods always
outperform mDFA irrespective of the choice of those parameters.
Panels C and D provide individual time series of estimates for all
3 methods for the optimal covariance setting (panel C) and the
worse covariance setting (panel D). With an overly loose covari-
ance parameter, the ATvDFA estimates become identical to those
of mDFA. Panels E and F provide the same information when aver-
aged over 50 such trials. As shown by Fig. 1A, the mean estimates
are very similar between methods irrespective of the choice of the
covariance parameters.

3.1.2. Comparison of DFA, mDFA and ATvDFA on constant scaling
exponent

To further our comparison of the benefit of ATvDFA over mDFA,
we applied the methods to long (16,384 s at 256 Hz) time series
of known constant exponents (0.6, 0.75 and 0.95), 10 s of which
are shown in the three graphs of Fig. 3A. The resulting time-series
of exponents are shown in Fig. 3B and compared to the theoreti-
cal exponent (black line), and exponent measured by applying DFA
over the whole record (red line). Confirming our results with fluctu-
ating exponents, both forms of ATvDFA estimates show the smallest

bias with tight standard deviations. This result did not depend on
the choice of exponent as evidenced by histograms of the estimates
for the 3 chosen values of exponents (Fig. 3C–E). The sensitivity of
the different methods to the choice of window length was  assessed
by computing the mean and standard deviation of the estimates
with window lengths in the range 2–150 s. As expected there is a
straightforward relationship between window length and accuracy
of the estimates for all techniques, with true values recovered for
the longest window lengths shown. The erratic nature of the esti-
mation process of mDFA is clearly illustrated by large standard devi-
ations. The standard deviations converge to those of ATvDFA and
ATvDFA with smoothing at window lengths greater than 40 s, con-
firming that mDFA would be of very limited applicability if sponta-
neous or induced changes in exponents occurred over short periods.

3.2. Application to physiological data

3.2.1. Application to surface seizure-free EEG data
DFA, mDFA and ATvDFA (window length of 30 s, increment of

1 s, single trial) were applied to the fluctuations of amplitude in the
alpha (8–12 Hz) band of 2.5 min  of seizure-free EEG data. A single



Author's personal copy

184 L. Berthouze, S.F. Farmer / Journal of Neuroscience Methods 209 (2012) 178– 188

Fig. 3. Comparison of DFA, mDFA, ATvDFA using synthetic data with constant exponent. (A) Three short 10 s extracts of FARIMA(0,d,0) processes with d = H − 0.5 taking value
0.45  (top), 0.25 (middle), 0.1 (bottom). (B) Time series of exponents obtained by mDFA (magenta), ATvDFA without smoothing (blue), ATvDFA with smoothing (yellow) on a
time  series with known fixed exponent 0.75 (measured DFA exponent shown by the black line) when using a window length of 5 s. (C) Relationship of mean and standard
deviation of the exponent obtained by mDFA (magenta), ATvDFA without smoothing (blue), ATvDFA with smoothing (yellow) when the window length is taken in the range
[2–150  s]. The shaded areas represent the standard deviations of the estimates. The red line denotes the theoretical exponent. The black line denotes the mean exponent
obtained by DFA over the whole time series. (D)–(F) Histograms of the estimates obtained by each method for the time series of known exponent 0.6 (D), 0.75 (E) and 0.95
(F).  (For interpretation of the references to colour in this figure legend, the reader is referred to the web  version of the article.)

DFA exponent of 0.63 (dotted blue line in Fig. 4C) was  obtained by
application of DFA over the whole record, consistent with published
values for this type of data (Nikulin and Brismar, 2005). As in the
synthetic data, the linear relationship between the log detrended
fluctuations and log box sizes was maintained (blue line in Fig. 4B)
therefore providing no indirect indication that there may  be a
change in exponent. In contrast, the application of mDFA resulted
in wildly fluctuating estimates (in range of [0.53–0.96]) consistent
with previous observations of the important statistical variation of
such an estimation process. More critically, both ATvDFA without
smoothing (solid blue line) and ATvDFA with smoothing (yellow
line) revealed a series of exponents that slowly fluctuate in time
with ranges of [0.70–0.79] and [0.72–0.77] respectively. A section
of the EEG (grey rectangle in Fig. 4D) was then shuffled and DFA,
mDFA and ATvDFA re-applied. The DFA exponent computed over
the whole record showed an unexpected increase (dotted black line
in Fig. 4D). Based on the R2 value (>0.98), one would conclude that
the linear scaling between log detrended fluctuations and log box

sizes was maintained (red line in Fig. 4B), however, close inspec-
tion reveals a cross-over behaviour with fluctuations for box sizes
less than 10 s showing an exponent similar to that of the intact
record, and the fluctuations for box sizes greater than 10 s show-
ing a steeper slope with more variance at the largest box sizes. For
data windows in which the scaling exponent is constant (intact data
from 0 to 54 s, shuffled data from 69 s to 114 s, and intact data from
129 s to end of record), mDFA returns noisy estimates around the
true value, as in the intact case. For windows that contain data with
different exponents (dark grey areas in Fig. 4D), however, mDFA
returns spuriously high estimates due to loss of scaling. In contrast,
both forms of ATvDFA provide meaningful estimates with a smooth
transient between the two expected values.

3.2.2. Application to electrocorticography EEG data
DFA, mDFA and ATvDFA (window length of 15 s, increment of

1 s, single trial) were applied to the fluctuations of amplitude in
the alpha (8–12 Hz) band of ∼16 min  of electrocorticography EEG
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Fig. 4. Comparison of DFA, mDFA, ATvDFA using EEG data. (A) Bandpassed EEG (8–13 Hz) with fluctuations of oscillation amplitude (red line). (B) DFA log–log plot of detrended
fluctuations versus box sizes for intact (blue) and shuffled (red) EEG records. (C) Exponents obtained by mDFA (magenta), ATvDFA without smoothing (blue), ATvDFA with
smoothing (yellow) for the intact record. The dashed black line denotes the exponent obtained by DFA over the whole record. (D) Exponents obtained by mDFA (magenta),
ATvDFA without smoothing (blue), ATvDFA with smoothing (yellow) for the partially shuffled (grey area in range 69–129 s) record. The dark grey areas denote time ranges
for  which the estimates were obtained over windows that included segments of different exponents (intact and shuffled). The green dotted line shows the theoretically
expected 0.5 exponent for shuffled data, the black line shows the DFA exponent for the whole record. (For interpretation of the references to colour in this figure legend, the
reader  is referred to the web  version of the article.)

data (2 out of 48 electrodes, G13 in blue and G40 in red in Fig. 5F).
Application of DFA over both records yielded values of ∼0.62 for
G13 and ∼0.80 for G40. The linear relationship between the log
detrended fluctuations and log box sizes was maintained for both
electrodes (blue and red lines in Fig. 5B) with R2 values (>0.99 in
both instances) providing no indication that there may  be a change
in exponent during the record. Again, the application of mDFA
(magenta line in Fig. 5C and D) resulted in wildly fluctuating esti-
mates (ranges of [0.60–1.06] for G13 and [0.47–1.23] for G40) such
that it would not be possible to detect any differences between the
two time series with any statistical significance. In contrast, the
use of ATvDFA with smoothing revealed a key difference between
the sequences of exponents for both electrodes. Whilst the esti-
mates from ATvDFA with smoothing (yellow line in Fig. 5C and D)
remain constant over most of the record, electrode G40 (Fig. 5D)
shows a localised deviation (decrease in exponent) of more than
2 standard deviations over the period [300–325 s]. Interestingly,
this data segment contains an electrographic seizure (see Fig. 5F).
Fig. 5E, which shows normalised exponents for G13 (blue line) and

G40 (red line) over that period, reveals that whilst both electrodes
show a reduction in exponent, only G40 passes the 2 standard devi-
ations threshold. This is consistent with the degree of involvement
of the respective electrodes in that seizure (see Fig. 5F).

3.2.3. Application to EMG data for FDI muscle in a simple motor
task

DFA, mDFA and ATvDFA (window length of 20 s, increment of 1 s,
2 trials) were applied to the fluctuations of amplitude in the beta
(27–31 Hz) band of two repetitions of the two  conditions (LL and LH,
see Section 2). Application of DFA over both records yielded values
of ∼0.57 for both conditions, with a linear relationship between
the log detrended fluctuations and log box sizes maintained in
both instances (blue and red lines in Fig. 6B, R2 values of ∼0.99 in
both conditions). Application of mDFA and ATvDFA with/without
smoothing to the LL condition data (dashed magenta, blue and
yellow lines in Fig. 6C) shows qualitatively similar results to pre-
vious examples with mDFA providing noisy estimates and ATvDFA
with and without smoothing yielding similar and near constant



Author's personal copy

186 L. Berthouze, S.F. Farmer / Journal of Neuroscience Methods 209 (2012) 178– 188

Fig. 5. Comparison of DFA, mDFA and ATvDFA using electrocorticography data. (A) Bandpassed electrocorticography signal (8–12 Hz) with fluctuations of oscillation amplitude
(red  line). (B) DFA log–log plot of detrended fluctuations versus box sizes for electrodes G13 (blue) and G40 (red) in a grid of 48. (C) and (D) Exponents obtained by mDFA
(magenta), ATvDFA without smoothing (blue), ATvDFA with smoothing (yellow) for records G13 and G40 respectively. The dashed black line denotes the exponents obtained
by  DFA over the whole records. (E) Normalised scaling exponents obtained by ATvDFA with smoothing for G13 (blue) and G40 (red) in the period [275–350 s]. The dotted
black  lines denote 2 standard deviations. (F) Traces for all 48 electrodes over the same period, with G13 and G40 shown in blue and red respectively. An electrographic seizure
occurs in the interval [300–325 s]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web  version of the article.)

estimates in the range [0.57–0.61] for ATvDFA without smooth-
ing (blue) and [0.58–0.61] for ATvDFA with smoothing. In contrast,
the exponents produced by all three estimators is shown to fluctu-
ate distinctly in the LH condition (solid magenta, blue and yellow
lines in Fig. 6C). Importantly, these fluctuations are localised to the
ramp period (40–50 s, dark grey area) and windows which contain
data with different exponents (light grey areas). In the high-force
regime, the exponents return to the values observed in the low-
force regime, therefore excluding the possibility that the increase
in exponent would correlate with the expected increase in coeffi-
cient of variation of the data (Jones et al., 2002). In other words,
application of ATvDFA makes it possible to detect a change in the
order of the data during the ramp. A full presentation and discus-
sion of this study is beyond the scope of this paper and will be given
elsewhere.

4.  Discussion

The importance of the proposed ATvDFA method is that it
provides a robust estimate of the exponent and changes in the mag-
nitude of the exponent during a time series. From the simulations
presented here the temporal resolution of the estimate can be as
little as a few seconds. Robust estimates of the DFA exponent (RMS
error <0.1) can be obtained from a single time series without aver-
aging (see Fig. 3). The difference between ATvDFA with and without
smoothing and mDFA is well illustrated in Fig. 3B in which the
synthetic FARIMA data was  constructed to have a constant expo-
nent of 0.75. The exponent recovered from the entire time series is
0.76, the ATvDFA methods recover exponent values that fluctuate
around 0.77 within a narrow range. In contrast the mDFA estimates
fluctuate between 0.4 and 1.2, i.e. across an exponent range that
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Fig. 6. Comparison of DFA, mDFA and ATvDFA using EMG  data. (A) Power spectrum for the EMG data of the FDI muscle during the motor task, averaged over all trials. The
dotted  line shows the raw spectrum. The solid line shows the fitted spectrum used to extract the location of the peaks. The data show a peak in the beta band at 27 Hz. (B)
DFA  log–log plot of detrended fluctuations versus box sizes for one trial of condition LL (blue) and one trial of condition LH (red). (C) Exponents obtained by mDFA (magenta),
ATvDFA without smoothing (blue), ATvDFA with smoothing (yellow) for the LL condition (dotted lines) and for the LH condition (solid lines). The black line denotes the
exponents obtained by DFA over the whole record of each of the two  conditions (0.57 for both conditions). The dark grey area [40–50 s] denotes the period during which the
ramp  was performed in condition LH. The light grey areas [20–40 s, 50–70 s] correspond to data windows containing data with changing exponents. (For interpretation of
the  references to colour in this figure legend, the reader is referred to the web version of the article.)

comprises Gaussian white noise (DFA ∼ 0.5) and its integration into
a Brownian process (DFA ∼ 1.5). Therefore in comparison to ATvDFA
mDFA provides an unreliable method for estimating the exponent
value of a single time series and is unsuited for estimating either
the moment-to-moment fluctuations within a constant experi-
mental/recording paradigm or experimentally induced exponent
changes. As explored in the Results section, a limitation of the
ATvDFA method lies with the choice of the parameters of the pro-
cess noise covariance matrix Q. As pointed out in Section 2, the
choice of these parameters implements a trade-off between tem-
poral localisation of the estimate and consistency. Application of
DFA to short data segments will lead to large variations in the log
detrended fluctuations from one segment to the other as evidenced
by the application of mDFA on data of known exponents (see Fig. 3).
Tight covariance parameters result in the filter being too sensi-
tive to these variations leading to inconsistent values, albeit with
good temporal resolution. By relaxing the covariance parameters,
the filter can show increased consistency. Conversely, for long data
segments, where DFA will be more oblivious to loss of scaling due
to a locally changing exponent, the use of tight covariance parame-
ters improves temporal localisation. This trade-off is illustrated by

Fig. 2C and D. It should be noted that this trade-off is mostly rele-
vant to the use of ATvDFA in single-trial data. For multi-trial data,
the method is relatively insensitive to the choice of the Q parame-
ters (see Fig. 2E and F) as expected by statistical sampling theory.
Furthermore, it should be noted that ATvDFA with smoothing is
less sensitive to the exact selection of the Q parameters. A compar-
ison between Fig. 2A and B shows that the domain of parameters
over which the method produces optimal performance displays less
structure in the relationship between Q parameters and window
length. This is because the smoothing filter provides consistency
when the covariance parameters are tightened to improve locali-
sation. We  suggest that in experimental situations where one might
anticipate rapid and frequent changes in exponents values, ATvDFA
with smoothing should be used with a small window length and Q
parameters selected using Fig. 2B as a guide.

A number of investigators have applied detrended fluctuation
analysis to assess the presence of long-range temporal correla-
tions through an estimate of the Hurst exponent in EEG and MEG
time series (Linkenkaer-Hansen et al., 2001, 2004, 2004; Nikulin
and Brismar, 2005; Berthouze et al., 2010). These studies have
been carried out under the implicit assumption that, providing
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the experimental and recording conditions are kept constant, any
exponent value recovered from DFA relates to an overall brain
state present during the entire length of the time series record.
Our method suggests that, even in the absence of experimental
manipulations, the validity of such an assumption should be ascer-
tained, as there may  be spontaneous changes in the determinancy
of the signal which could be detected as fluctuations in the magni-
tude of the estimated exponent on a fine enough time scale. Such
spontaneous changes in brain state characterised by fluctuations in
intrareal BOLD signal correlations are well described in the litera-
ture on the resting state FMRI (e.g., Ko et al., 2011). Resting state
fluctuations are also observed in EEG gamma  rhythm power (Deco
et al., 2011). The ATvDFA methodology described here provides
investigators with the means to assess the presence of spontaneous
changes in the scaling exponents that characterize LRTCs within a
neurophysiological time series and may  thus open new avenues for
analysing and understanding the brain resting state.

EEG and MEG  studies of normal human development and neu-
ropsychiatric disease states have detected consistent differences
in exponent magnitude between different groups with a tendency
for LRTCs to increase with brain maturation (Smit et al., 2011) and
decrease with neurological disease states (e.g. autism, depression,
schizophrenia and Alzheimer’s disease (Lai et al., 2010; Linkenkaer-
Hansen et al., 2005; Montez et al., 2009). However, little is known
about the functional significance of the differences in exponent
magnitude (Smit et al., 2011). It has been speculated that the mag-
nitude of the exponent reflects the temporal integration span of
brain activity and the information content of brain activity, with
lower exponent values representing brain states that are noisy yet
highly flexible and high exponent values representing brain states
that are more stable, more correlated yet less flexible (Smit et al.,
2011). The development of a robust measure of exponent mag-
nitude changes on a short enough time scale to be amenable to
experimental manipulation will allow the functional significance
of exponent magnitude to be explored empirically. ATvDFA pro-
vides a new avenue for studying experimental paradigms in which
a task or stimulus might induce changes in the temporal order of
the brain activity. This will enable researchers to devise experi-
ments in which the functional significance of exponent value can
be established.
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