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Abstract

We present an extension for Variable Length Markov Models (VLMMs) to allow for modelling
of continuous input data and show that the generative properties of these VLMMs are a powerful
tool for dealing with real world tracking issues. We explore methods for addressing the temporal
correspondence problem in the context of a practical hand tracker, which is essential to support
expectation in task-based control using these behavioural models. The hand tracker forms a part
of a larger multi-component distributed system, providing 3-D hand position data to a gesture
recogniser client. We show how the performance of such a hand tracker can be improved by
using feedback from the gesture recogniser client. In particular, feedback based on the generative
extrapolation of the recogniser’s internal models is shown to help the tracker deal with mid-term
occlusion. We also show that VLMMSs can be used as a means to inform the prior in an Expectation
Maximisation (EM) process used for joint spatial and temporal learning of image features.

Keywords. Variable Length Markov Models, Temporal Learning, 3-D Tracking, Data Associ-
ation, Task-based Control

1 Learning temporal structure and task based control

1.1 Predictive control

A common observation in animate vision is that it is ‘purposive’, i.e. the visual processing is focussed
on a particular task or goal [2]. In cognitive computer vision systems, this notion has to be formalised
using models that support online expectation or ‘predictive control’. That is, behavioural models must
be acquired by the system, e.g. by learning, and exploited for effective prediction at the required level
of visual processing, e.g. here object trajectories.

Assuming that spatial localisation of task relevant objects is possible, and the existence of suit-
able training data, then the categorisation/classification labels and localisation data taken together
provide an account of object trajectories. If we have over-arching prior knowledge about the types
of trajectories we may observe, the learning of temporal dynamics for a specific target is simply a
matter of ‘best fitting’ the localisation data to the available models (e.g. N-th order polynomial curve
fitting).

In the absence of such a ‘global’ perspective of candidate trajectories, we can still make useful
assumptions that constrain the learning of temporal dynamics. For example, we assume there is some
underlying process that describes the motion and that the motion is smooth and continuous (except,



for example, under occlusion). Additional assumptions will determine the generative properties of the
resulting model.

Markov models have been used extensively in the modelling and recognition of human activities
involving highly structure and semantically rich behaviours such as sign language (Starner and Pent-
land [20], Vogler and Metaxas [21]), dance and aerobics (Galata and Hogg [9]) and vehicle movements
around parked aircraft [10]. Learning of first-order Markov models is a well-established field. Un-
fortunately, as Galata and Hogg point out [9], Hidden Markov Models (HMMs) do not easily encode
high order temporal dependencies. Local optima are frequently encountered by iterative optimisation
techniques when learning HMMs with many free parameters. Galata and Hogg use Variable Length
Markov Models (VLMMSs) [16] which are able to locally optimise memory length within the model.
This approach captures long term temporal dependencies in some parts of behaviour and short term
dependencies elsewhere. Their approach uses discrete VLMMs modelling transitions between a pre-
determined set of prototypes. Clouse et al.[4] show how time delay neural networks can be used to
induce and represent finite state machines with long memory lengths (cf. higher order Markov mod-
els). Johnson and Hogg [12] model highly non-linear behaviours for a pedestrian tracking activity
using a Gaussian mixture over system state change and observed history. Their approach is unusual
in that it does not assume a discretisation of state space and models behaviours as both continuous
and non-linear. However, one drawback of this approach is that, while the distributions are learnt and
effective in online control, the prediction used Kalman filters to constrain the search from frame to
frame. As shown later in this paper, more powerful predictive control, robust to long term occlusions
is possible using our temporal structure learning. This is because the VLMMs are able to use their
longer length optimised state histories to provide a better account of likely future state using stochastic
sampling techniques than a first-order model. So repeated applications of stochastic sampling produce
a more structured and constrained prediction of likely state sequences.

1.2 Interpretation of human activities - the ActIPret project

The ActIPret project (actipret.infa.tuwien.ac.at)aims to develop a cognitive vision methodology
that interprets and records the activities of people handling tools. The focus is on active observation
and interpretation of activities, on parsing the sequences into constituent behaviour elements, and
on extracting the essential activities and their functional dependence. The ActIPret demonstrator
is a distributed system with low-level data-driven vision components and high level task driven be-
havioural reasoning components. These components are organised into a nominal hierarchy and higher
level components interact with the lower level components through a common service interface. The
resulting system implements a scheme of task-based visual control that can be though of as data-driven
(bottom-up) processing limited in scope by task-based (top-down) control.

The work described in this paper has application in the interactions between just two of the
ActIPret components, a Gesture Recogniser (GR) that identifies task relevant functional gestures
(activities such as ‘pickup’ and ‘putdown’ rather than communicative gestures), and a Hand Tracker
(HT) that provides 3-D hand positional data to the GR. The work has more general applicability
across a range of problems in Cognitive Vision where perception is guided by expectation.

1.3 The Hand Tracker

The FORTH Hand Tracker (see [1]) uses a non-parametric method for skin detection and performs
tracking in a non-Bayesian framework. A YUV 4:2:2 based skin colour representation is learned
through an off-line procedure. The skin colour detection model is adaptive, based on the recent history
of tracked skin-coloured objects. Thus, without relying on complex models, it is able to robustly and
efficiently detect skin-coloured objects even in the case of changing illumination conditions. Tracking
over time is performed by employing a novel technique that can cope with multiple skin-coloured



objects moving in complex patterns in the view of a potentially moving camera. The Hand Tracker
provides real time hand candidate centroid data to the GR.

1.4 Combining the HT and GR

In the ActIPret system, the GR is tasked with identifying task relevant functional gestures for specific
hand objects. The selection of the relevant candidate hand objects is determined by an abstract
reasoning engine at a higher level than the GR (Sage, Howell and Buxton [19]). For multiple handed
tasks, or early attentive processing where we are interested in identifying all possible task relevant
hand candidates, we may need to track an arbitrary number of candidate hand objects. The higher
level reasoning component may have cause to request attentive processing for multiple objects because
of task ambiguity (it can pursue concurrent multiple lines of reasoning), or because there were multiple
hand candidates (i.e. less than perfect segmentation) reported during earlier processing. Consistent
hand candidate labelling is a key factor for the performance of the ActIPret system as a whole.
Whereas short term consistency may be acceptable for discrete gesture recognition (e.g. the hand has
‘reached out’ from the torso), it is problematic for longer temporal scale recognition of behavioural
activities (e.g. hand(x) picked up object(y) and put it down on object(z)). Consistency over longer
temporal scales requires robustness against many factors such as lighting variation and, in particular,
mid-term occlusion and ambiguity caused by intersecting multiple hand trajectories. In order to
achieve candidate hand labelling consistency, the HT has to reason locally about such occlusion and
ambiguity in order to unify different labels should they arise (e.g. to determine that hand(1) is the
same physical hand as hand(2) when the new label is created when the original object comes out of
occlusion).

In conventional approaches to solving this temporal correspondence or ‘data association’ problem,
we might use predictive tools such as Kalman filters, or adopt graph based spatial matching. In
ActIPret we seek opportunities through the hierarchical service structure. Normally, the GR makes
a service request to the HT for positional data for a specific object or set of objects. The HT then
provides the data to the GR, which then applies its own processing to determine whether gestures
have been completed. When the HT is not able to provide data positional data, the GR contains
useful information about what gestures might have been occurring at the time the hand object was
lost. At that point, the GR can generatively extrapolate positional data for the missing hand object,
maximising the odds that disparate hand object labels can be re-unified when positional data is
available for the hand once more.

The aim of the experiments described in Section 3 of this paper is to learn relevant gesture models
using hand positional data derived from FORTH’s tracker and show that these gesture models can be
used within a component such as the GR to provide a robust means of dealing with tracking issues
such as mid-order temporal occlusion. This capability is provided by strong generative properties
of the underlying VLMM gesture models. The experiments described in section 3 demonstrate such
generative extrapolation in action.

2 From first-order to variable order temporal dynamics

2.1 HMM Gesture Recognition

A Hidden Markov Model (HMM) is a doubly stochastic process, i.e. there is an underlying stochastic
process that is not observable (hidden) but can only be observed through another set of stochastic
processes that produce the sequence of observed symbols [15]. The HMM is characterised by a triple
A = (m, A, B), where A is a square N x N matrix of probabilities for transitions between N discrete
hidden states, 7 is a vector of probabilities describing the initial state of the model and B is a N x M
matrix accounting for the mapping between the N hidden states and the M output (observable)



symbols.

There are three general problems we may solve using HMMs. Given a set of observation symbols
O and a model A we can calculate the probability of that sequence p(O|\) (forward evaluation). Given
O and X we can deduce the most likely sequence of hidden states (Viterbi decoding). Finally given O
we can estimate model parameters A that maximise the probability of O.

To capture gesture models, we used training observation sequences represented sequences of 3-
valued vectors (3-D hand velocities V' = [v,, vy, v,]) to train a continuous output HMM with hidden
states modelled as 3-component mixtures of Gaussian functions. We then varied the number of hidden
states to explore the underlying dimensionality of the training set (which corresponds approximately
to the number of distinct gesture phases) and demonstrated the ability of the HMM to distinguish the
learned gesture from other gestures, as in some of our previous work[18].

2.2 Overview of VLMM

Ron et al’s [16] formulation of the VLMM is based on optimisation of the statistical prediction of
a Markov Model measure by the instantaneous Kullback-Liebler (KL) divergence of the following
symbols (the statistical surprise of the model when presented with the next symbol). The memory
is extended when such a surprise is significant until the overall statistical prediction of the model
is ‘sufficiently good’ for a user-defined error e [17]. The original formulation worked with training
sequences that were strings of discrete symbols (such as in language modelling). The training process
leads to a prediction suffix tree that predicts the probability that a symbol o, € 3 follows a variable
length string sy n,...s;—1. Throughout this paper, we have adopted the notation of o as a single
alphabet symbol (length 1 string) and s as string of arbitrary integer length > 1. Where s is shown
subscripted, this is intended to show that we are indexing a single alphabet symbol from within the
string s. Further, to prevent confusion between strings and joint probability, subscripted strings are
sometimes shown in braces. Distributions are shown in upper case, single values are shown in lower
case. Thus, for example, P(3,T'), where X is the alphabet and T is time, is a 2-D array of values and
p(o,t) is a single value.

To learn VLMM gesture models from hand training data, we first fit a set of N Gaussian mixtures
over the data using the standard first-order HMM learning procedure. We discard the learned HMM
state transition matrix and prior vector and use just the mixture mean p and co-variance ¢ parameters.
Our VLMM alphabet ¥ then corresponds to the mixture indices (1,2, ..., N). The probability of being
in a state oy is defined as the fit between a piece of observed data z; and the N Gaussian mixtures. In
this paper, states are assumed to be numbered 1,2, ..., N. More sophisticated modelling could expand
Y to model the mixture index plus other parameters such as probabilistic context [18].

The central element in generating the prediction suffix tree is the KL divergence measure for the
statistical surprise associated with a prediction for a symbol, s, compared with the longer string os:

= osa’)lo _ploso)
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The source probabilities p(s) and p(o|s) are estimated from sums and products of the empirical
counts (#) of the appearances of their constituent alphabet symbols in the distribution P (X, T") defined
by:

N(xﬁ Ho s ¢0’)
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p(oy) is drawn from the distribution P(X,T) and is the probability of alphabet symbol o at time

t (i.e. the fit between the observation data z at time ¢ and the set of N Gaussian mixtures specified
by {p1,¢1}...{pn, ¢n}. Following Ron’s original paper and applying Laplace’s rule of succession:

ploy) = (2)
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The notation X%l taken from Ron’s original paper refers to the set of strings of length |s| that can
be derived from the alphabet. For example, for a two symbol alphabet ¥ = {1, 2}, if we wanted to find
p({1,2}) we would need to evaluate p({1,1}), p({1,2}), p({2,2}) and p({2,1}) for the denominator
term. Fortunately, it is easy to show that the denominator terms are constant for any given ¥ and
|s|. We dispensed with the smoothing terms by simply removing the +1 from the numerator terms
and the |X| from the denominator terms. Here, || = N i.e. the alphabet size is the number of
Gaussian mixtures. As P(X,¢) is a continuous valued vector of length N, and s is a variable length
string (potentially 1 symbol or >1 consecutive symbols), the #s term becomes a sum of products of
probability values:

p(s)

(4)
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This extension to the VLMM formulation to the continuous case enables us to estimate p(s)
and p(o|s) under noisy conditions and proves to degrade gracefully in practice towards a first-order
(length=1) Markov model with 1/|%| state transitions with high levels of noise. We use these terms
to build a Prediction Suffix Tree.

A Prediction Suffix Tree (PST) is a tree graph representation of a set of variable length nodes
that describe a training data set. The nodes are those essential to the variable length structure of
the domain and are determined by applying the KL divergence statistical test previously described.
Each node consists of a label (a set of alphabet symbols of length 1 < length < L and a set of
|X| transition probabilities. L is a user defined parameter that determines the maximum allowed
length of any variable length node to describe the domain (the maximum PST tree depth). The
transition probabilities specify the probability of a subsequent single alphabet symbol having observed
the variable length node. Following Ron et al’s original formulation, the PST also has a root node
denoted ‘e’ (of nominal length 0) that specifies the probabilities of observing single alphabet symbol
label nodes. There is one additional user-defined parameter € that determines the level of statistical
surprise required before a node is inserted into the PST.

An example Markov source (used to generate training data) and the corresponding PST generated
for it are shown in Fig. 1.

Once learned, a PST can be converted into a Probabilistic Finite Automaton (PFA) 5-tuple
(Q,2,7,vy,m) where Q is the finite set of M variable length states derived (approximately) from the
leaves of the prediction suffix tree, 3 is an alphabet of size N (the mixture indices), 7: Q@ x ¥ — @ is
the transition function, v : @ x ¥ — [0, 1] is the output probability function and 7 : @ — [0,1] is the
probability distribution over the starting states.

In the simplest case, we can then use the PFA to create a forward evaluation matrix similar to
calculate the distribution P.(Q,T) as we would with a first-order HMM. We first create a forward
evaluation trellis of size M * T. The probability values p(q;) are calculated as follows:



p(1) = 0.6767
p(2) = 0.3233

p(1) = 0.5644 p(1) = 0.9072
p(2) = 0.4356 p(2) =0.0928
p(1) = 0.6092
2) =0.3908
p(1) =0.7778
p(2) = 0.2222
p(1) = 0.5351
p(2) = 0.4649
p(1) = 0.6375 p(1) = 0.2857
p(2) =0.3625 p(2) = 0.7143
Tk (b)

(a)
Figure 1: (a) Markov model used to generate discrete symbol string (b) Prediction Suffix Tree learned
from string for e = 0.001 and L = 3
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where the mapping between the M states in ) and the N Gaussian mixtures is defined by the
notion of the terminal symbol ts(g). ts(q) is the last symbol in the state ¢ e.g. ts(123) = 3. So p, is
defined as fiz5(q)-

We assume a uniform 1/M distribution for 7 such that ¥Py = 1 for each timestep. Finally, we
can form a |X| * T trellis by adding rows of the M T trellis so that the terminal cluster symbol for
each of variable length states is the same. We can use the resulting forward evaluation trellis to find
the fit between any observation data series 1, o, ...x7 using the standard ideas of log likelihood per
symbol. We can also use scaling to prevent the trellis co-efficients geometrically tending towards oo.

The use of the terminal symbol means there is a ‘many to one’ mapping between states € () and
the mean and covariance value sets defined by the original N Gaussian mixtures. Although this is
fine for learning the set of variable length states that describe any particular training domain, it does
place limitations on the generative properties of the the resulting model overall. Consider the training
set extract shown in Figure 2 that shows 2 Gaussian mixtures, M1 and M2, fitted to the training
data. The size, and thus the mean and covariance value sets, for M1 and M2 will be a function of the
number of mixtures fitted to the data. For a VLMM model derived from this example, there would
likely be states of length from 1 to 3. A length 3 state corresponding to 3 consecutive points in mixture
M1 would be strong evidence for a length 1 state corresponding to M2. Whilst this would be fine for
classifying other trajectories with a similar structure, consider what might happen if we try to use the
same model in a generative mode. As M1 and M2 have only one mean and covariance parameter set
each, every time we want to stochastically generate a novel data point for a trajectory and specify the
terminal state we will generate a value about the means of the Gaussian mixtures. However, we have
lost valuable information about the distribution of mean and covariance values as we progress through
the Gaussian feature space. What is really required is that for each variable length state g € Q, we
want an independent mean and covariance parameter set so that in the generative mode we create
trajectories that are more akin to the original training data.
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Figure 2: Training set extract consisting of 7 2-D data points along a continuous arc of motion

To establish independent mean and covariance parameter sets for each variable length state we
used a single iteration of the Forward Backward algorithm as typically used in the Baum Welch
iterative learning procedure for HMMs. We defined an alpha (forward evaluation) trellis P, (Q,T)
with a uniform distribution over P,(Q,t =1) = 1/M:

Palqr) = N (04 tiis(g), rs(q)) > pald’st —1)y(q', 0) (8)

¢ €Q:o=ts(q):37(¢',0—q)
and a beta (backwards evaluation) trellis Pg(Q,T) with a uniform distribution over Pg(Q,t =
T)=1:

pa(q-1) = Z Pﬁ(qlat)W(QtA,U)N(OtaNts s Dis(q’ ) (9)
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and a 2 distribution (‘counts’ of how often a state ¢ € ) was visited over any individual training

exemplar): !

PQ(QaT) :Pa(QaT)(X)Pﬁ(QaT) (10)

where ® denotes the element wise product. We used the well published methods for scaling co-
efficients in the distributions to prevent numerical underflow. The independent mean and covariance
value sets for each ¢ € (Q were then defined as:

Zii{ Oth(Qat) (11)

Hq = =T

)T

g = izt (1 ) (0:) 01 =
' Zt 1 PQ(q, t)

'In other literature the counts are usually denoted by y. We use Q here to prevent confusion with the output
probability function of the VLMM.

(12)




(a) (b) (c)
Figure 3: Prediction Suffix Trees with leaf sets (a) {1,3,132,232,332}, (b) {1,3,12,22,132,232,332} and
(c) {1,12,22,13,23,33,132,232,332}

where T denotes matrix transpose.

We modified Ron’s original algorithm for learning the Prediction Suffix Tree to facilitate easier
conversion between the PST and the full PFA forms. By ‘full’, we mean that the resulting PFA is
guaranteed always to be in a valid state ¢ € @ and that 7 is well defined for all symbols ¢ € X
regardless of whether the symbol sequence go appears in the training data. This means that the
PFA can deal with unseen data without requiring any special modification of the forward evaluation
process. These additional nodes will not be further expanded as they do not meet the KL criteria,
but will appear in the set of PST leaf nodes as the first step of its conversion to the PFA.

To ensure that we can generate a full PFA, whenever a node k is added at some depth [ < L in the
PST, we also add, Vs € &, {s, suf fiz(k)} to the PST regardless of whether {s, suf fiz(k)} meets the
KL criteria or not. For PSTs with a maximum tree depth > 2, we need to ensure that the resulting PFA
has the means to make a transmission between nodes that vary in length by more than 1 observation
symbol. So, as well as including all of the PST leaf nodes in the PFA, we may need additional internal
nodes in order to ensure that Vg € @, then Yo € ¥ then 3¢’ € Q : somesuf fix{qo} = ¢ where
{(somesuf fix)} constitutes any consecutive end set of symbols in a sequence.

To illustrate this, for an alphabet ¥ = {1,2,3}, consider a discrete PST with depth L = 3 as
shown in Fig. 3(a). Taking the leaf set of PST nodes {1,3,132,232,332}, it is not possible to draw a
full PFA. For example, if the PFA is in states 1,132,232 or 332 and receives the next symbol 2, there
are no states in () to make a transition to. Also as the leaf set only contains nodes of length 1 and 3,
there is no single symbol transition possible between the length 1 nodes and the length 3 nodes.

Our example has assumed that symbol 32 met the KL criteria but that 12 and 22 did not. If we
add 12 and 22 anyway (because we added 32) then we have the PST as shown at Fig. 3(b) with the
two additional nodes shown as dotted links. Now we have the PST leaf set {1,3,12,22,132,232,332}.
Next, if the PFA was in state 1 then we can observe the symbol 2 and move to state 12, and if the
PFA was in states 132,232 or 332 we would move to state 22.

However, we still have a problem with the length 3 states. Whilst we can define exit transitions
for these states there are no transitions that cause us to enter them. This is because the prefixes
for these states (i.e. 13,23 and 33) do not appear in the leaf set. To solve this problem we need to
expand the node 3 to provide the additional nodes 13, 23 and 33 as shown in Fig. 3(c). This now
gives us an augmented leaf set of {1,13,23,33,132,232,332} from which we can derive a complete PFA
as summarised in Table 1.

The PST learning process is easily extended to multiple exemplars by taking average statistics for



Table 1: Tabular enumeration of state transitions for PFA built from augmented PST leaf set
{1,12,22,13,23,33,132,232,332}.

Next observed symbol

Current state | 1 | 2 3
1 1] 12 13
12 1] 22 23
22 1] 22 23
13 11132 33
23 11232 33
33 11332 33
132 1] 22 23
232 1] 22 23
332 1] 22 23

Err(os,s) over all exemplars.

3 Tracking experiments

We present four experiments that deal with the learning of temporal structure for hand trajectories
captured by hand trackers. The first three use 2-D hand positional data generated by FORTH’s
HT. The fourth uses 3-D data derived from the Terminal Hand Orientation and Effort Reach Study
Database created by Human Motion Simulation (HUMOSIM) at the Center for Ergonomics, University
of Michigan, USA. It is important to re-iterate here that these experiments are not learning about
discrete transitions between a fixed set of prototypes. We are learning on continuous valued vectors
where each vector at time ¢ describes the fit between the training data and N Gaussian mixtures fitted
over that data.

3.1 Experiments 1, 2 and 3: 2-D examples

The gesture training data for this experiment was collected using FORTH’s HT. 2-D hand centroid
positional data (hand in a constant z-plane position) was collected for examples of the hand moving
in an approximately circular motion. Each example consisted of between 200-250 equal temporally
spaced timesteps. An example data set exemplar is shown below in Fig. 4. The training set consisted
of a total of 7 complete exemplars and each exemplar consisted of positional data for 1 hand with no
occlusion. We took the first derivative of the training set data to give velocity data.

We first trained a continuous valued first-order HMM over the velocity training set with 10 hidden
nodes which gave us all of the parameters for 10 Gaussian mixtures. The number of hidden nodes
chosen was an arbitrary choice intended to balance over-generalisation and over-fitting. The number
of hidden nodes determines the size of the VLMM alphabet. We then generated the distribution
P(%,T) for each velocity training set exemplar and trained the VLMM over those distributions with
a maximum prediction suffix tree depth L = 10 using a minimum statistical surprise parameter min
¢ = 107°. The resulting augmented Prediction Suffix Tree (PST) had 2821 nodes, which was then
converted into a PFA which had 2548 nodes with node lengths in the range 2 — 8. The maximum node
length discovered was less than the maximum permitted showing that, for that value of statistical
surprise, the model achieved the best result that was possible. Smaller values of min e will result in
larger PSTs. In general we found that values between 1073 and 10~ give good results over a range
of applications.
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Figure 4: 2-D hand tracking training exemplar 01 as (a) positional data, (b) first derivative

We refined the Gaussian mixture representation so that there were independent parameter sets
i, ¢ for each of the M variable length states in (). So we started out with N mixtures, one for
each Gaussian mixture fitted to the training data and ended up with M mixtures, one for each of
the variable length states. Taking I' = {u1,p2, ..., uar} and @ = {¢1, 2, ..., ¢ar}, we now define the
full continuous valued VLMM, V', as the 7-tuple (Q, %, 7,v,m, ', ®). As previously described, we can
generate a forward evaluation matrix either as a M x T matrix (full forward evaluation trellis) or
as a N x T matrix (compact forward evaluation matrix) by combining states that end in the same
observation symbol. The compact trellis has the advantage that matrix entries for symbol n € N at
time ¢ represent the total probability associated with that observation symbol rather than the isolated
probability of being in any particular state ¢ € Q.

We then defined a forward evaluation procedure similar to the standard approach [15] for calcu-
lating p(O|A) for a first-order HMM. This can be used to measure the log likelihood fit between any
testing data and V', but we are more interested in the generative properties of V' and using these prop-
erties to deal with problems such as a mid-term occlusion. We use the forward evaluation procedure
to create a VLMM tracker using stochastic sampling to generate states data in the absence of obser-
vation data. This VLMM tracker is distinct to the FORTH tracker. The FORTH tracker produced
the positional hand data that is used to train the VLMM. The VLMM tracker uses the learned PFA
to deal with mid-order temporal occlusion and can ‘fill-in’ the trajectory. The key elements of the
VLMM tracker procedure can be summarised by the algorithm shown in Fig. 5.

For experiments 1 through 4, the setup was slightly more complicated. We trained the model on
first derivative data. Subsequent testing data was positional data (like the original form of the training
data), so we had to design a VLMM tracker routine that took this into account. When observation
data is not present (cf. occlusion) then we stochastically generate states that tell us the relative motion
so we can produce a cumulative estimate of where we believe the hand to be.

The original training set was modified to provide a testing set. To simulate the effect of occlusion,
we deleted a number of consecutive timesteps from each of the exemplars. This was achieved by
adding a flag in the testing set to indicate whether the positional data was to be made available to
the VLMM tracker at any timestep. The tracker then processed each timestep in turn. As long as
data was available, it calculated the relative motion from the last timestep to the current one and
used the VLMM model to update the full forward evaluation trellis. When data was not available
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Note:

ts(s) means the terminal symbol of a string s e.g. ts(123) =3
We are given O although it may be incomplete. The output from this algorithm
is the matrix P.(Q,T) and (vitally) generated values for missing O steps

Algorithm:

LET Observation sequence O = {01, 02, ..., 07} where some elements in O are known
and others are not (were not observed or are missing)

LETV ={Q, %, 1,v,m T, &}

LET Full forward evaluation trellis P,(Q,T) = 0

LET m vector in the PFA initialised to 1/M (uniform prior assumption)

P.(Q,t=1)=m*N(o;;T,®)
FORt=2toT
IF (observation data o; is defined)
Vg € Q : pe(Qa t) = N(Ot; g, ¢q) Zq’eQ:(r:ts(q):HT(q’,gaq) pe(qla t— 1)7(qla U)
ELSE
Vg € Q: pe(q,t) = Xy coiv=ts(g)ar(q g Pe(d t = 1)¥(d,0)
Choose a state gs by sampling from the distribution P,(Q,t)
Set All values of P.(Q,t) = 0 except for pe(qs,t) which is set = 1.0
Generate normally distributed random values for o; according to ji, and ¢,
END_IF
END_FOR

Figure 5: Pseudo-code of tracking algorithm used in experiments 1 through to 4

(because the occlusion flag was set), the tracker used stochastic sampling to determine its next state
and produce a relative motion estimate. We compared the generative capabilities under occlusion of
the VLMM tracker with a first-order HMM 2 describing relative motion, together with structurally
naive estimators based on constant velocity and constant acceleration assumptions. Where the data
was available to the VLMM tracker, it is shown in black. Where data was not available to the VLMM
tracker it is shown in yellow. Thus, for evaluating the performance of the VLMM tracker, the black
and yellow points form the ground truth. Whilst in the black region, the VLMM tracker builds its
internal distribution P,(Q,T). When data suddenly is not available, the VLMM tracker uses P.(Q,T)
and the VLMM parameters to start generating predicted values to fill in the missing steps in O. These
predicted values are shown in magenta. For comparison, predicted values for a first-order HMM are
shown in red.

Figs. 6, 7 and 8 shows examples of 2-D generative trajectories created during times of occlusion
during hand tracking for experiments 1, 2 and 3 respectively. In each case, the occlusion was for 25
timesteps. In Fig. 6 the occlusion started at step 37, in Fig. 7 at step 64 and in Fig. 8 at step 6. Two
standard, learning-free, tracking methods, constant velocity (shown in green) and constant acceleration
(blue, this is effectively a Kalman Filter without noise), are shown to perform, as expected, fairly well
for short periods of occlusion - up to 3 or 4 timesteps. Fig. 6(a) shows that their trajectory predictions
rapidly diverge from the true trajectory for longer periods of occlusion. Figs. 6(b), 7(b) and 8(b) show
the actual timestep wise Euclidean distance of each generated trajectory to the original ground truth
data, in other words, how close the prediction is to the actual hand movement. Figs. 6(c), 7(c) and

2The HMM was based on the same set of N Gaussian mixtures from which the VLMM was first built (before the
construction of the M mixtures, one per variable length state).
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Figure 6: 2-D tracker experiment 1: constant velocity (green), constant acceleration (blue), first-order HMM
(red) and VLMM (magenta), ground truth (unoccluded section in, black and occluded section in yellow), (a)
as reconstructed 2-D trajectories, (b) the Euclidean distance between the trajectory of each method and the
actual original hand trajectory and (c) the mean reconstructed trajectories.

8(c) show the timestep-wise mean of each set of generated trajectories and provide a simple overall
measure of the performance of the tracker methods.
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Figure 7: 2-D tracker experiment 2: constant velocity (green), constant acceleration (blue), first-order HMM
(red) and VLMM (magenta), ground truth (unoccluded section in, black and occluded section in yellow), (a)
as reconstructed 2-D trajectories, (b) the Euclidean distance between the trajectory of each method and the
actual original hand trajectory and (c) the mean reconstructed trajectories.

The trajectories of main interest are for the first-order HMM (red) and VLMM (magenta) methods.
It can be seen in Figs. 6(a) and 7(a) that both methods attempt to reproduce the curving movement
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Figure 8: 2-D tracker experiment 3: constant velocity (green), constant acceleration (blue), first-order HMM
(red) and VLMM (magenta), ground truth (unoccluded section in, black and occluded section in yellow), (a)
as reconstructed 2-D trajectories, (b) the Euclidean distance between the trajectory of each method and the
actual original hand trajectory and (c) the mean reconstructed trajectories.

learnt from the training data, though the first-order HMM produces more variability and exhibits
less structure in its predictions. For Figs. 6 and 7 overall, the VLMM provides the closest fit to the
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Figure 9: Experiment 4: 3-D hand tracking training exemplar 01 as (a) positional data, (b) first
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original hand trajectory, reflecting the fact that the VLMM is able to use the longer histories to make
quantitatively better future predictions than the first-order HMM. The only drawback to the VLMM
approach can be seen in Fig. 8 where the occlusion has started very early in the exemplar (at step 6).
At this early stage of the motion, the VLMM has not yet observed sufficient track history to determine
the internal state in the space of transitions between variable length states. Prior to starting tracking,
the VLMM forward evaluation trellis was initialised with a uniform prior over all its states (uniform
7). Thus the VLMM is acting as a ‘probe’ to generate a number of plausible different possible paths
when the occlusion occurs. This is not a problem unique to our VLMM implementation, it is common
to any high order temporal model. We have since refined our learning method to include an estimate
of the prior over the M variable length states at time ¢ = 1 using Po(Q,t = 1) from the application
of the forward backward algorithm.

3.2 Experiment 4: 3-D example

The gesture training data used for this experiment was taken from the HUMOSIM database. The
database contains 3-D hand trajectory data collected from 22 subjects of varying gender, age, and
height. 210 target locations and hand orientations were used, giving a total number of 4,410 trials
and the 8,820 reach movements.

We only used a small subset (17 exemplars) of the wealth of available training data relating to a
simple reach out/pickup and return type series of gestures. An example of a typical 3D HUMOSIM
training exemplar is shown at Fig. 9. We pre-processed the data so that consecutive timesteps with
a Euclidean distance of less than 0.5cm were removed so that the resulting motion did not contain
periods of stasis. It is not unusual for some of the HUMOSIM exemplars to have periods of 60-70
timesteps of stasis. To model this un-processed data would require a VLMM with an equivalent
depth, but the essence of the interesting motion is captured in a considerably smaller model. Without
the pre-processing, this imbalance in temporal model would give rise to a PST with some very deep
trees sections to capture the lengthy periods of stasis, with other less deep sections that captured, for
example, most of the inwards and outwards motion segments. Such a tree would be very unbalanced
(i.e. have significant variations in root to leaf node path lengths). We are currently researching more
efficient methods for representing such unbalanced problems using hierarchical approaches.
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We again used an alphabet of 10 Gaussian mixtures describing the 17 training exemplars as first
derivative velocity data. As for the 2-D case, we then trained a VLMM with a maximum depth
L =10 and € = 107°. The resulting PST had 3731 nodes with a corresponding PFA with 3358 nodes.
As before, we further refined the mean and co-variance parameters to have one per variable length
state. Once again we created testing data by taking training data exemplars and setting our occlusion
flag over some time interval. This test used a very much larger period of occlusion of 21 consecutive
timesteps. We arranged the occlusion such that it started roughly half way through the ‘reach out’
phase and ended roughly halfway through the ‘reach in’ phase. This level of occlusion represents a
serious challenge to any tracker not only due to the relatively extended period of occlusion but also
because the predictive element has to deal with the reversal of motion at the maximal out reach point.
To deal with such occlusion requires a higher order knowledge of the underlying temporal process
than would be afforded by either naive trackers or first-order HMMs. In fact, these trackers performed
so poorly in this task that the results are not presented here. Instead we show some of the VLMM
tracker results at Fig. 10. Here we can see that the VLMM tracker has predicted the motion reversal
during the occlusion period. The deeper structured representation of the underlying motion allows
the VLMM to considerably out-perform the other models in the previous experiment in generative
extrapolation.

4 Joint learning of temporal and spatial structure experiments

Learning in task based visual control, and computer vision more generally, spans two separate (but
related) problems. On the one hand, we need to learn the spatial structure of task relevant objects
and, on the other, we need to learn the temporal dynamics (behaviour) of those task relevant objects.
Classical approaches to computer vision have viewed these as separate problems (e.g. determination
of spatial structure as a segmentation task, or analysing behaviour as a statistically time dependent
process). Recent developments have included combining spatial and temporal learning into a single
inter-dependent process (such as Frey and Jojic’s transform invariant mixture of Gaussians, [13, 7])
and the application of cognitive principles to exploit dependencies between the two modes of learning
(Moore, Essa and Hayes [14]).

A further key aspect related specifically to the notion of control is the use of models that have
generative properties. So, for spatial structure we can generate pixel values (visualise structure proto-
types) and for temporal dynamics we can use constraints on the step changes in the hidden variables
to predict future observation data.
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4.1 Learning spatial structure

If there is no prior information about the spatial structure then the problem is one of discovering a set
of prototypes (a model A) that best fits the training (observation) data O, i.e. we need to maximise
P(A|O). There is usually no computationally tractable globally optimal or closed form solution for this
task and the problem falls to gradient ascent techniques such as Dempster’s Expectation Maximisation
(EM) approach [5], genetic algorithms, random search and so on (typically, any method that uses a
likelihood function to model L(O|))). Additional variables may be incorporated into the EM learning.
Frey and Jojic [8] use transformation indices (i.e. cluster transformation pairings) to create transform
invariant mixture of Gaussian models. Further work by Frey and Jojic [6] showed how this process
could be implemented computationally efficiently for all possible X and Y translations by modelling
transformation as a convolution of the Fourier transforms of both the prototypes and O. Other types
of invariance can then be achieved through appropriate co-ordinate system transformations (e.g. the
log-polar form for arbitrary scale and rotations).

4.2 Joint learning of spatial & temporal dynamics

Jojic et al. [13] demonstrated that the learning of spatial and temporal structure can be usefully unified
in their transformed HMMs. Their approach combines the learning of transform invariant Gaussian
mixture models with Baum Welch re-estimation. The HMM parameters provide an informed prior
to the prototype/transformation index that enables the mixture modelling to reach a more optimal
solution than with a uniform prior distribution (i.e. ML) alone. Next we show, in a further extension
of this work, how variable length Markov models can be combined with the Transform Mixture of
Gaussian (TMG) models.

To demonstrate the various approaches we use a simple visual task summarised in Fig. 11 inspired
by Frey and Jojic’'s pacman toy domain. In this task a 5x5 pixel ‘pacman’ shape follows a path
defined by a cross on 25x25 grid. This path consists of 56 steps and can be summarised by a chain
code. Each step of the path defines a 25x25 image with the appropriate pacman shape (always
facing in the direction of travel) superimposed on a uniformly distributed noise background. The
image sequence for the task then consists of 10 serial repetitions of the sequence giving a total of
560 frames. We constructed this task so that it contains higher order (and variable order) Markov
temporal dependencies.

Four pacmen shapes drawn
on a5*5 grid
Chain code 1
@ Drawing start point 4 2
25*25 grid for visual task
3
Chain code begins {1,1,1,1,2,2,2,2,1,1,1,1,2,2,2,2,3,3,3 ...}

Figure 11: Summary of simple visual task with a chain code defining the direction of movement along
the path for the pacman shape.

The TMG method learns a mixture of Gaussians model for a number C of different visual cluster
prototypes normalised over a set of spatial transformations. Each cluster ¢ € C' has a latent image z,
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formed by mean (1) and co-variance (®) parameters:

p(ze) = p(zlc) = N (2; e, @) (13)

The joint distribution of a training set image x; € X, a transform [ drawn from a set of L
spatial transformation matrices I' = [,...[;, and the latent image corresponding to cluster ¢ with
post-transformation noise ¥ can be defined as:

p(xe|l, ze) = N (z4; T2, ) (14)

p(z;) can then be defined by marginalising the expression for p(z|l, z.) over all z.cc and I'. Frey
and Jojic then cast the learning of the cluster parameters u. and ®. as well as a post-transformation
noise parameter ¥ as an Expectation Maximisation (EM) problem by setting the derivative of log p(z)
with respect to the model parameters equals 0 and deriving the corresponding E and M step update
equations. Frey and Jojic have produced an efficient implementation of this EM process for all possible
X xY translations using a convolution of the Fourier transform of the clusters with the training data.
3

Other types of transformations can be accounted for by pre-processing the training set data by
an appropriate co-ordinate transformation, such as the log polar transform for dealing with scale
and rotation. For multiple transformations, such as X and Y translation and scale and rotation
simultaneously, Frey and Jojic further developed a variational technique for decoupling transformation
sets to reduce the computational complexity associated with multiple transformations.

4.3 Experiment 5: Applying VLMMs to the example task
4.4 Integrating spatial and temporal learning

Frey and Jojic’s original published MATLAB code is concerned with learning spatial structure only [8].
Starting with the assumption that P(C,L) = 1/CL for all timesteps T (uniform prior) and random
values for the mean and variance values of the C' cluster prototypes, it computes a post transformation
probability estimate term P(C') and then uses a ML estimate derived from that to inform the P(C, L)
prior at the next iteration (P(c)/L). The prior is assumed to be uniform across transformations, i.e.
p(e, L) = k where k is a constant.

We first modified their approach so that the P(C, L) prior could be re-estimated independently
for each frame so that we could use temporal models to constrain the prior estimates over time
giving us P(Cy, Ly). Jojic et al. [13] used this idea to build a first-order Markov model onto their
original work. The distribution of P(Cy, L;) depends not only on the individual post transformation
probability P(C}), but on P(C;_n, L;_n) for an N-th order Markov process. Having computed P(C})
for each frame independently, we were then able to use variable length Markov modelling to determine
P(Cy, Ly) for the next iteration. This has the effect of improving the cluster prototypes by ensuring
that they are estimated from the members of the training set that it is believed correspond to that
cluster structure. Each training image contributes to the post transformation probability estimate
term according to how likely it was based on the previous N training set images.

For our application X corresponds to the cluster indices and we model timestep to timestep cluster
indices. More sophisticated modelling would expand ¥ to model the cluster index plus other parame-
ters such as relative motion, but there is a trade-off between improving the spatial description of the
derived clusters and the additional computational complexity of the VLMM.

We then use the PFA to estimate P(Cy, L) prior for the next iteration. To do this we generate a
forward evaluation trellis matrix of size C'«T" which specifies how likely each cluster is for each frame
in the training image set. We first create a forward evaluation trellis of size M * T.

3The source code for this implementation can be found at http://www.psi.toronto.edu/~frey/tmgEM.m
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Figure 12: (a) Mean and (b) variance maps for experiment 5 learning the spatial structure for the
pacman visual task. The spatlal structure was constrained by the temporal structure provided by a
VLMM

During the initial few iterations, the VLMM generates C states (one for each cluster) and a first-
order Markov model with each state having transition probabilities = 1/C. As the learning process
continues and spatial structure starts to emerge, typically one of the cluster prototypes will acquire
a value p(c;) significantly greater than the 1/C value (until the spatial learning has fully specialised
the learned structure). This causes an attractor effect in the VLMM learning as the statistically most
likely explanation for the temporal ordering will be a first-order VLMM with the transition probability
from the attractor state to itself for all timesteps. To overcome this attractor, we normalise the prior
P(C, L, T) prior to each EM iteration such that XpP(Cy, L;) = k.

4.5 Results

We trained our combined algorithm for 100 iterations with 6 clusters, allowing the VLMM to extend
up to a depth of 5. The resulting mean and variance maps from the 6 clusters are shown in Fig. 12.
Dark areas in the variance maps correspond to low variance. In contrast, a N-th order Markov model
would require N * N* parameters for its state transition matrix. So a third order HMM with equivalent
representational power would require 1,296 parameters for its state transition matrix compared to a
VLMM with 211 nodes in its PFA. This reduction in the number of transitions required to model the
domain reflects knowledge about the temporal structure of the task.

The resulting VLMM prediction suffix tree consisted of 253 nodes (including the root node) and
the PFA had 211 nodes of length either 2 or 3. The shorter length nodes tended to correspond to
portions of the task concerned with ‘going straight ahead’ and the longer ones with ‘turning corners’.
Clusters 2,3,4, and 6 captured most of the spatial structure for the task.

5 Conclusions

We have extended Ron’s original VLMM formulation to deal with continuous data representing prob-
abilistic fit with an alphabet at each time step rather than just discrete valued transition. We have
shown that this version of the VLMM can be used to learn structured motion (i.e. gestures) in a
hand tracking task. The resulting model has improved generative properties over the first-order HMM
that are a useful tool in dealing with tracking issues such as target labelling consistency in the face of
mid-term occlusion.

We have also shown that variable order temporal modelling can be applied to a joint spatial and
temporal learning task. The resulting model exhibits both spatial and temporal generative properties
that have applications in the learning of visual control strategies in cognitive vision systems. Given
the current state of the joint model, we may stochastically predict the next. We plan to extend
our experiments with real world images and to demonstrate an on-line control application as well as
investigate other methods for model trimming. Model trimming is especially important in ensuring
that the solution found is the most naturally interpretable one [3].

One major challenge to learning for task-based control is to learn hierarchical representations 1)
for the case where the data has multiple levels of granularity, e.g. trajectories with long intermediate
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static frames, but also, more importantly, 2) for the case where the task requires context of different
types to determine future processing, e.g. activity models which require hand state and gesture phase
in the higher levels of the ActIPret system. Extensions are being analysed for the former using 2
strategies which avoid pre-segmentation of the data, one relies on context variables (see [18]) and the
other involves extended unsupervised learning of the hierarchical organisation of data clusters. For
the latter, we are currently using partially hand-coded models with supervised data learning where
required on the dynamic links (see [11]). Further work on this approach for the ActIPret project is
described in our upcoming paper [19].
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