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Abstract. We are interested in methods for building cognitive vision
systems to understand activities of expert operators for our ActIPret
System. Our approach to the gesture recognition required here is to
learn the generic models and develop methods for contextual bias of
the visual interpretation in the online system. The paper first introduces
issues in the development of such flexible and robust gesture learning and
recognition, with a brief discussion of related research. Second, the com-
putational model for the Hidden Markov Model (HMM) is described and
results with varying amounts of noise in the training and testing phases
are given. Third, extensions of this work to allow both top-down bias in
the contextual processing and bottom-up augmentation by moment to
moment observation of the hand trajectory are described.

1 Introduction

In cognitive science, it is well known that simple moving light displays contain
sufficient information for meaningful interpretation of activity, as in the early
work of Johansson [12]. Given this human ability, we use hand trajectory data
alone for our gesture analysis here. Further, we use a definition of a gesture as a
tri-phasic sequence of atomic hand movements as in our earlier work [10]. The
essential elements of cognitive vision must be supported here: memory organisa-
tion of representations for the gestures; reasoning about these representations for
flexible decisions and actions, including the resolution of ambiguity [17]; control
of online visual processing for efficient interpretation [19]; and learning of both
the task-relevant representations and how to use them [6].

Gestures, as above, require matching against their representations in the on-
line system to find the interpretation or model that best explains the observation
sequence. These representations have to account for the uncertain and proba-
bilistic nature of gesture instances, including variations in the spatiotemporal
evolution of the trajectories. These variations can be handled by techniques such
as dynamic time warping in the matching, as in [4,13]. However, the temporal
templates required in this approach are subject to the problem of self-occlusion,
as well as requiring the whole of the gesture to be completed before it can be
recognised. The HMM approach, using the Viterbi algorithm to overcome the



problems of variability, is popular as it offers more sophisticated matching for
many kinds of time-varying signals [15]. HMMs consist of a series of states, which
can capture the intrinsic structure of our gestures from a set of training exam-
ples. They are further characterised by the probabilistic transitions between the
states and the set of probabilities that a particular state gives rise to a particular
observation. That is, they are a member of the class of generative models, as we
can see from early work [8, 16].

HMMs also offer the advantage of unsupervised segmentation of continuous
data streams, where the beginning and end is unknown. The Viterbi algorithm,
mentioned above, is a kind of dynamic programming algorithm and is used to
capture the maximum probability as well as the state sequence. This is of par-
ticular importance in sign language interpretation, which follows the lead of
Starner and Pentland [18] to emphasise the continuous recognition of gestures
[1]. However, the Viterbi algorithm requires calculation of observation probabil-
ities for each state and time step in the Forward-Backward procedure, which is
difficult to scale up. New avenues are being explored, based on the condensation
algorithm [11], such as the incremental scheme proposed by Black and Jepson
[2]. However, in this paper we are concerned with flexibility and robustness to
noise, which affect how effective the gesture interpretation can be in a particular
context, rather than its efficiency.

For an effective scheme, we need to consider the need to acquire the generic
gesture models and contextually augmented versions of them, which can be used
in the matching process above. Typically machine learning approaches have re-
quired hand labelling of the trajectory data or at least pre-segmentation into
classes as in the TDRBF approach [10]. HMMSs have an associated learning
method, the Baum-Welch algorithm [15], which is a specific variant of the Expec-
tation Maximisation (EM) algorithm [7]. In previous work [8], HMM trajectory
prediction from entry regions through intermediate states to the re-fuelling or
baggage-handling regions was augmented by updates on the position of vehicles
from lower level vision for a known vehicle type. In general, scene context and
aspects of the top-down interpretation or bottom-up visual information from
moment to moment can be used to augment processing in an HMM without
going to a full hierarchical Bayesian network [5]. In our recent work, additional
context variables were introduced into the training data, as in [3]. These addi-
tional variables cause separate Gaussian components to be generated in feature
space such that each context has an independent representation [6]. This work
is extended here.

In the following, the HMM model is first formally described in section 2.
Then in section 3, some results from the generalisation of the generic gesture
models and the state-structure captured are described, together with consid-
erations of how robust the recognition is under noise in training and testing
trajectory sequences. In section 4, the extensions of the contextual processing
are described, together with preliminary results from top-down contextual bias
in the interpretation and on-line augmentation from bottom-up observations. Fi-



nally, in sections 5 and 6, the implications of the work for task control and system
integration are then discussed with conclusions and suggestions for further work.

2 Hidden Markov Model for gesture recognition

A Hidden Markov Model (HMM) is a doubly stochastic process, i.e. there is an
underlying stochastic process that is not observable (hidden) but can only be
observed through another set of stochastic processes that produce the sequence
of observed symbols [15]. The HMM is characterised by a triple A = (, A4, B)
where A is a square N x N matrix of probabilities for transitions between N
discrete hidden states, 7 is a vector of probabilities describing the initial state of
the model (at time ¢ = 0) and B is a N x M matrix accounting for the mapping
between the N hidden states and the M output (observable) symbols.

There are three general problems we may solve using HMMs. Given a set of
observation symbols O and a model A we can calculate the probability of that
sequence p(O|A) (forward evaluation). Given O and A we can deduce the most
likely sequence of hidden states (Viterbi decoding). Finally, and most relevant
for what follows, given O we can estimate model parameters A that maximise the
probability of O. The most common form of HMM model parameter estimation is
the Baum-Welch algorithm (described in [15]) which is an iterative non-globally
optimal procedure for maximum likelihood estimation.

To capture gesture models, we use a continuous output HMM with train-
ing observation sequences represented as six-valued vectors (two sets of 3-D
hand velocities — see next section) with the observation symbols modelled as 6-
component mixture of Gaussian functions. We then vary the number of internal
discrete hidden states to explore the underlying dimensionality of the training
set (which corresponds approximately to the number of distinct gesture phases)
and to demonstrate the ability of the HMM to distinguish the learned gesture
from other gestures.

The gesture data used for the experiments in this paper was the Terminal
Hand Orientation and Effort Reach Study Database created by Human Motion
Simulation (HUMOSIM) at the Center for Ergonomics, University of Michigan,
USA. 3-D hand trajectory data was collected from 22 subjects of varying gender,
age, and height. Nineteen of the subjects were right-handed and two were left-
handed. 210 target locations and hand orientations were used, giving a total
number of 4,410 trials and the 8,820 reach movements.

This gesture data describes target and task orientated hand trajectories
rather than communicative gestures (such as waving and pointing). HUMOSIM
tasks represented are limited to the manipulation of targets at a number of
positions and heights relative to the user.

Four towers were used in the HUMOSIM hand trajectory data, from 45° left
of the subject to 90° right, each of which had three ‘pods’ as targets. There
is further variation in the targets, as each of the pods has five cubes, each of
which can use four hand orientations. For the experiments in this paper, we
consider only tower/pod combinations (12 in all). Each trial produced a file of
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Fig. 1. Gesture phase classification for HMM trained with targets in Tower 0 (45° left
of subject), when tested with a single complete hand trajectory also from Tower 0
values for output units for each gesture phase class (y-axis) at each timestep (z-axis).

The probability values for each gesture phase correspond to the values associated with
the HMM hidden nodes at each timestep.

3-D coordinates for two points (six values each time step) on the subject’s hand.

For each trial, data was collected at 25Hz for a sequence consisting of five distinct
phases:

— Start with a static hand placed at a ‘home location’:

— A movement toward the target, which we term get;

— A static phase while the hand is at the target;

— A second movement, away from the target, which we term return,;
— A final static phase at the home location.

Each resulting datafile contained 80-135 timesteps. The 3-D location data

was pre-processed by differencing it from one time step to the next (relative
motion or velocity data).

3 Results

We examined three aspects of HMM performance. We start by demonstrating
how transitions between hidden states can be readily visualised facilitating direct
comparison with other approaches. We then show how HMMs can generalise the
gesture trajectory data, and how that generalisation degrades gracefully in the

presence of noise. Section 4 shows how context information can be used to control
HMM classifier performance.



We devised a simple technique based on modified Viterbi decoding to facil-
itate comparison between the transition between the HMM hidden states and
six functional gesture phases defined for a comparable TDRBF model ([6]).

Analysis of the fit between the probability of the model parameters given
the training data and the number of hidden states shows that the fit reaches an
optimal point where low numbers of hidden states are matched against ability
to generalise. In our particular task, this point was typically where the HMM
had seven hidden states (similar to [14]).

To test the trained HMM we presented complete trajectory files from targets
not used for training. Fig. 1 shows the results for an HMM trained with 19 tra-
jectories from a target on Tower 0 (45° left), when tested with another trajectory
on the same tower. The seventh hidden state explicitly represents timesteps of
minimal motion, interpreted as the ‘static’ gesture class.

3.1 Generalisation of the trajectory data

In the previous section we used the term ’classify’ to refer to an analysis of the
qualitative transitions between hidden states. In this section we make quantita-
tive comparisons between different HMMs and so use the term classify to refer
to a measure of fit between a learned model and a test observation. The usual
quantitative measures used for HMMs are the terminal P(O|)) and the log like-
lihood per symbol llps. The measure of model used here is the log;g of the mean
(non-log) likelihood per observation symbol, or lmilpos. This measure varies in
the range [0, —o0) where 0 represents a perfect fit between the model and the
testing data at each time step and —oo represents a zero fit. We use Imlpos rather
than llps as the former represents the arithmetic mean of likelihood per symbol
Ips over a number of testing examples rather than taking an average of a set of
log metrics which would constitute a geometric mean.

We wanted to explore the effect of noise on the trajectory data on classifier
performance. We assumed that the original trajectory data represented a ground
truth. In order to model noise in the data we superimposed independent but
identically distributed Gaussian noise on each of the six data dimensions. We
generated noise vectors with a given Root Mean Square (RMS) error. The RMS
error corresponds to the standard deviation (i.e. square root of the variance). We
then smoothed the noise vectors (average of current, previous and next timestep
values) to provide a degree of temporal correlation and re-scaled the vectors to
a given RMS error and then added these noise vectors to the trajectory data.

We first trained four separate HMMs, one each for trajectory data for each
of the four towers with a constant pod setting and no training noise. We pre-
processed the training data further slightly by removing timesteps where the
sum of the absolute values across the six difference values was less than 1 cm.
We then generated testing data by taking sections of the training data and
superimposing testing noise at a given RMS level and classified this training
data using the learned models. The results obtained using Tower 0 and Tower 1
as testing data are shown in Fig. 2(a) and (b) respectively.
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Fig. 2. Level of Imilpos fit for hand trajectories using HMM models for Towers 0-3 of
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Table 1. Classification rates for HMM models trained with various configurations of
towers data when used to classify test towers data with varying amounts of noise.

Training No Test Noise, % Correct 0.6cm RMS Test Noise, % Correct
Towers ||[Tower 0]Tower 1[Tower 2]Tower 3] Tower O]Tower 1] Tower 2] Tower 3
0 100 0 0 0 100 0 0 0
1 0 100 0 0 72 28 0 0
2 0 0 100 0 0 0 100 0
3 0 0 0 100 0 0 0 100
0+1 100 100 0 0 100 100 0 0
2+3 0 0 100 100 0 0 100 100

In Fig. 2(a) we see an excellent example of tower generalisation. At testing
noise 0.0, we see that the Tower 0 model is, on average, the preferred model
with the others models following in tower order at successively lower levels of
confidence as measured by Imlpos. Similarly, in Fig. 2(b) at testing noise 0.0,
we see that the Tower 1 model is, on average, the preferred model with the
other models following in a logical order (with the tower 3 model being the least
preferred).

As an alternative to measuring model fit using Imlpos, we can also measure
the classification rate. That is, if we classify an individual test trajectory, we
get a preferred model (the one that yields the highest Imipos). If that highest
value corresponds to the tower associated with the test trajectory then that
is a ’correct’ classification. For any set of hand trajectories we can therefore
calculate a classification rate expressed as the percentage of test trajectories
that are correctly associated with their target towers.

Table 1 shows the classification rates achieved with testing data set noise
of 0.0 and 0.6cm RMS, both for single and composite tower arrangements. For



any given level of test set noise, generalisation is demonstrated as a diagonal
classification rate matrix. Off-diagonal elements represent errors, in that the ex-
pected model was not the preferred model for some of the trajectory data. 100%
classification is seen in all combinations, except Tower 1 with noise, where there
is a degeneracy which causes misclassifications. This is shown in more detail in
Fig. 2(b). The performance of the Tower 1 model can be seen to deteriorate more
quickly than the other models in the presence of testing set noise. The reason for
this is that Tower 1 was directly in front of the subjects meaning that the train-
ing data exhibits a very low variance along the z-axis. The Gaussian mixture
model therefore has a low variance along that axis and so testing examples that
deviate significantly from the Gaussian component mean (such as those created
in the application of noise to generate training sets) produce a low probability
membership estimate. This underlines the need to check for degeneracies in the
application of the modelling process to the task.

The problem is easily overcome in a practical system by combining training
data for towers 0 and 1 and tower 2 and 3 ([6]).

4 Top down and bottom up context control

In previous work [8], HMM trajectory prediction from entry regions through
intermediate states to the re-fuelling or baggage-handling regions was augmented
by updates on the position of vehicles from lower level vision for a known vehicle
type. In general, scene context and aspects of the top-down interpretation or
bottom-up visual information from moment to moment can be used to augment
processing in an HMM without going to a full hierarchical BBN or DBN. In
our case, additional context variables could be introduced into the training data
(for example, to indicate the target tower) [3]. These additional variables would
cause separate Gaussian components to be generated in feature space such that
each context would have an independent representation. These context variables
are abstract in the sense that there is no difference in implementation between
top down and bottom up control.

In order to demonstrate context control using HMMs, we selected four tra-
jectory data sets, one each for the four towers with constant values for pod and
cube.

4.1 Using a single independent context control variable

For this experiment we augmented the six value vectors generated for relative
position with a single context value (a pseudo probability value). This single
independent context value represents a gesture-context relationship with two
context classes. context; is the value specified in each vector and contexts is
implied as 1 — context;. We assume that this context is provided by an external
agent (perhaps an object classifier) but for this experiment the training context
value is generated directly from a normal distribution about a mean, with a
single context value generated for each time step.
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Fig. 3. Classification with HMM of tower 0 and 1 trajectories as a function of con-

text where training context (a) context: = contextz = 0.5, (b) context: = 0.7 and

contexts = 0.3.

We then grouped Towers 0 and 1, and 2 and 3 together and trained 2 com-
posite HMMs using the same seven hidden state structure as before. We then
classified the Towers 0 and 1 data using the two models and plotted a measure
of model fit as a function of the context value.

For the first test, we set the mean context; = contexts = 0.5. The results are
shown in Fig. 3(a), the y-axis showing the Imipos value and the z-axis context;.
We see that for all test values of context that the model for Towers 0 and 1 is
preferred over the model for Towers 2 and 3 but that the confidence of that fit
is maximised where the testing context matches the training context and falls
away either side of that value. To see the real value of context control, we then
set the mean context; = 0.7 and contexts = 0.3. The results for this are shown
in Fig. 3(b). This time we see that when classifying the Tower 0 and 1 examples,
the Towers 0 and 1 model is preferred when the context is around 0.7, but that
as the context approaches 0.3, the model for Towers 2 and 3 is preferred, albeit
at a lower level of confidence.

4.2 Using multiple independent context control variables

For this experiment we augmented the six value vectors generated for relative
position with two independent pseudo probabilistic context values context; and
contexts. As before, we assume that these contexts are provided by an external
agent but for this experiment the training context values are generated directly
from a normal distribution about a mean, with two context values generated
for each time step. We then used the same towers training grouping as for the
previous experiment and classified the Towers 0 and 1 data using the two models
and plotted the measure of model fit as a function of the context.
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Fig. 4. Classification with HMM of tower 0 and 1 trajectories as a function of context
where (a) Towers 0 and 1 training context; = 0.7 and contexts = 0.3, (b) Towers 0
and 1 as for (a) and Towers 2 and 3 context: = 0.4 and contexts = 0.6.

For the first test we trained the Towers 0 and 1 model with a mean context;
= 0.7 and contexts = 0.3. We then simply plotted the Towers 0 and 1 test data
as a function of context. The results are shown in Fig. 4(a), the z-axis showing
the Imipos value, the z-axis context; and the y-axis context,. We see that the
model fit forms a continuous surface with a peak at the training context values.

For the second test, we retained the previous Towers 0 and 1 model and
trained the Towers 2 and 3 model with a mean context; = 0.4 and context, =
0.6. We then plotted both models as a functions of context. We then classified
the Towers 0 and 1 test data against both models and the results are shown
in Fig. 4(b). We can see that the two surfaces intersect along a classification
boundary that defines the values of context at which a switch in model preference
takes place. As before, the peak of the Towers 2 and 3 surface (maximum fit) is
lower than for the Towers 0 and 1 surface, as it represents a greater degree of
generalisation.

5 Summary

We have demonstrated that:

— Modified Viterbi decoding can be used in some circumstances to extract
meaning from a HMM forward evaluation trellis in terms of transitions be-
tween discrete functional gesture phases, facilitating direct comparison with
other model types.

— HMMs are well suited to building gesture models with graceful deterioration
in classification performance with increasing parameter distance from the
learned model prototype and noise.

— Context control variables can be added at the learning stage to build HMM
classifiers that are context sensitive. Such context control can be either top
down or bottom up. In either case further context qualifier parameters (such



as confidence) could be used to determine model performance when context
data is either unavailable of limited quality (e.g. a very early estimate from
a predictive cueing process). However there is a trade-off between improve-
ments in performance through context control and the size of the training
set.

6 Conclusion

The HMM based learning can discover the temporal structure of the 3D hand
gesture trajectories here from data clustering alone. The association of different
interpretations with different contexts is also learnt and can allow more effective
discrimination boundaries in the online system. Performance on the learning and
generalisation tasks were robust to noise and scale well with task complexity,
however the training with the Baum-Welch algorithm does not scale so well.
The HMM developed here was coded in Matlab, thus it is premature to give
computational costs but these will be established in future work. As in the
discussion above, there is great potential for contextual processing using the
HMM for attentive processing in the ActIPret system.

We have also proposed an approach to task control within the ActIPret
system using a Dynamic Decision Network (DDN), e.g.. [9], in the Activity
Reasoning Engine. However, we also want distributed control in the lower levels
and one way of imposing this is by conditional probability matrices to activate
the processing within each lower component, using priority metrics. Initially, it
is proposed to hand code utility/task relevance nodes (e.g. watch/ignore) that
determine the priority metric. In the longer term, in the context of a complete
system, we hope to learn these dynamic dependencies. It may be that we can
determine task-relevance automatically in this way, using a uniform Bayesian
approach.
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