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Lecture 9

 Applied probability and statistics
– Belief networks
– Entropy
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Applied probability and statistics

 We have already considered Bayes’ theorem
and conditional independence relationships

 We can use Bayesian Belief Networks (BBNs) to
represent known dependencies between
variables and specify both the prior and joint
probability distributions for a given problem.

 Beware that human reasoning sometimes does
not reflect mathematical approach to a problem.

Bayesian belief network

 A BBN is a graph
– A set of random variables make the nodes of the network
– Set of directed arcs connect nodes, where a link from node X to

node Y means that X has a direct influence on Y
– Each node has a conditional probability table that quantifies the

effect that a parent node has on a child node
– Graph has no directed cycles I.e. it is a directed acyclic graph

(DAG)

 It is usually easy for an expert to decide what direct
conditional dependence relationships hold and we can
estimate conditional probabilities using statistics.
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BBN – a simple example

 Suppose we have a burglar alarm which is fairly reliable at detecting
burglaries but may occasionally respond to minor earthquakes.

 We also have neighbours John and Mary who call if they hear the alarm but
may miss it – suppose our query is the the probability of a burglary:
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BBN – a simple example

 The BBN provides a complete description so every entry in the
joint probability distribution cab be calculated P(x1,…,xn)

 That is we can calculate P(x1 and x2 … and xn) using the formula:
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 If there is an alarm and both John and Mary call, then P(J and
M and A and B and ~E) =
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Why human reasoning can
sometimes fail …

 What is the probability of an alarm?
 Clue: if P(A) = 0.001, P(~A)=1-0.001 …
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Entropy measure

 So if something has a probability = 1, then transmitting it conveys
no information.

 The less likely something is, the more information it conveys when
it occurs.

 Unit of information depends on the base of the log.

!"= )())((log)( ii xPxPxEntropy

 Entropy has a central role in information theory – if information
about a variable’s value is to be transmitted, then on average the
amount of information need to specify the value is given by the
statistical measure called the entropy of the distribution.

 Entropy is defined (after Shannon) as:
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Entropy measure

 If log is base 2, unit of information is the bit – it two equally likely
possibilities exist for a variable, then both the formula and common
sense indicate 1 bit of information is needed to specify the
variable’s value.

 If log is base 10, unit of information is the digit.
 If there are N different values for X with equal probability (uniform

distribution) 1/N, then the entropy is just –log(1/N) which is log(N).
So for a flat uniform distribution the entropy (information) increases
with the number of possibilities.

 On the other hand, suppose probabilities are all zero except for a
single value of X, which always occurs – maximally peaked
distribution, for this, entropy is 0 (since log(1) = 0).

Entropy example

 Consider a linear neural network unit whose two inputs are random binary
variables, which each independently take values –1 or + 1 with equal
probability.

 Variable X stands for an input vector, so its values are (-1,-1),(-1,+1),(+1,-
1),(+1,+1), each with probability ¼ entropy of distribution:
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 That is, X requires, not surprisingly, 2 bits of information to specify
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Entropy example

 Now if this unit simply sums its inputs then output Y has values that could
be –2,0,0, and +2 respectively.

 There are 3 values of Y with probabilities P(-2)=1/4,P(0)=1/2, P(+2)=1/4
(using the rule for combining probabilities for mutually exclusive events) –
entropy of Y is:
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 I.e. we lost information in the addition …

Next time …

 Introduction to data analysis …


