

Matrices and ANNs

• For example, a linear unit and a network layer were written:

$$y = \sum_{i=1}^{N} w_i x_i$$
 and $y_j = \sum_{i=1}^{N} w_{ji} x_i$

• These can be re-written to represent each set of quantities by a single symbol – each such collection is called a matrix or a vector ...

N	/ latrix	-Vec	ctor	mult	iplic	atio	n
•	The Σ for multiplyin network network of weight	rmula fro ng a ma provides with 3 o ts like th	om the p trix and s an exa utput un his:	orevious a vector mple ap its and 4	slide de and her plication inputs,	fines the re a sing n. In the o we can	e operation of le layer linear case of a draw up a table
		×	Input 1	Input 2	Input 3	Input 4	1
		Unit 1	3.2	2.0	-0.5	2.3	
		Unit 2	-0.4	6.7	1.1	-4.2	1
		Unit 3	1.2	-2.5	0.3	-0.8	1
							1

Doing the calculation

- You should be able to draw and understand the diagram for the 3-unit, 4-input network, write the weights from the previous table in the right places, invent some input values and work out some output values.
- You should get the same result from using the diagram, using the Σ formula or MATLAB.
- Next session we shall be using MATLAB to do this.

$$y_{jk} = \sum_{i=1}^{N} w_{yi} x_{ik}$$

- The previous equation defined matrix-matrix multiplication we can still write *y=wx*.
- Each column of the *x* matrix refers to a different input example, each row of *x* refers to a different input unit *i* in the network.
- Each column of **y** refers to an output from a particular input example, each row refers to a different output unit in the network.
- Assembling the output matrix involves separate calculations using each column of the input matrix as a vector.

