

 1

Maths Skills (MTCS) G5071

Kingsley Sage
Room 5C16, Pevensey III
khs20@sussex.ac.uk

© University of Sussex 2006

Lecture 4

Lecture 4

 Introduction to Applications
– The applications in cognitive science that are used as examples

on this course are non-symbolic computations for vision, neural
networks and adaptive behaviour.

– You will have already met some of these ideas in Further AI, but
here the maths will be more important and uses a consistent
notation.

– Examples will be using differential calculus on a variety of
functions for neural net learning.

– You will be able to see how the formal maths notation maps
onto the computational structures in the sample Artificial Neural
Networks (ANNs).

– The idea of gradient descent on an energy landscape is
common to many computational systems.

 2

Artificial Neural Networks

 ANNs are formed by connecting units which, very approximately,
correspond to biological neurons.

 In an important class of ANNs, inputs and outputs are
represented by real numbers, units compute an output as a
functions of its input.

 A single unit has N inputs, which will be called x1,x2 etc up to N;
the output of the unit is y, so we can write y=f(x1,x2,…,xN) to show
the output is a function of the inputs.

 The form of the response function f determines the behaviour of
the network which can be classified as linear or non-linear.

 A very simple response function would be to just add up all the
inputs, but these are usually weighted to reflect how much the
unit is affected by a particular unit.

Linear units and rules

 For each input xi, there is a corresponding weight wi and
the unit combines its inputs by computing a weighted
sum according to:

 A unit can simply pass this activation to its output y=a
and called a linear unit because if you plot y against any
particular input, keeping all the inputs constant, then you
get a straight line.

!
=

=

N

i

iiwxa

1

 3

Linear units and rules

 Neural networks are trained by adjusting the weights to improve
their performance – we regards the weights as variables so it
makes sense to regard the output as a function of the inputs and of
the weights:

 The inputs and weights affect the outputs:

),...,,,,...,,(2121 NN wwwxxxfy =

ii
i

xw
x

y
=

!

!
=

!

!

i

w

y
 and

 This partial derivative can be used in a program to train a linear
ANN as it estimates the local gradient for each weight.

Non-linear units

 ANNs built from linear functions have a very limited
range of responses.

 We can give the networks enormously greater
computational power by making the relationship
between activation and output non-linear.

 Instead of y=a, interesting ANNs use a relationship
such as:

a
e

y
!

+
=
1

1

 4

Non-linear units

 This functions is sometimes called the logistic function
– note that a is just the weighted sum, of the inputs, as
for the linear unit.

a
e

y
!

+
=
1

1

y

a a

dy
/d

a

)1(yy
da

dy
!=

Non-linear rules

 The next step requires the application of the rules of
differentiation to the logistic function. It can be shown
that:

i

i

i

i

x
w

a
w

x

a
=

!

!
=

!

!
 and

 From the analysis of a linear unit, where a=y, we
know that:

)1(yy
da

dy
!=

 5

Non-linear rules

 We can get:

 Next, by the chain rule:

iiii w

a

da

dy

w

y

x

a

da

dy

x

y

!

!
=

!

!

!

!
=

!

!
. and .

ii
i

xyy
y

wyy
x

y
)1(

w
 and)1(

i

!=
"

"
!=

"

"

 Which can be used in a program to compute the
derivatives used in the training of non-linear ANNs

Non-linear learning rule

 We want to change the weights so to take a
step downhill on the error surface – this is
called gradient descent.

 Each particular weight needs to be changed in
the right direction to reduce the error E, and
the bigger effect, the more it should be
changed.

 6

Non-linear learning rule

 For on-line learning, the adjustment should
be proportional to minus the partial derivative
of the error E with respect to that weight:

 The constant α is used to keep the step small
– typically set to a value between 0.00001
and 0.2 by the experimenter.

iw

E
w

!

!
"=# .$

Non-linear learning rule

 Now we can train a single unit by putting
everything together to give the adjustment to
a weight after the presentation of an input t:

 This is the essential weight adjustment rule
for training.

ii xyytyw))1()(2(!!!=" #

 7

Training a network

 We shall stick to the simple case of the pattern
associator network.

 The first change is in notation as we need to
distinguish between the units, and to do this we have
to use an extra subscript in some places.

– Output of unit y: yj

– Activation of unit y: aj

– Target value for unit y: tj
– Weight for input i going to unit j: wji

 So the error function E is the sum:

! "=

j

jj tyE
2)(

Training a network

 E is called the sum of squares error function,
and we simply have to keep track of which
unit we are talking about:

 We can go on and add layers and derive the
ANN backpropagation rule but this is beyond
the scope of the course here.

)(2 jj
j

ty
y

E
!=

"

"

 8

Next time …

 Introduction to matrices and vectors
– Maths notation
– Matrix and vector multiplication
– Matrix operations

