

 1

Maths Skills (MTCS) G5071

Kingsley Sage
Room 5C16, Pevensey III
khs20@sussex.ac.uk

© University of Sussex 2006

Lecture 4

Lecture 4

 Introduction to Applications
– The applications in cognitive science that are used as examples

on this course are non-symbolic computations for vision, neural
networks and adaptive behaviour.

– You will have already met some of these ideas in Further AI, but
here the maths will be more important and uses a consistent
notation.

– Examples will be using differential calculus on a variety of
functions for neural net learning.

– You will be able to see how the formal maths notation maps
onto the computational structures in the sample Artificial Neural
Networks (ANNs).

– The idea of gradient descent on an energy landscape is
common to many computational systems.

 2

Artificial Neural Networks

 ANNs are formed by connecting units which, very approximately,
correspond to biological neurons.

 In an important class of ANNs, inputs and outputs are
represented by real numbers, units compute an output as a
functions of its input.

 A single unit has N inputs, which will be called x1,x2 etc up to N;
the output of the unit is y, so we can write y=f(x1,x2,…,xN) to show
the output is a function of the inputs.

 The form of the response function f determines the behaviour of
the network which can be classified as linear or non-linear.

 A very simple response function would be to just add up all the
inputs, but these are usually weighted to reflect how much the
unit is affected by a particular unit.

Linear units and rules

 For each input xi, there is a corresponding weight wi and
the unit combines its inputs by computing a weighted
sum according to:

 A unit can simply pass this activation to its output y=a
and called a linear unit because if you plot y against any
particular input, keeping all the inputs constant, then you
get a straight line.

!
=

=

N

i

iiwxa

1

 3

Linear units and rules

 Neural networks are trained by adjusting the weights to improve
their performance – we regards the weights as variables so it
makes sense to regard the output as a function of the inputs and of
the weights:

 The inputs and weights affect the outputs:

),...,,,,...,,(2121 NN wwwxxxfy =

ii
i

xw
x

y
=

!

!
=

!

!

i

w

y
 and

 This partial derivative can be used in a program to train a linear
ANN as it estimates the local gradient for each weight.

Non-linear units

 ANNs built from linear functions have a very limited
range of responses.

 We can give the networks enormously greater
computational power by making the relationship
between activation and output non-linear.

 Instead of y=a, interesting ANNs use a relationship
such as:

a
e

y
!

+
=
1

1

 4

Non-linear units

 This functions is sometimes called the logistic function
– note that a is just the weighted sum, of the inputs, as
for the linear unit.

a
e

y
!

+
=
1

1

y

a a

dy
/d

a

)1(yy
da

dy
!=

Non-linear rules

 The next step requires the application of the rules of
differentiation to the logistic function. It can be shown
that:

i

i

i

i

x
w

a
w

x

a
=

!

!
=

!

!
 and

 From the analysis of a linear unit, where a=y, we
know that:

)1(yy
da

dy
!=

 5

Non-linear rules

 We can get:

 Next, by the chain rule:

iiii w

a

da

dy

w

y

x

a

da

dy

x

y

!

!
=

!

!

!

!
=

!

!
. and .

ii
i

xyy
y

wyy
x

y
)1(

w
 and)1(

i

!=
"

"
!=

"

"

 Which can be used in a program to compute the
derivatives used in the training of non-linear ANNs

Non-linear learning rule

 We want to change the weights so to take a
step downhill on the error surface – this is
called gradient descent.

 Each particular weight needs to be changed in
the right direction to reduce the error E, and
the bigger effect, the more it should be
changed.

 6

Non-linear learning rule

 For on-line learning, the adjustment should
be proportional to minus the partial derivative
of the error E with respect to that weight:

 The constant α is used to keep the step small
– typically set to a value between 0.00001
and 0.2 by the experimenter.

iw

E
w

!

!
"=# .$

Non-linear learning rule

 Now we can train a single unit by putting
everything together to give the adjustment to
a weight after the presentation of an input t:

 This is the essential weight adjustment rule
for training.

ii xyytyw))1()(2(!!!=" #

 7

Training a network

 We shall stick to the simple case of the pattern
associator network.

 The first change is in notation as we need to
distinguish between the units, and to do this we have
to use an extra subscript in some places.

– Output of unit y: yj

– Activation of unit y: aj

– Target value for unit y: tj
– Weight for input i going to unit j: wji

 So the error function E is the sum:

! "=

j

jj tyE
2)(

Training a network

 E is called the sum of squares error function,
and we simply have to keep track of which
unit we are talking about:

 We can go on and add layers and derive the
ANN backpropagation rule but this is beyond
the scope of the course here.

)(2 jj
j

ty
y

E
!=

"

"

 8

Next time …

 Introduction to matrices and vectors
– Maths notation
– Matrix and vector multiplication
– Matrix operations

