Maths Skills (MTCS) G5071
@

Lecture 4

Kingsley Sage
Room 5C16, Pevensey llI
khs20@sussex.ac.uk

© University of Sussex 2006

Lecture 4
O

e Introduction to Applications

- The applications in cognitive science that are used as examples
on this course are non-symbolic computations for vision, neural

networks and adaptive behaviour.

- You will have already met some of these ideas in Further Al, but
here the maths will be more important and uses a consistent

notation.

- Examples will be using differential calculus on a variety of

functions for neural net learning.

- You will be able to see how the formal maths notation maps
onto the computational structures in the sample Artificial Neural

Networks (ANNSs).

- The idea of gradient descent on an energy landscape is
common to many computational systems.

Artificial Neural Networks
e

e ANNSs are formed by connecting units which, very approximately,
correspond to biological neurons.

e In an important class of ANNs, inputs and outputs are
represented by real numbers, units compute an output as a
functions of its input.

e A single unit has N inputs, which will be called x,,x, etc up to N;
the output of the unit is y, so we can write y=f(x,,x,,...,X,) to show
the output is a function of the inputs.

e The form of the response function f determines the behaviour of
the network which can be classified as linear or non-linear.

e A very simple response function would be to just add up all the
inputs, but these are usually weighted to reflect how much the
unit is affected by a particular unit.

Linear units and rules
]

e For each input x;, there is a corresponding weight w; and
the unit combines its inputs by computing a weighted
sum according to:

e A unit can simply pass this activation to its output y=a
and called a linear unit because if you plot y against any
particular input, keeping all the inputs constant, then you
get a straight line.

Linear units and rules
]

e Neural networks are trained by adjusting the weights to improve
their performance — we regards the weights as variables so it
makes sense to regard the output as a function of the inputs and of
the weights:

V= f (XX ety XN W WD ey WN)

e The inputs and weights affect the outputs:

——=w; and

=X;
ox; oW

e This partial derivative can be used in a program to train a linear
ANN as it estimates the local gradient for each weight.

Non-linear units
]

e ANNSs built from linear functions have a very limited
range of responses.

e \We can give the networks enormously greater
computational power by making the relationship
between activation and output non-linear.

e Instead of y=a, interesting ANNs use a relationship
such as:

Non-linear units
]

e This functions is sometimes called the logistic function
— note that a is just the weighted sum, of the inputs, as
for the linear unit.

dy/da

0
ssssssssssssss

0
————————————————

Non-linear rules
]

e From the analysis of a linear unit, where a=y, we
know that:

0
L w; and
axl- 8w,-

e The next step requires the application of the rules of
differentiation to the logistic function. It can be shown
that:

dy

E=y(l—y)

Non-linear rules
]

e Next, by the chain rule:

ay dy 9 dy dy 9
R R

0x; Cda’ 0x; ow; da ow;

e We can get:

9 9
2 y1-y)w; and -2

ox; oW}

e Which can be used in a program to compute the
derivatives used in the training of non-linear ANNs

=y(1-y)x;

Non-linear learning rule
.|

e We want to change the weights so to take a
step downhill on the error surface — this is
called gradient descent.

e Each particular weight needs to be changed in
the right direction to reduce the error E, and
the bigger effect, the more it should be
changed.

Non-linear learning rule
.|

e For on-line learning, the adjustment should
be proportional to minus the partial derivative
of the error E with respect to that weight:

Aw = —05.E
aw,-

e The constant a is used to keep the step small
— typically set to a value between 0.00001
and 0.2 by the experimenter.

Non-linear learning rule
.|

e Now we can train a single unit by putting
everything together to give the adjustment to
a weight after the presentation of an input t:

Aw; = -a(2(y - 1) y(1- y))x;

e This is the essential weight adjustment rule
for training.

Training a network
|

e \We shall stick to the simple case of the pattern
associator network.

e The first change is in notation as we need to
distinguish between the units, and to do this we have
to use an extra subscript in some places.

- Output of unit y: y;
- Activation of unit y: a;
- Target value for unit y: £,
- Weight for input i going to unit j: w;
e So the error function E is the sum:

E= Yy 01
J

Training a network
|

e E is called the sum of squares error function,
and we simply have to keep track of which
unit we are talking about:

oE
—_— 2(y — t .)
ayj J J

e We can go on and add layers and derive the
ANN backpropagation rule but this is beyond
the scope of the course here.

Next time ...
e

e Introduction to matrices and vectors
- Maths notation
- Matrix and vector multiplication
- Matrix operations

