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Abstract Every year a significant area in sub-Saharan Africa is affected by an
infectionwithmeningococcalmeningitis. Large outbreaks of this disease occur every
6–14 years killing tens of thousands of people. Due to being a major public health
problem, meningococcal meningitis has attracted significant attention from the per-
spective of disease control and prevention. At the same time, it has raised a number
of fundamental questions about the disease dynamics that have to be properly under-
stood and addressed before an efficient disease control programme can be developed
and implemented. In this work, we have used mathematical models to identify cru-
cial factors that determine the meningitis dynamics. Our results have suggested that
temporary population immunity plays a very important role and has to be taken into
account during disease monitoring and when measuring the efficiency of vaccines
being deployed.

Introduction

Meningococcal meningitis is an infectious disease caused by a bacterium Neisseria
meningitidis, it affects 1.2 million people worldwide and results in around 135,000
deaths annually.A particularly substantial burden of this disease is experienced by the
26 countries in the so-calledAfrican meningitis belt, which spans sub-Saharan Africa
from Senegal to Ethiopia, as shown in Fig. 1. Patterns of meningococcal meningitis
dynamics in this region are distinct and quite unique: cases of disease appear every
dry season and stop with the start of the rainy season, and every 6–14 years there is a
major epidemic outbreak resulting in a large number of deaths throughout the region.
Due to a significant problem this poses to public health, major efforts have beenmade
in the last few years to develop and introduce an effective vaccine that would reduce
the disease burden and save lives. A successful introduction of such vaccine to a large
extent depends on good understanding of the fundamental properties of epidemiology
and immunology of meningogococcal meningitis.
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Fig. 1 The African meningitis belt (World Health Organisation, 1998, WHO/EMC/BAC/98.3)

Substantial data is available on the spread of meningococcal meningitis in the
African meningitis belt, and several alternative hypotheses have been put forward
to explain observed epidemiological patterns [1]. However, the precise causes of
irregularities of epidemic outbreaks and the impact of individual factors on disease
dynamics have remained poorly understood. Severalmathematicalmodels [2–4] have
attempted to reproduce certain individual features of dynamics of meningococcal
meningitis, but despite their successes, so far they have failed to explain observed
levels of variation in disease carriage rates. One particular aspect that has not been
properly explained by those earlier models is the relation between disease patterns
and immunity. Hence, a new mathematical model was needed that would include
temporary immunity from disease and relate it to different dynamical scenarios.

Mathematical Model

To understand the dynamics of meningogococcal meningitis, we have proposed a
new model [5], in which the overall population is divided into susceptible S, carriers
C , infected I and recovered R individuals, so that the total population is N = S +
C + I + R. The model has the form

d S

dt
= b + φR − β

S(C + I )

N
− μS,

dC

dt
= β

S(C + I )

N
− (a + α + μ)C,

d I

dt
= aC − (ρ + γ + μ)I,

d R

dt
= ρ I + αC − (φ + μ)R,

(1)
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where β is the transmission rate, carriers develop an invasive disease at a rate a and
recover at a rate α, and individuals with invasive disease recover at a rate ρ. Once
recovered, individuals lose their immunity at a rate φ and become susceptible again,
which effectively means that the average duration of immunity is 1/φ. The model
takes into account both the natural μ and disease-induced mortality γ . Individuals
are assumed to be born at a rate b = μN + γ I , so that the total population N is
constant. Rescaling all variables with N , and using the fact that after the rescaling
we have S + C + I + R = 1, the above system can be reduced to the following

Ċ = β(1 − C − I − R)(C + I ) − (a + α + μ)C,

İ = aC − (ρ + γ + μ)I,

Ṙ = ρ I + αC − (φ + μ)R.

(2)

Under assumption of all parameters being constant, the reduced model (2) has a
disease-free steady state E0 = (0, 0, 0), which is stable forR0 < 1, and unstable for
R0 > 1, where the basic reproduction number can be found as

R0 = β(γ + ρ + μ + a)

(γ + ρ + μ)(a + α + μ)
.

As R0 crosses the value of R0 = 1, the system (2) acquires another biologically
realistic endemic steady state E∗ = (C∗, I ∗, R∗) given by

C∗ = K (φ + μ)(ρ + γ + μ), I ∗ = K a(φ + μ), R∗ = K [α(ρ + γ + μ) + ρa],

where

K = (ρ + γ + μ)(a + α + μ)

β(ρ + γ + μ + a)[(ρ + γ + μ)(φ + μ + α) + a(φ + μ + ρ)] (R0 − 1).

The steady state E∗ is stable forR0 > 1, i.e. whenever it exists. An important feature
of the model (2) is the fact that it explicitly includes temporary immunity both from
carriage and invasive disease. We have analysed other scenarios, where there is no
immunity, or there is an immunity from the disease only, but such models do not
produce biologically realistic results [5].

The Role of Seasonality and Temporary Immunity

Before delving into investigation of the role of temporary immunity, it is instructive
to make the model more realistic by explicitly accounting for seasonal changes in
the rates of transmissibility and disease progression. Seasonality is a very prominent
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feature of the meningococcal meningitis, and it has been attributed to a number of
external factors, of which most important is considered to be the Harmattan, a dry
wind affecting the region during the dry season. To incorporate this into the model,
we introduce seasonally varying rates of transmission and disease progression as
follows,

a(t) = a0(1 + εa cos 2π t), β(t) = β0(1 + εβ cos 2π t).

Extensive numerical simulations suggest that dynamics of themodelwhen both a and
β are periodically forced is qualitatively similar to that when only the transmission
rate β is varying seasonally, hence it is sufficient to consider the seasonality in β

only.
Figure2 shows how the model can exhibit a variety of dynamical behaviours with

oscillations of different periods and possible chaotic dynamics depending on the
duration of temporary immunity period (given by 1/φ) and the transmission rate.
There are several important observations that can be made from this Figure. The first
one concerns the fact that a longer period of temporary immunity, i.e. small value
of φ, is associated with a longer inter-epidemic period, as should be expected due to
the fact that longer immunity means that the number of people who can acquire an
infection stays small for longer. The model demonstrates a large range of possible
inter-epidemic periods, with those in the range of 2–10 years being most common.
Realistically long inter-epidemic periods of 6–14 years correspond to the values of
temporary immunity period that is larger than two years. It is also noteworthy that
gradual changes in the duration of temporary immunity or the transmission rate lead
to sudden transitions between regular multi-annual cycles of different periods and
irregular behaviour.

In Fig. 3 we illustrate time series associated with epidemic outbreaks of differ-
ent periods. Simulations suggest that the model (2) is able to produce both regular
annual epidemics, as well as epidemics with longer quiescent periods between suc-
cessive outbreaks, epidemics with non-equal amplitudes, and chaotic series with out-

Fig. 2 The inter-epidemic
period (years) depending on
parameters φ and β.
Parameter regions in which
epidemics occur at irregular
intervals are marked in
white. Parameter values:
a = 0.8, εa = 0, εβ = 0.4,
α = 52. Figure taken from
Irving et al. (2012) [5],
reprinted with permission
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Fig. 3 Weekly incidence of meningitis per 100 000 population for different lengths of immunity.
aAnnual epidemics. bBiennial epidemics. c Epidemics every 5 years. dEpidemics of unpredictable
magnitudes and occurring in unpredictable years. Parameter values: a0 = 0.2, α = 26, εa = 0,
β0 = 90, εβ = 0.5. a φ = 0.5; b φ = 0.25; c φ = 0.1; d φ = 0.085. Figure taken from Irving et al.
(2012) [5], reprinted with permission

breaks taking place at irregular times and having significantly different amplitudes.
An inclusion of temporary immunity in both carriage and invasive disease leads to
epidemics of realistic sizes.Moreover, in the chaotic regime the time series often have
epidemics in successive years, as observed in themeningitis belt, where the incidence
is negligible during rainy seasons but picks up in consecutive dry seasons.

Impact of the Model and Future Outlook

The main impact of the model is in highlighting the fundamental role played by tem-
porary immunity in determining the kind of dynamics observed in epidemiological
patterns of meningococcal meningitis. This has changed the view of epidemiologists
and clinical scientists on epidemiology of meningococcal meningitis, thus helping
them to improve public-health policies aimed at combating the disease.

Besides purely academic interest, themodelwe developed also has a very practical
impact. The first aspect of it concerns efforts of theMERIT (Meningitis Environment
Risk Information Technologies) project coordinated by the World Health Organiza-
tion and aimed at disease surveillance. More specifically, it has helped epidemiolo-
gists better understand the prevalence, incidence and relative impact of different risk
factors in the endemic areas. Another impact of the model is in helping health pro-
fessionals design optimal and targeted vaccination strategies, as well as to assess the
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population-wide efficiency of the vaccine once it is deployed. With a vaccine being
currently rolled out throughout the African meningitis belt, optimising vaccination
campaigns leads to a significant reduction of economic costs for the affected coun-
tries. Understanding the role of the temporary immunity in the disease dynamics is
helping to correctly quantify the effectiveness of the vaccine.

There are several directions in which the model can be further improved in terms
of biological realism and practical applications. From the modelling perspective, the
model can include age-structure of the population, aswell as spatial effects associated
with themovement of people and various environmental factors. Through integration
of model predictions with real-time satellite and meteorological data, it should be
possible to design a system of advanced disease warning, and to optimise efforts at
disease containment.
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